1
|
Melo J, Pinto V, Fernandes T, Malheiro AR, Osório H, Figueiredo C, Leite M. Isolation Method and Characterization of Outer Membranes Vesicles of Helicobacter pylori Grown in a Chemically Defined Medium. Front Microbiol 2021; 12:654193. [PMID: 34149641 PMCID: PMC8206784 DOI: 10.3389/fmicb.2021.654193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
Outer membrane vesicles (OMVs) are small vesicles constitutively shed by all Gram-negative bacterium, which have been proposed to play a role in Helicobacter pylori persistence and pathogenesis. The methods currently available for the isolation of H. pylori OMVs are diverse and time-consuming, raising the need for a protocol standardization, which was the main aim of this study. Here, we showed that the chemically defined F12 medium, supplemented with cholesterol, nutritionally supports bacterial growth and maintains H. pylori viability for at least 72 h. Additionally, we developed an abridged protocol for isolation of OMVs from these bacterial cultures, which comprises a low-speed centrifugation, supernatant filtration through a 0.45 μm pore, and two ultracentrifugations for OMVs’ recovery and washing. Using this approach, a good yield of highly pure bona fide OMVs was recovered from cultures of different H. pylori strains and in different periods of bacterial growth, as assessed by nanoparticle tracking analysis, transmission electron microscopy (TEM), and proteomic analyses, confirming the reliability of the protocol. Analysis of the proteome of OMVs isolated from H. pylori F12-cholesterol cultures at different time points of bacterial growth revealed differentially expressed proteins, including the vacuolating cytotoxin VacA. In conclusion, this work proposes a time- and cost-efficient protocol for the isolation of H. pylori OMVs from a chemically defined culture medium that is suitable for implementation in research and in the biopharmaceutical field.
Collapse
Affiliation(s)
- Joana Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Vanessa Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Tânia Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Ana R Malheiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Marina Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis. PLoS One 2020; 15:e0227657. [PMID: 33216751 PMCID: PMC7679012 DOI: 10.1371/journal.pone.0227657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
When oral bacteria accidentally enter the bloodstream due to transient tissue damage during dental procedures, they have the potential to attach to the endocardium or an equivalent surface of an indwelling prosthesis and cause infection. Many bacterial species produce extracellular vesicles (EVs) as part of normal physiology, but also use it as a virulence strategy. In this study, it was hypothesized that Granulicatella adiacens produce EVs that possibly help it in virulence. Therefore, the objectives were to isolate and characterize EVs produced by G. adiacens and to investigate its immune-stimulatory effects. The reference strain G. adiacens CCUG 27809 was cultured on chocolate blood agar for 2 days. From subsequent broth culture, the EVs were isolated using differential centrifugation and filtration protocol and then observed using scanning electron microscopy. Proteins in the vesicle preparation were identified by nano LC-ESI-MS/MS. The EVs proteome was analyzed and characterized using different bioinformatics tools. The immune-stimulatory effect of the EVs was studied via ELISA quantification of IL-8, IL-1β and CCL5, major proinflammatory cytokines, produced from stimulated human PBMCs. It was revealed that G. adiacens produced EVs, ranging in diameter from 30 to 250 nm. Overall, G. adiacens EVs contained 112 proteins. The proteome consists of several ribosomal proteins, DNA associated proteins, binding proteins, and metabolic enzymes. It was also shown that these EVs carry putative virulence factors including moonlighting proteins. These EVs were able to induce the production of IL-8, IL-1β and CCL5 from human PBMCs. Further functional characterization of the G. adiacens EVs may provide new insights into virulence mechanisms of this important but less studied oral bacterial species.
Collapse
|
3
|
Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles. J Microbiol 2019; 57:498-508. [PMID: 31054137 DOI: 10.1007/s12275-019-8483-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/12/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
Outer membrane vesicles (OMVs) are nanostructures of 20-200 nm diameter deriving from the surface of several Gram-negative bacteria. OMVs are emerging as shuttles involved in several mechanisms of communication and environmental adaptation. In this work, OMVs were isolated and characterized from Novosphingobium sp. PP1Y, a Gram-negative non-pathogenic microorganism lacking LPS on the outer membrane surface and whose genome was sequenced and annotated. Scanning electron microscopy performed on samples obtained from a culture in minimal medium highlighted the presence of PP1Y cells embedded in an extracellular matrix rich in vesicular structures. OMVs were collected from the exhausted growth medium during the mid-exponential phase, and purified by ultracentrifugation on a sucrose gradient. Atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis showed that purified PP1Y OMVs had a spherical morphology with a diameter of ca. 150 nm and were homogenous in size and shape. Moreover, proteomic and fatty acid analysis of purified OMVs revealed a specific biochemical "fingerprint", suggesting interesting details concerning their biogenesis and physiological role. Moreover, these extracellular nanostructures do not appear to be cytotoxic on HaCaT cell line, thus paving the way to their future use as novel drug delivery systems.
Collapse
|
4
|
Yu YJ, Wang XH, Fan GC. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacol Sin 2018; 39:514-533. [PMID: 28858295 PMCID: PMC5888691 DOI: 10.1038/aps.2017.82] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023] Open
Abstract
Gram-negative bacterium-released outer-membrane vesicles (OMVs) and Gram-positive bacterium-released membrane vesicles (MVs) share significant similarities with mammalian cell-derived MVs (eg, microvesicles and exosomes) in terms of structure and their biological activities. Recent studies have revealed that bacterial OMVs/MVs could (1) interact with immune cells to regulate inflammatory responses, (2) transport virulence factors (eg, enzymes, DNA and small RNAs) to host cells and result in cell injury, (3) enhance barrier function by stimulating the expression of tight junction proteins in intestinal epithelial cells, (4) upregulate the expression of endothelial cell adhesion molecules, and (5) serve as natural nanocarriers for immunogenic antigens, enzyme support and drug delivery. In addition, OMVs/MVs can enter the systemic circulation and induce a variety of immunological and metabolic responses. This review highlights the recent advances in the understanding of OMV/MV biogenesis and their compositional remodeling. In addition, interactions between OMVs/MVs and various types of mammalian cells (ie, immune cells, epithelial cells, and endothelial cells) and their pathological/preventive effects on infectious/inflammatory diseases are summarized. Finally, methods for engineering OMVs/MVs and their therapeutic potential are discussed.
Collapse
Affiliation(s)
- You-jiang Yu
- Medical College of Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Xiao-hong Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
5
|
Potential Usefulness of Streptococcus pneumoniae Extracellular Membrane Vesicles as Antibacterial Vaccines. J Immunol Res 2017; 2017:7931982. [PMID: 28210633 PMCID: PMC5292160 DOI: 10.1155/2017/7931982] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Accepted: 12/21/2016] [Indexed: 11/17/2022] Open
Abstract
The secretion of extracellular membrane vesicles (EMVs) is a common phenomenon that occurs in archaea, bacteria, and mammalian cells. The EMVs of bacteria play important roles in their virulence, biogenesis mechanisms, and host cell interactions. Bacterial EMVs have recently become the focus of attention because of their potential as highly effective vaccines that cause few side effects. Here, we isolated the EMVs of Streptococcus pneumoniae and examined their potential as new vaccine candidates. Although the S. pneumoniae bacteria were highly pathogenic in a mouse model, the EMVs purified from these bacteria showed low pathological activity both in cell culture and in mice. When mice were injected intraperitoneally with S. pneumoniae EMVs and then challenged, they were protected from both the homologous strain and another pathogenic serotype of S. pneumoniae. We also identified a number of proteins that may have immunogenic activity and may be responsible for the immune responses by the hosts. These results suggest that S. pneumoniae EMVs or their individual immunogenic antigens may be useful as new vaccine agents.
Collapse
|
6
|
Yun SH, Lee SY, Choi CW, Lee H, Ro HJ, Jun S, Kwon YM, Kwon KK, Kim SJ, Kim GH, Kim SI. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1. J Microbiol 2016; 55:56-62. [PMID: 28035602 DOI: 10.1007/s12275-017-6581-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMVNovo) are spherical in shape, and the average diameter of OMVNovo is 25-70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMVNovo. Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMVNovo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.
Collapse
Affiliation(s)
- Sung Ho Yun
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Sang-Yeop Lee
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Chi-Won Choi
- Tunneling Nanotube Research Center, Division of Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Hayoung Lee
- Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyun-Joo Ro
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Sangmi Jun
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Yong Min Kwon
- National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Kae Kyoung Kwon
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Sang-Jin Kim
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea
| | - Gun-Hwa Kim
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Seung Il Kim
- Drug and Disease Target Team, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea. .,Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Isolation, Characterization and Biological Properties of Membrane Vesicles Produced by the Swine Pathogen Streptococcus suis. PLoS One 2015; 10:e0130528. [PMID: 26110524 PMCID: PMC4482388 DOI: 10.1371/journal.pone.0130528] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/22/2015] [Indexed: 01/22/2023] Open
Abstract
Streptococcus suis, more particularly serotype 2, is a major swine pathogen and an emerging zoonotic agent worldwide that mainly causes meningitis, septicemia, endocarditis, and pneumonia. Although several potential virulence factors produced by S. suis have been identified in the last decade, the pathogenesis of S. suis infections is still not fully understood. In the present study, we showed that S. suis produces membrane vesicles (MVs) that range in diameter from 13 to 130 nm and that appear to be coated by capsular material. A proteomic analysis of the MVs revealed that they contain 46 proteins, 9 of which are considered as proven or suspected virulence factors. Biological assays confirmed that S. suis MVs possess active subtilisin-like protease (SspA) and DNase (SsnA). S. suis MVs degraded neutrophil extracellular traps, a property that may contribute to the ability of the bacterium to escape the host defense response. MVs also activated the nuclear factor-kappa B (NF-κB) signaling pathway in both monocytes and macrophages, inducing the secretion of pro-inflammatory cytokines, which may in turn contribute to increase the permeability of the blood brain barrier. The present study brought evidence that S. suis MVs may play a role as a virulence factor in the pathogenesis of S. suis infections, and given their composition be an excellent candidate for vaccine development.
Collapse
|