1
|
Li J, Li Y, Yuan X, Yao D, Gao Z, Niu Z, Wang Z, Zhang Y. The effective constituent puerarin, from Pueraria lobata, inhibits the proliferation and inflammation of vascular smooth muscle in atherosclerosis through the miR-29b-3p/IGF1 pathway. PHARMACEUTICAL BIOLOGY 2023; 61:1-11. [PMID: 36537316 PMCID: PMC9788726 DOI: 10.1080/13880209.2022.2099430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Atherosclerosis (AS) is the main cause of cardiovascular and cerebrovascular diseases. Pueraria lobata (Willd.) Ohwi (Fabaceae) has a positive effect on improving these diseases. OBJECTIVE The P. lobata effect on the proliferation and inflammation of vascular smooth muscle in AS and the potential mechanism were investigated. MATERIALS AND METHODS By feeding a high-fat diet to 8-week-old apolipoprotein E knockout mice, an atherosclerosis model was created. H&E and IHC staining were used to analyse the histopathology of mice. CCK-8, TUNEL, and scratch tests were used to detect cell proliferation, apoptosis, and migration after 24 h treatment, respectively. ELISA was performed to evaluate the level of IL-6 and IL-8. The target miRNA and its downstream target gene were screened by the bioinformatics method; RT-qPCR has conducted to analyse the expression of these genes. RESULTS In the aortic tissue and serum of AS mice, puerarin can lower the expression of α-SMA and the inflammatory proteins IL-6 and IL-8. Puerarin (200 M) decreased hVSMC proliferation, migration, and IL-6 and IL-8 secretion by more than half. The inhibitory impact of puerarin on hVSMC was decreased by overexpression of miR-29b-3p. IGF1 was miR-29b-3p's downstream target gene. IGF1 expression increased almost 3-fold in AS mice and hVSMC, but miR-29b-3p mimic inhibited it. The effect of miR-29b-3p on hVSMC was reversed when IGF1 was overexpressed. DISCUSSION AND CONCLUSIONS Puerarin inhibits the proliferation and inflammation of vascular smooth muscle in AS through the miR-29b-3p/IGF1 pathway. Puerarin may have a beneficial effect in the treatment of atherosclerosis and offer a novel therapy option.
Collapse
Affiliation(s)
- Jianpeng Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
- Department of Peripheral Vascular, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou City, Henan Province, China
| | - Yanan Li
- Department of Peripheral Vascular, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou City, Henan Province, China
| | - Xiangke Yuan
- Department of Peripheral Vascular, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou City, Henan Province, China
| | - Dengfeng Yao
- Department of Peripheral Vascular, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou City, Henan Province, China
| | - Zongyue Gao
- Department of Peripheral Vascular, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou City, Henan Province, China
| | - Zhaoyang Niu
- Department of Peripheral Vascular, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou City, Henan Province, China
| | - Zheng Wang
- Department of Nephrology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou City, Henan Province, China
- Zheng Wang Department of Nephrology, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine. Renmin Road, Zhengzhou City, Henan Province, China, 450000
| | - Yue Zhang
- Department of Peripheral Vascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine (Shandong Provincial Hospital of Traditional Chinese Medicine), Jinan City, Shandong Province, China
- CONTACT Yue Zhang Department of Peripheral Vascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine (Shandong Provincial Hospital of Traditional Chinese Medicine), 16369 Jingshi Road, Jinan City, Shandong Province250014, China
| |
Collapse
|
2
|
Rahaman SG, Mahanty M, Mukherjee P, Dutta B, Rahaman SO. Mechanosensing and Mechanosignal Transduction in Atherosclerosis. Curr Atheroscler Rep 2023; 25:711-721. [PMID: 37615786 DOI: 10.1007/s11883-023-01139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the latest findings on mechanosensing in atherosclerosis, elucidating the molecular mechanisms, cellular players, and potential therapeutic targets. RECENT FINDINGS Atherosclerosis, a chronic inflammatory disease characterized by the buildup of lipid-laden plaque within arterial walls, is a major contributor to cardiovascular disease-related mortality and morbidity. Interestingly, atherosclerosis predominantly occurs in arterial areas with curves and branches. In these regions, endothelial cells encounter irregular blood flow with distinctive low-intensity fluctuating shear stress. On the other hand, straight sections of arteries, subjected to a consistent flow and related high-intensity, one-way shear stress, are relatively safeguarded against atherosclerosis due to shear-dependent, disease-preventing endothelial cell reactions. In recent years, researchers have been investigating the role of mechanosensing in the development and progression of atherosclerosis. At the core of mechanosensing is the ability of various cells to sense and respond to biomechanical forces in their environment. In the context of atherosclerosis, endothelial cells, smooth muscle cells, and immune cells are subjected to various mechanical or physical stimuli, including shear stress, cyclic strain, and matrix stiffness. These mechanical cues play a crucial role in regulating cellular behavior and contribute to the pathophysiology of atherosclerosis. Accumulating evidence suggests that various mechanical or physical cues play a critical role in the development and promotion of atherosclerosis.
Collapse
Affiliation(s)
- Suneha G Rahaman
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA
| | - Manisha Mahanty
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA
| | - Pritha Mukherjee
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA
| | - Bidisha Dutta
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA
| | - Shaik O Rahaman
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Adams JA, Uryash A, Lopez JR. Non-Invasive Pulsatile Shear Stress Modifies Endothelial Activation; A Narrative Review. Biomedicines 2022; 10:biomedicines10123050. [PMID: 36551807 PMCID: PMC9775985 DOI: 10.3390/biomedicines10123050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The monolayer of cells that line both the heart and the entire vasculature is the endothelial cell (EC). These cells respond to external and internal signals, producing a wide array of primary or secondary messengers involved in coagulation, vascular tone, inflammation, and cell-to-cell signaling. Endothelial cell activation is the process by which EC changes from a quiescent cell phenotype, which maintains cellular integrity, antithrombotic, and anti-inflammatory properties, to a phenotype that is prothrombotic, pro-inflammatory, and permeable, in addition to repair and leukocyte trafficking at the site of injury or infection. Pathological activation of EC leads to increased vascular permeability, thrombosis, and an uncontrolled inflammatory response that leads to endothelial dysfunction. This pathological activation can be observed during ischemia reperfusion injury (IRI) and sepsis. Shear stress (SS) and pulsatile shear stress (PSS) are produced by mechanical frictional forces of blood flow and contraction of the heart, respectively, and are well-known mechanical signals that affect EC function, morphology, and gene expression. PSS promotes EC homeostasis and cardiovascular health. The archetype of inducing PSS is exercise (i.e., jogging, which introduces pulsations to the body as a function of the foot striking the pavement), or mechanical devices which induce external pulsations to the body (Enhanced External Pulsation (EECP), Whole-body vibration (WBV), and Whole-body periodic acceleration (WBPA aka pGz)). The purpose of this narrative review is to focus on the aforementioned noninvasive methods to increase PSS, review how each of these modify specific diseases that have been shown to induce endothelial activation and microcirculatory dysfunction (Ischemia reperfusion injury-myocardial infarction and cardiac arrest and resuscitation), sepsis, and lipopolysaccharide-induced sepsis syndrome (LPS)), and review current evidence and insight into how each may modify endothelial activation and how these may be beneficial in the acute and chronic setting of endothelial activation and microvascular dysfunction.
Collapse
Affiliation(s)
- Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence:
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
4
|
Xie B, Zu X, Wang Z, Xu X, Liu G, Liu R. Ginsenoside Rc ameliorated atherosclerosis via regulating gut microbiota and fecal metabolites. Front Pharmacol 2022; 13:990476. [PMID: 36188559 PMCID: PMC9520581 DOI: 10.3389/fphar.2022.990476] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis (AS) and the accompanied cardiovascular diseases (CVDs) were the leading cause of death worldwide. Recently, the association between CVDs, gut microbiota, and metabolites had aroused increasing attention. In the study, we headed our investigation into the underlying mechanism of ginsenoside Rc (GRc), an active ingredient of ginsenosides used for the treatment of CVDs, in apolipoprotein E-deficient (ApoE−/−) mice with high-fat diet (HFD). Seven-week-old male ApoE−/− mice were randomly divided into four groups: the normal control (NC) group, the HFD group, the GRc group (40 mg/kg/d), and the atorvastatin (Ato) group (10 mg/kg/d). Atherosclerotic injury was evaluated by aortic lesions, serum lipid levels, and inflammatory factors. The composition of gut microbiota and fecal metabolite profile were analyzed using 16S rRNA sequence and untargeted metabolomics, respectively. The results showed that GRc significantly alleviated HFD-induced aortic lesions, reduced serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 and IL-1β, and increased high-density lipoprotein cholesterol (HFD-C) level, as well as the alteration of gut microbiota composition, function, and metabolite profile. GRc also reversed HFD change of Bacteroidetes and Firmicutes at the phylum level, Muribaculaceae, Lactobacillus, Ileibacterium, Bifidobacterium, Faecalibaculum, Oscillibacter, Blautia, and Eubacterium_coprostanoligenes_group at the genus level, and 23 key metabolites involved in taurine and hypotaurine metabolism, arginine biosynthesis, ATP-binding cassette (ABC) transporters, primary bile acid biosynthesis, purine metabolism, tricarboxylic acid (TCA) cycle, and glucagon signaling pathways. Additionally, eight differential intestinal floras at the genus level were associated with 23 key differential metabolites involving atherosclerotic injury. In conclusion, our results demonstrated that GRc ameliorated atherosclerotic injury, regulated microbial and metabolomic changes in HFD-induced ApoE−/− mice, and suggested a potential correlation among gut microbiota, metabolites, and atherosclerotic injury regarding the mechanisms of GRc against AS.
Collapse
Affiliation(s)
- Bin Xie
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xianpeng Zu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhicong Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Guoping Liu
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Guoping Liu, ; Runhui Liu,
| | - Runhui Liu
- School of Pharmacy, Naval Medical University, Shanghai, China
- *Correspondence: Guoping Liu, ; Runhui Liu,
| |
Collapse
|