1
|
Baxter BA, Li KJ, Zarei I, Yao L, Rao S, Ryan EP. Nontargeted and Targeted Metabolomics Identifies Dietary Exposure Biomarkers for Navy Bean and Rice Bran Consumption in Children and Adults. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14531-14543. [PMID: 36318603 DOI: 10.1021/acs.jafc.2c02378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dietary exposure biomarkers are needed for advancing knowledge on healthy foods. This study examined biomarkers for navy beans and rice bran in children and adults. Plasma, urine, stool, and study foods from dietary intervention studies were analyzed by metabolomics. A total of 38 children and 49 adults were assessed after consuming navy beans and/or rice bran for 2-, 4-, 6-, or 12 weeks. From the 138-175 metabolites modulated by diet, 11 were targeted for quantification. Trigonelline and pipecolate concentrations increased in children and adult plasma after 4 weeks compared to baseline. Increased xanthurenate (46%) was observed in children plasma after rice bran intake for 4 weeks. Study foods with navy beans had higher S-methylcysteine compared to control and supported the increased urine S-methylcysteine sulfoxide. Nontargeted metabolomics was moderately effective to identify target molecules as candidate biomarkers. Study limitations include interindividual metabolite variations before diet intervention. Validation is warranted using cross-over designs and larger sample sizes.
Collapse
Affiliation(s)
- Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Katherine J Li
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Iman Zarei
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Linxing Yao
- Analytical Resources Core─Bioanalysis and Omics, Fort Collins, Colorado 80523 United States
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
2
|
Leach HJ, Baxter BA, Beale MN, Smith HV, Rao S, Hibbs-Shipp S, Ryan EP. Feasibility of Beans/Bran Enriching Nutritional Eating For Intestinal Health & Cancer Including Activity for Longevity: A Pilot Trial to Improve Healthy Lifestyles among Individuals at High Risk for Colorectal Cancer. Integr Cancer Ther 2021; 19:1534735420967101. [PMID: 33111581 PMCID: PMC7786415 DOI: 10.1177/1534735420967101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purpose: Examine the feasibility and preliminary effects of a lifestyle intervention of rice bran plus navy bean supplementation, and physical activity (PA) education on intake of fiber and whole grains, and PA levels. Design: Randomized-controlled, single-blinded. Setting: Academic institution and free-living. Subjects: Adults >18 years, with ≥1 adenomatous polyp removed within 3 years. Intervention: Participants received powder and pre-prepared meals and snacks that contained either rice bran (30 g/day) plus navy bean (30 g/day), or Fibersol-2® (10 g/day), for 12-weeks. All participants received a 1-hour (PA) education session. Measures: Feasibility was assessed by recruitment and retention rates, and compliance to the study foods and procedures. Three-day food logs were analyzed using Nutritionist Pro™ to estimate fiber intake, and the Automated Self-Administered 24-hour (ASA24®) Dietary Assessment Tool calculated Healthy Eating Index (HEI) whole grain and total scores. PA was measured using an ActivPAL™ accelerometer. Analysis: Continuous data were summarized as median, range, and percent change from baseline to post-intervention. Results: N = 20 (86.9%) completed the intervention. Compliance was 92% in the rice bran plus navy bean versus 89% in Fibersol-2®. Navy bean consumption increased from 2 g/day to 30 g/day, and rice bran from 0 g/day to 30 g/day. Fiber intake (g/day) increased by 73% versus 82%, HEI whole grain improved by 270% versus 37%, and HEI total improved by 10% versus 9.1% in rice bran plus navy bean and Fibersol-2®, respectively. Total PA (MET-hours/day) showed minimal change for intervention (+0.04%) and control (+4%). Conclusion: Findings merit a larger trial of rice bran plus navy bean and PA to evaluate efficacy for dietary and cancer prevention-related outcomes.
Collapse
Affiliation(s)
- Heather J Leach
- Department of Health and Exercise Science, Colorado State University, CO, USA.,Colorado School of Public Health, Colorado State University, CO, USA
| | - Bridget A Baxter
- Colorado School of Public Health, Colorado State University, CO, USA
| | - Melanie N Beale
- Department of Health and Exercise Science, Colorado State University, CO, USA
| | - Hillary V Smith
- Department of Environmental Health and Radiological Sciences, Colorado State University, CO, USA
| | - Sangeeta Rao
- Colorado School of Public Health, Colorado State University, CO, USA.,College of Veterinary Medicine and Biomedical Science, Colorado State University, CO, USA
| | - Sarah Hibbs-Shipp
- Department of Environmental Health and Radiological Sciences, Colorado State University, CO, USA
| | - Elizabeth P Ryan
- Colorado School of Public Health, Colorado State University, CO, USA.,Department of Environmental Health and Radiological Sciences, Colorado State University, CO, USA
| |
Collapse
|
3
|
Zarei I, Baxter BA, Oppel RC, Borresen EC, Brown RJ, Ryan EP. Plasma and Urine Metabolite Profiles Impacted by Increased Dietary Navy Bean Intake in Colorectal Cancer Survivors: A Randomized-Controlled Trial. Cancer Prev Res (Phila) 2020; 14:497-508. [PMID: 33361317 DOI: 10.1158/1940-6207.capr-20-0270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
Navy beans contain bioactive phytochemicals with colon cancer prevention properties as demonstrated in carcinogen-induced animal models. Human studies support that dietary navy bean intake modulates metabolism by the gut microbiome. This study investigated the effect of navy bean ingestion on plasma and urine metabolite profiles of overweight and obese colorectal cancer survivors. Twenty participants completed a single-blinded, randomized-controlled dietary intervention with precooked navy beans (35 g bean powder/day) or control (0 g/day) for 4 weeks. Plasma and urine were collected at baseline, 2 weeks, and 4 weeks following consumption. Nontargeted metabolomics was applied to study meals and snacks, navy beans, plasma, and urine. Increased navy bean consumption was hypothesized to (i) delineate dietary biomarkers and (ii) promote metabolic shifts relevant for cancer protection in the plasma and urine metabolome. At 4 weeks, 16 plasma and 16 urine metabolites were significantly different in the navy bean intervention group compared with placebo control (P < 0.05). Increased plasma 2,3-dihydroxy-2-methylbutyrate (1.34-fold), S-methylcysteine (1.92-fold), and pipecolate (3.89-fold), and urine S-adenosylhomocysteine (2.09-fold) and cysteine (1.60-fold) represent metabolites with cancer-protective actions following navy bean consumption. Diet-derived metabolites were detected in plasma or urine and confirmed for presence in the navy bean intervention meals and snacks. These included 3-(4-hydroxyphenyl)propionate, betaine, pipecolate, S-methylcysteine, choline, eicosapentaenoate (20:5n3), benzoate, S-adenosylhomocysteine, N-delta-acetylornithine, cysteine, 3-(4-hydroxyphenyl)lactate, gentisate, hippurate, 4-hydroxyhippurate, and salicylate. The navy bean dietary intervention for 4 weeks showed changes to pathways of metabolic importance to colorectal cancer prevention and merit continued attention for dietary modulation in future high-risk cohort investigations. PREVENTION RELEVANCE: This clinical study suggests that increased consumption of navy beans would deliver bioactive metabolites to individuals at high risk for colorectal cancer recurrence and produce metabolic shifts in plasma and urine profiles.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Renee C Oppel
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Regina J Brown
- University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.
| |
Collapse
|
4
|
Carbas B, Machado N, Oppolzer D, Ferreira L, Queiroz M, Brites C, Rosa EAS, Barros AIRNA. Nutrients, Antinutrients, Phenolic Composition, and Antioxidant Activity of Common Bean Cultivars and their Potential for Food Applications. Antioxidants (Basel) 2020; 9:antiox9020186. [PMID: 32102193 PMCID: PMC7070695 DOI: 10.3390/antiox9020186] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Phaseolus vulgaris L. is the most commonly consumed legume in the world, given its high vegetable protein content, phenolic compounds, and antioxidant properties. It also represents one of the most sustainable, low-carbon and sources of food available at present to man. This study aims to identify the nutrients, antinutrients, phenolic composition, and antioxidant profile of 10 common bean cultivars (Arikara yellow, butter, cranberry, red kidney, navy, pinto, black, brown eyed, pink eyed, and tarrestre) from two harvest years, thereby assessing the potential of each cultivar for specific applications in the food industry. Navy and pink eyed beans showed higher potential for enrichment of foodstuffs and gluten-free products due to their higher protein and amino acid contents. Additionally, red kidney, cranberry and Arikara yellow beans had the highest content of phenolic compounds and antioxidant properties, which can act as functional ingredients in food products, thus bringing health benefits. Our study highlights the potential of using specific bean cultivars in the development of nutrient-enriched food and as functional ingredients in diets designed for disease prevention and treatment.
Collapse
Affiliation(s)
- Bruna Carbas
- Centre for the Research and Technology of Agro-Environmental and Biological sciences, University of Trás-os-Montes and Alto Douro (UTAD-CITAB), 5000-801 Vila Real, Portugal; (N.M.); (D.O.); (L.F.); (M.Q.); (A.I.B.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
- Correspondence:
| | - Nelson Machado
- Centre for the Research and Technology of Agro-Environmental and Biological sciences, University of Trás-os-Montes and Alto Douro (UTAD-CITAB), 5000-801 Vila Real, Portugal; (N.M.); (D.O.); (L.F.); (M.Q.); (A.I.B.)
| | - David Oppolzer
- Centre for the Research and Technology of Agro-Environmental and Biological sciences, University of Trás-os-Montes and Alto Douro (UTAD-CITAB), 5000-801 Vila Real, Portugal; (N.M.); (D.O.); (L.F.); (M.Q.); (A.I.B.)
| | - Luís Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological sciences, University of Trás-os-Montes and Alto Douro (UTAD-CITAB), 5000-801 Vila Real, Portugal; (N.M.); (D.O.); (L.F.); (M.Q.); (A.I.B.)
| | - Marcelo Queiroz
- Centre for the Research and Technology of Agro-Environmental and Biological sciences, University of Trás-os-Montes and Alto Douro (UTAD-CITAB), 5000-801 Vila Real, Portugal; (N.M.); (D.O.); (L.F.); (M.Q.); (A.I.B.)
| | - Carla Brites
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
- GREEN-IT, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Eduardo AS Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological sciences, University of Trás-os-Montes and Alto Douro (UTAD-CITAB), 5000-801 Vila Real, Portugal; (N.M.); (D.O.); (L.F.); (M.Q.); (A.I.B.)
| | - Ana IRNA Barros
- Centre for the Research and Technology of Agro-Environmental and Biological sciences, University of Trás-os-Montes and Alto Douro (UTAD-CITAB), 5000-801 Vila Real, Portugal; (N.M.); (D.O.); (L.F.); (M.Q.); (A.I.B.)
| |
Collapse
|
5
|
Phytochemicals and Gastrointestinal Cancer: Cellular Mechanisms and Effects to Change Cancer Progression. Biomolecules 2020; 10:biom10010105. [PMID: 31936288 PMCID: PMC7022462 DOI: 10.3390/biom10010105] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is a prevailing global health disease with a high incidence rate which varies by region. It is a huge economic burden on health care providers. GI cancer affects different organs in the body such as the gastric organs, colon, esophagus, intestine, and pancreas. Internal and external factors like smoking, obesity, urbanization, genetic mutations, and prevalence of Helicobacter pylori and Hepatitis B and Hepatitis C viral infections could increase the risk of GI cancer. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in fruits, grains, and vegetables. Consumption of phytochemicals may protect against chronic diseases like cardiovascular disease, neurodegenerative disease, and cancer. Multiple studies have assessed the chemoprotective effect of selected phytochemicals in GI cancer, offering support to their potential towards reducing the pathogenesis of the disease. The aim of this review was to summarize the current knowledge addressing the anti-cancerous effects of selected dietary phytochemicals on GI cancer and their molecular activities on selected mechanisms, i.e., nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), detoxification enzymes, adenosine monophosphate activated protein kinase (AMPK), wingless-related integration site/β-catenin (wingless-related integration site (Wnt) β-catenin, cell apoptosis, phosphoinositide 3-kinases (PI3K)/ protein kinase B AKT/ mammalian target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK). In this review phytochemicals were classified into four main categories: (i) carotenoids, including lutein, lycopene, and β-carotene; (ii) proanthocyanidins, including quercetin and ellagic acid; (iii) organosulfur compounds, including allicin, allyl propyl disulphide, asparagusic acid, and sulforaphane; and (iv) other phytochemicals including pectin, curcumins, p-coumaric acid and ferulic acid. Overall, phytochemicals improve cancer prognosis through the downregulation of β-catenin phosphorylation, therefore enhancing apoptosis, and upregulation of the AMPK pathway, which supports cellular homeostasis. Nevertheless, more studies are needed to provide a better understanding of the mechanism of cancer treatment using phytochemicals and possible side effects associated with this approach.
Collapse
|
6
|
Zhang X, Browman G, Siu W, Basen-Engquist KM, Hanash SM, Hoffman KL, Okhuysen PC, Scheet P, Petrosino JF, Kopetz S, Daniel CR. The BE GONE trial study protocol: a randomized crossover dietary intervention of dry beans targeting the gut microbiome of overweight and obese patients with a history of colorectal polyps or cancer. BMC Cancer 2019; 19:1233. [PMID: 31852462 PMCID: PMC6921460 DOI: 10.1186/s12885-019-6400-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mouse and human studies support the promise of dry beans to improve metabolic health and to lower cancer risk. In overweight/obese patients with a history of colorectal polyps or cancer, the Beans to Enrich the Gut microbiome vs. Obesity's Negative Effects (BE GONE) trial will test whether and how an increase in the consumption of pre-cooked, canned dry beans within the context of usual diet and lifestyle can enhance the gut landscape to improve metabolic health and reduce cancer risk. METHODS/DESIGN This randomized crossover trial is designed to characterize changes in (1) host markers spanning lipid metabolism, inflammation, and obesity-related cancer risk; (2) compositional and functional profiles of the fecal microbiome; and (3) host and microbial metabolites. With each subject serving as their own control, the trial will compare the participant's usual diet with (intervention) and without (control) dry beans. Canned, pre-cooked dry beans are provided to participants and the usual diet continually assessed and monitored. Following a 4-week run-in and equilibration period, each participant provides a total of 5 fasting blood and 6 stool samples over a total period of 16 weeks. The intervention consists of a 2-week ramp-up of dry bean intake to 1 cup/d, which is then continued for an additional 6 weeks. Intra- and inter-individual outcomes are assessed across each crossover period with consideration of the joint or modifying effects of the usual diet and baseline microbiome. DISCUSSION The BE GONE trial is evaluating a scalable dietary prevention strategy targeting the gut microbiome of high-risk patients to mitigate the metabolic and inflammatory effects of adiposity that influence colorectal cancer risk, recurrence, and survival. The overarching scientific goal is to further elucidate interactions between diet, the gut microbiome, and host metabolism. Improved understanding of the diet-microbiota interplay and effective means to target these relationships will be key to the future of clinical and public health approaches to cancer and other major diet- and obesity-related diseases. TRIAL REGISTRATION This protocol is registered with the U.S. National Institutes of Health trial registry, ClinicalTrials.gov, under the identifier NCT02843425. First posted July 25, 2016; last verified January 25, 2019.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
- Department of Medicine, Epidemiology and Population Science, Baylor College of Medicine, Houston, TX, USA
| | - Gladys Browman
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
| | - Wesley Siu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen M Basen-Engquist
- Department of Behavioral Science, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, Infection Control, and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA.
| |
Collapse
|
7
|
Zarei I, Oppel RC, Borresen EC, Brown RJ, Ryan EP. Modulation of plasma and urine metabolome in colorectal cancer survivors consuming rice bran. ACTA ACUST UNITED AC 2019; 6. [PMID: 31396400 DOI: 10.15761/ifnm.1000252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rice bran has bioactive phytochemicals with cancer protective actions that involve metabolism by the host and the gut microbiome. Globally, colorectal cancer (CRC) is the third leading cause of cancer-related death and the increased incidence is largely attributed to poor dietary patterns, including low daily fiber intake. A dietary intervention trial was performed to investigate the impact of rice bran consumption on the plasma and urine metabolome of CRC survivors. Nineteen CRC survivors participated in a randomized-controlled trial that included consumption of heat-stabilized rice bran (30 g/day) or a control diet without rice bran for 4 weeks. A fasting plasma and first void of the morning urine sample were analyzed by non-targeted metabolomics using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). After 4 weeks of either rice bran or control diets, 12 plasma and 16 urine metabolites were significantly different between the groups (p≤0.05). Rice bran intake increased relative abundance of plasma mannose (1.373-fold) and beta-citrylglutamate (BCG) (1.593-fold), as well as increased urine N-formylphenylalanine (2.191-fold) and dehydroisoandrosterone sulfate (DHEA-S) (4.488-fold). Diet affected metabolites, such as benzoate, mannose, eicosapentaenoate (20:5n3) (EPA), and N-formylphenylalanine have been previously reported for cancer protection and were identified from the rice bran food metabolome. Nutritional metabolome changes following increased consumption of whole grains such as rice bran warrants continued investigation for colon cancer control and prevention attributes as dietary biomarkers for positive effects are needed to reduce high risk for colorectal cancer recurrence.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Renee C Oppel
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Regina J Brown
- University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
8
|
Navy Beans Impact the Stool Metabolome and Metabolic Pathways for Colon Health in Cancer Survivors. Nutrients 2018; 11:nu11010028. [PMID: 30583518 PMCID: PMC6356708 DOI: 10.3390/nu11010028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States and emerging evidence supports that increased consumption of legumes, such as navy beans, can reduce risk. Navy bean consumption was previously shown to modulate host and microbiome metabolism, and this investigation was performed to assess the impact on the human stool metabolome, which includes the presence of navy bean metabolites. This 4-week, randomized-controlled trial with overweight and obese CRC survivors involved consumption of 1 meal and 1 snack daily. The intervention contained 35 g of cooked navy bean or macronutrient matched meals and snacks with 0 g of navy beans for the control group (n = 18). There were 30 statistically significant metabolite differences in the stool of participants that consumed navy bean at day 28 compared to the participants’ baseline (p ≤ 0.05) and 26 significantly different metabolites when compared to the control group. Of the 560 total metabolites identified from the cooked navy beans, there were 237 possible navy bean-derived metabolites that were identified in the stool of participants consuming navy beans, such as N-methylpipecolate, 2-aminoadipate, piperidine, and vanillate. The microbial metabolism of amino acids and fatty acids were also identified in stool after 4 weeks of navy bean intake including cadaverine, hydantoin-5 propionic acid, 4-hydroxyphenylacetate, and caprylate. The stool relative abundance of ophthalmate increased 5.25-fold for navy bean consumers that can indicate glutathione regulation, and involving cancer control mechanisms such as detoxification of xenobiotics, antioxidant defense, proliferation, and apoptosis. Metabolic pathways involving lysine, and phytochemicals were also modulated by navy bean intake in CRC survivors. These metabolites and metabolic pathways represent an acute response to increased navy bean intake, which merit further investigation for improving colonic health after long-term consumption.
Collapse
|
9
|
Borresen EC, Brown DG, Harbison G, Taylor L, Fairbanks A, O'Malia J, Bazan M, Rao S, Bailey SM, Wdowik M, Weir TL, Brown RJ, Ryan EP. A Randomized Controlled Trial to Increase Navy Bean or Rice Bran Consumption in Colorectal Cancer Survivors. Nutr Cancer 2016; 68:1269-1280. [PMID: 27689688 DOI: 10.1080/01635581.2016.1224370] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Consumption of navy beans (NB) and rice bran (RB) have been shown to inhibit colon carcinogenesis. Given the overall poor diet quality in colorectal cancer (CRC) survivors and low reported intake of whole grains and legumes, practical strategies to increase consumption merit attention. This study determined feasibility of increasing NB or RB intake in CRC survivors to increase dietary fiber and examined serum inflammatory biomarkers and telomere lengths. Twenty-nine subjects completed a randomized controlled trial with foods that included cooked NB powder (35 g/day), heat-stabilized RB (30 g/day), or no additional ingredient. Fasting blood, food logs, and gastrointestinal health questionnaires were collected. The amount of NB or RB consumed equated to 4-9% of subjects' daily caloric intake and no major gastrointestinal issues were reported with increased consumption. Dietary fiber amounts increased in NB and RB groups at Weeks 2 and 4 compared to baseline and to control (P ≤ 0.01). Telomere length correlated with age and HDL cholesterol at baseline, and with improved serum amyloid A (SAA) levels at Week 4 (P ≤ 0.05). This study concludes feasibility of increased dietary NB and RB consumption to levels associated with CRC chemoprevention and warrants longer-term investigations with both foods in high-risk populations that include cancer prevention and control outcomes.
Collapse
Affiliation(s)
- Erica C Borresen
- a Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , Colorado , USA
| | - Dustin G Brown
- a Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , Colorado , USA
| | - Greg Harbison
- a Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , Colorado , USA
| | - Lynn Taylor
- a Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , Colorado , USA
| | - Amanda Fairbanks
- a Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , Colorado , USA
| | - Joanne O'Malia
- b University of Colorado Health-North Cancer Clinical Research , Fort Collins , Colorado , USA
| | - Marlon Bazan
- b University of Colorado Health-North Cancer Clinical Research , Fort Collins , Colorado , USA
| | - Sangeeta Rao
- c Department of Clinical Sciences , Colorado State University , Fort Collins , Colorado , USA
| | - Susan M Bailey
- a Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , Colorado , USA
| | - Melissa Wdowik
- d Department of Food Science and Human Nutrition , Colorado State University , Fort Collins , Colorado , USA.,e Kendall Reagan Nutrition Center , Colorado State University , Fort Collins , Colorado , USA
| | - Tiffany L Weir
- d Department of Food Science and Human Nutrition , Colorado State University , Fort Collins , Colorado , USA
| | - Regina J Brown
- f University of Colorado School of Medicine , Aurora , Colorado , USA
| | - Elizabeth P Ryan
- a Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , Colorado , USA.,e Kendall Reagan Nutrition Center , Colorado State University , Fort Collins , Colorado , USA.,g University of Colorado Cancer Center , Aurora , Colorado , USA
| |
Collapse
|
10
|
Sheflin AM, Borresen EC, Kirkwood JS, Boot CM, Whitney AK, Lu S, Brown RJ, Broeckling CD, Ryan EP, Weir TL. Dietary supplementation with rice bran or navy bean alters gut bacterial metabolism in colorectal cancer survivors. Mol Nutr Food Res 2016; 61. [PMID: 27461523 DOI: 10.1002/mnfr.201500905] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 12/17/2022]
Abstract
SCOPE Heat-stabilized rice bran (SRB) and cooked navy bean powder (NBP) contain a variety of phytochemicals that are fermented by colonic microbiota and may influence intestinal health. Dietary interventions with these foods should be explored for modulating colorectal cancer risk. METHODS AND RESULTS A randomized-controlled pilot clinical trial investigated the effects of eating SRB (30 g/day) or cooked navy bean powder (35 g/day) on gut microbiota and metabolites (NCT01929122). Twenty-nine overweight/obese volunteers with a prior history of colorectal cancer consumed a study-provided meal and snack daily for 28 days. Volunteers receiving SRB or NBP showed increased gut bacterial diversity and altered gut microbial composition at 28 days compared to baseline. Supplementation with SRB or NBP increased total dietary fiber intake similarly, yet only rice bran intake led to a decreased Firmicutes:Bacteroidetes ratio and increased SCFA (propionate and acetate) in stool after 14 days but not at 28 days. CONCLUSION These findings support modulation of gut microbiota and fermentation byproducts by SRB and suggest that foods with similar ability to increase dietary fiber intake may not have equal effects on gut microbiota and microbial metabolism.
Collapse
Affiliation(s)
- Amy M Sheflin
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jay S Kirkwood
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Claudia M Boot
- Department of Chemistry, Central Instrument Facility, Colorado State University, Fort Collins, CO, USA
| | - Alyssa K Whitney
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Shen Lu
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Regina J Brown
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver and Lone Tree Oncology affiliation of University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Navy and black bean-based dog foods are digestible during weight loss in overweight and obese adult companion dogs. JOURNAL OF APPLIED ANIMAL NUTRITION 2016. [DOI: 10.1017/jan.2015.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryCommon beans (Phaseolus vulgarisL.) are a nutrient-dense, low glycemic index food that supports healthy weight management in people and was examined for dogs. The objectives of this study were to evaluate the apparent total tract digestibility (ATTD) and nutrient utilisation of navy (NB) and black (BB) bean-based diets in overweight or obese companion dogs undergoing a weight loss intervention. A nutritionally complete, dry extruded dog food was used as the control (CON) diet and two isocaloric, nutrient matched bean diets, containing either 25% w/w cooked BB or NB powder formed the test diets. Diets were fed to adult, overweight companion dogs for either four weeks (short-term study, n = 30) or for twenty-six weeks (long-term study, n = 15) at 60% of maintenance calories for ideal weight. Apparent weight loss increased over time in both the short- and long-term studies (p < 0.001) but was not different between the three study groups: apparent weight loss was between 4.05% – 6.14% for the short-term study and 14.0% – 17.9% in the long-term study. The ATTD was within expected ranges for all groups, whereby total dry matter and crude protein ATTD was 7–8% higher in the BB diet compared to CON (P < 0.05), crude fat ATTD was similar across all diets, and nitrogen free extract ATTD was 5–6% higher in both BB and NB compared to CON (P < 0.05). Metabolisable energy was similar for all diets, and ranged from 3,434–3,632 kcal/kg. At the end of each study period, dogs had haemoglobin levels ≥12 g/dl, packed cell volume ≥36%, albumin ≥2.4 g/dl, ALP ≤ 300 IU/l and all median values for each group were within defined limits for nutritional adequacy. This investigation demonstrated that BB and NB diets were safe, digestible, and supported weight loss in calorically restricted, overweight or obese, adult companion dogs.
Collapse
|
12
|
Garcia-Mora P, Peñas E, Frias J, Zieliński H, Wiczkowski W, Zielińska D, Martínez-Villaluenga C. High-Pressure-Assisted Enzymatic Release of Peptides and Phenolics Increases Angiotensin Converting Enzyme I Inhibitory and Antioxidant Activities of Pinto Bean Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1730-1740. [PMID: 26857428 DOI: 10.1021/acs.jafc.5b06080] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pinto bean protein concentrate was hydrolyzed by subtilisins at 0.1, 100, and 200 MPa and 50 °C for 15 min. Alcalase hydrolysis at 100 MPa led to higher ACE inhibition, reducing power, and free radical scavenging activity of hydrolysates. However, hydrolysate obtained by Savinase at 200 MPa showed the best ACE-inhibitory and radical scavenging activities. Proteolysis by Savinase at 200 MPa was considered the most effective treatment to increase small peptides (<3 kDa), flavonoids, total phenolic compounds, and oxygen radical absorbance capacity in hydrolysates. In this hydrolysate, small phaseolin fragments with reported ACE-inhibitory and antioxidant sequences were identified. Catechin, pelargonidin 3-glucoside, and ferulic acid were the main phenolic compounds. Hihg-pressure-assisted hydrolysis of common bean protein concentrates would provide benefits in the production of functional hydrolysates providing higher functionality and added value to the resulting hydrolysate due to synergistic effects of bioactive peptides and soluble phenolics.
Collapse
Affiliation(s)
- Patricia Garcia-Mora
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC) , Juan de la Cierva 3, Madrid 28006, Spain
| | - Elena Peñas
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC) , Juan de la Cierva 3, Madrid 28006, Spain
| | - Juana Frias
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC) , Juan de la Cierva 3, Madrid 28006, Spain
| | - Henryk Zieliński
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences , Tuwima 10, P.O. Box 55, 10-748 Olsztyn, Poland
| | - Wiesław Wiczkowski
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences , Tuwima 10, P.O. Box 55, 10-748 Olsztyn, Poland
| | - Danuta Zielińska
- Department of Chemistry, University of Warmia and Mazury in Olsztyn , Plac Lodzki 4, 10-727 Olsztyn, Poland
| | - Cristina Martínez-Villaluenga
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC) , Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
13
|
Luna-Vital DA, Mojica L, González de Mejía E, Mendoza S, Loarca-Piña G. Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): A review. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.11.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|