1
|
Wu D, Zhu J, Zheng Y, Fu L. Electrochemical Sensing Strategies for Synthetic Orange Dyes. Molecules 2024; 29:5026. [PMID: 39519667 PMCID: PMC11547196 DOI: 10.3390/molecules29215026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in various industries. We examine the fundamental principles underlying the electrochemical detection of these compounds, focusing on their redox behavior and interaction with electrode surfaces. The review covers a range of sensor designs, from unmodified electrodes to advanced nanomaterial-based platforms. Chemically modified electrodes incorporating polymers and molecularly imprinted polymers are discussed for their enhanced selectivity. Particular attention is given to nanomaterial-based sensors, including those utilizing carbon nanotubes, graphene derivatives, and metal nanoparticles, which have demonstrated exceptional sensitivity and wide linear ranges. The potential of biological-based approaches, such as DNA interaction sensors and immunosensors, is also evaluated. Current challenges in the field are addressed, including matrix effects in complex samples and long-term stability issues. Emerging trends are highlighted, including the development of multi-modal sensing platforms and the integration of artificial intelligence for data analysis. The review concludes by discussing the commercial potential of these sensors in food safety, environmental monitoring, and smart packaging applications, emphasizing their importance in ensuring the safe use of synthetic orange dyes across industries.
Collapse
Affiliation(s)
- Dihua Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China;
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
2
|
Şenel P, Faysal AA, Erdoğan T, Doğan M, Gölcü A. Quantitative study on a simple electrochemical dsDNA-pregabalin biosensor; multi-spectroscopic, molecular docking and modelling studies. J Pharm Biomed Anal 2024; 247:116261. [PMID: 38823224 DOI: 10.1016/j.jpba.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Pregabalin (PGB) is a γ-aminobutyric acid (GABA) alkylated analog prescribed to treat neuropathic pain, fibromyalgia, and postherpetic neuralgia. Using analytical, spectroscopic methods and molecular docking and molecular dynamics (MD) simulations, a detailed experimental and theoretical investigation was conducted into the binding process and interactions between PGB and double-stranded fish sperm deoxyribonucleic acid (dsDNA). It was evident from the collected experimental results that PGB binds with ds-DNA. PGB attaches to dsDNA via minor groove binding, as demonstrated by the results of electrochemical studies, UV-Vis absorption spectroscopy, and replacement study with ethidium bromide and Hoechst-32588. PGB's binding constant (Kb) with dsDNA, as determined by the Benesi-Hildebrand plot, is 2.41×104 ± 0.30 at 298 K. The fluorescence investigation indicates that PGB and dsDNA have a binding stoichiometry (n) of 1.21 ± 0.09. Molecular docking simulations were used in the research to computational determination of the interactions between PGB and dsDNA. The findings demonstrated that minor groove binding was the mechanism by which PGB interacted with dsDNA. Based on the electrochemically responsive PGB-dsDNA biosensor, we developed a technique for low-concentration detection of PGB utilizing differential pulse voltammetry (DPV). The voltammetric analysis of the peak current decrease in the deoxyadenosine oxidation signals resulting from the association between PGB and dsDNA enabled a sensitive estimation of PGB in pH 4.80 acetate buffer. The deoxyguanosine oxidation signals exhibited a linear relationship between 2 and 16 μM PGB. The values for the limit of detection (LOD) and limit of quantitation (LOQ) were 0.57 μM and 1.91 μM, respectively.
Collapse
Affiliation(s)
- Pelin Şenel
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Istanbul, Turkiye
| | - Abdullah Al Faysal
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Istanbul, Turkiye
| | - Taner Erdoğan
- Kocaeli University, Kocaeli Vocational School, Department of Chemistry and Chemical Processing Technologies, Kocaeli, Turkiye
| | - Mustafa Doğan
- Istanbul Technical University, Faculty of Electrical-Electronics Engineering, Department of Control and Automation Engineering, Istanbul, Turkiye
| | - Ayşegül Gölcü
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Istanbul, Turkiye.
| |
Collapse
|
3
|
Silva Lima AR, Rodrigues GC, Rezende Rodrigues AC, Vanoni CR, Micke GA, Caramori GF, Affeldt RF, Nagurniak GR, Jost CL. First report on the electrooxidation of vinpocetine using a modification free sensing platform: application to pharmaceutical formulations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4002-4009. [PMID: 38855859 DOI: 10.1039/d4ay00598h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This study presents the first insights into vinpocetine (VIN) behavior, a nootropic compound, on a glassy carbon electrode (GCE). Cyclic voltammetry (CV) revealed an irreversible oxidation peak at +1.0 V (vs. Ag/AgCl), with pH dependency indicating proton involvement in the electrochemical reaction. Density functional theory (DFT) optimized VIN's molecular geometry, while Fukui functions and dual descriptors elucidated its reactivity for a more straightforward exploration of the complete electrooxidation mechanism. Differential pulse voltammetry (DPV) demonstrated VIN sensing capabilities within a concentration range of 0.20 to 12.8 mg L-1, with a theoretical limit of detection (LOD) at 0.07 mg L-1, using optimized conditions of supporting electrolyte. The method showed selectivity in the presence of excipients and interfering species commonly found in pharmaceutical formulations. Recovery tests yielded 95.5% (n = 3), and quantification in pharmaceutical formulations showed no significant differences compared to the reference method based on HPLC DAD. This novel electroanalytical method holds promise for VIN nootropic sensing and routine pharmaceutical analysis.
Collapse
Affiliation(s)
- Adriano Rogerio Silva Lima
- Ampere - Laboratório de Plataformas Eletroquímicas, Departamento de Química - Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Gabriel Chitolina Rodrigues
- Ampere - Laboratório de Plataformas Eletroquímicas, Departamento de Química - Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Alan Carlos Rezende Rodrigues
- LABECC - Laboratório de Eletroforese Capilar e Cromatografia, Departamento de Química - Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Caio Raphael Vanoni
- Ampere - Laboratório de Plataformas Eletroquímicas, Departamento de Química - Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Gustavo Amadeu Micke
- LABECC - Laboratório de Eletroforese Capilar e Cromatografia, Departamento de Química - Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Giovanni Finoto Caramori
- Departamento de Química - Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Ricardo Ferreira Affeldt
- Departamento de Química - Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Glaucio Régis Nagurniak
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, SC, 89036-002, Brazil
| | - Cristiane Luisa Jost
- Ampere - Laboratório de Plataformas Eletroquímicas, Departamento de Química - Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
4
|
Erk N, Kurtay G, Bouali W, Sakal ZG, Genç AA, Erbaş Z, Soylak M. Electrochemical Detection of Melphalan in Biological Fluids Using a g-C 3N 4@ND-COOH@MoSe 2 Modified Electrode Complemented by Molecular Docking Studies with Cellular Tumor Antigen P53. ACS OMEGA 2024; 9:21058-21070. [PMID: 38764632 PMCID: PMC11097377 DOI: 10.1021/acsomega.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Melphalan (Mel) is a potent alkylating agent utilized in chemotherapy treatments for a diverse range of malignancies. The need for its accurate and timely detection in pharmaceutical preparations and biological samples is paramount to ensure optimized therapeutic efficacy and to monitor treatment progression. To address this critical need, our study introduced a cutting-edge electrochemical sensor. This device boasts a uniquely modified electrode crafted from graphitic carbon nitride (g-C3N4), decorated with activated nanodiamonds (ND-COOH) and molybdenum diselenide (MoSe2), and specifically designed to detect Mel with unparalleled precision. Our rigorous testing employed advanced techniques such as cyclic voltammetry and differential pulse voltammetry. The outcomes were promising; the sensor consistently exhibited a linear response in the range of 0.5 to 12.5 μM. Even more impressively, the detection threshold was as low as 0.03 μM, highlighting its sensitivity. To further enhance our understanding of Mel's biological interactions, we turned to molecular docking studies. These studies primarily focused on Mel's interaction dynamics with the cellular tumor antigen P53, revealing a binding affinity of -5.0 kcal/mol. A fascinating observation was made when Mel was covalently conjugated with nanodiamond-COOH (ND-COOH). This conjugation resulted in a binding affinity that surged to -10.9 kcal/mol, clearly underscoring our sensor's superior detection capabilities. This observation also reinforced the wisdom behind incorporating ND-COOH in our electrode design. In conclusion, our sensor not only stands out in terms of sensitivity but also excels in selectivity and accuracy. By bridging electrochemical sensing with computational insights, our study illuminates Mel's intricate behavior, driving advancements in sensor technology and potentially revolutionizing cancer therapeutic strategies.
Collapse
Affiliation(s)
- Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
| | - Gülbin Kurtay
- Hacettepe University, Faculty of Sciences, Department of Chemistry, 06800 Ankara, Turkey
| | - Wiem Bouali
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
- Ankara University, Graduate School of Health Sciences, 06110 Ankara, Turkey
| | - Zeyneb Gülsüm Sakal
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
- Ankara University, Graduate School of Health Sciences, 06110 Ankara, Turkey
| | - Asena Ayşe Genç
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
- Ankara University, Graduate School of Health Sciences, 06110 Ankara, Turkey
| | - Zeliha Erbaş
- Yozgat Bozok University, Science and Technology Application and Research Center, 66200 Yozgat, Turkey
- Erciyes University, Technology Research & Application Center (TAUM), 38039 Kayseri, Turkey
| | - Mustafa Soylak
- Erciyes University, Technology Research & Application Center (TAUM), 38039 Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Çankaya, Ankara 06670, Turkey
| |
Collapse
|
5
|
Bouali W, Erk N, Genc AA. A low-cost voltammetric sensor based on multi-walled carbon nanotubes for highly sensitive and accurate determination of nanomolar levels of the anticancer drug Ribociclib in bulk and biological fluids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1623-1630. [PMID: 38406987 DOI: 10.1039/d3ay02194g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this study, we present the development and comprehensive characterization of the first electrochemical sensor utilizing multi-walled carbon nanotubes (MWCNTs) for the sensitive and precise detection of Ribociclib (RIBO), an important anticancer drug. The sensor underwent systematic optimization, focusing on critical parameters such as pH, deposition potential, and cumulative time to enhance its electrocatalytic activity and expand the linear range for RIBO determination. The MWCNTs/GCE sensor exhibited excellent reproducibility and repeatability, ensuring reliable and consistent results. The applicability and feasibility of the sensor for real sample analysis were extensively evaluated by analyzing human serum, urine, and tablet samples using the standard addition method. The obtained percent recovery values demonstrated the sensor's exceptional accuracy and precision. Furthermore, interference studies revealed the sensor's remarkable selectivity, with minimal impact from common interfering substances. The developed sensor displayed a wide linear range of 0.01 μM to 5.0 μM, with a limit of detection (LOD) and limit of quantification (LOQ) calculated to be 0.69 nM and 2.31 nM, respectively, affirming its high sensitivity for detecting low RIBO concentrations. The MWCNTs/GCE sensor demonstrates substantial promise for diverse practical applications with its simplicity, cost-effectiveness, and excellent analytical performance.
Collapse
Affiliation(s)
- Wiem Bouali
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey.
- The Graduate School of the Health Sciences, Ankara University, 06110 Ankara, Turkey
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey.
| | - Asena Ayse Genc
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey.
- The Graduate School of the Health Sciences, Ankara University, 06110 Ankara, Turkey
| |
Collapse
|
6
|
Mohammadnavaz A, Beitollahi H, Modiri S. Construction and Application of an Electrochemical Sensor for Determination of D-Penicillamine Based on Modified Carbon Paste Electrode. MICROMACHINES 2024; 15:220. [PMID: 38398949 PMCID: PMC10891922 DOI: 10.3390/mi15020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 02/25/2024]
Abstract
D-penicillamine (D-PA) is a sulfur-containing drug that has been used for various health conditions. However, like any medication, overdosing on D-PA can have adverse effects and may require additional treatment. Therefore, developing simple and sensitive methods for sensing D-PA can play a crucial role in improving its efficacy and reducing its side effects. Sensing technologies, such as electrochemical sensors, can enable accurate and real-time measurement of D-PA concentrations. In this work, we developed a novel electrochemical sensor for detecting D-PA by modifying a carbon paste electrode (CPE) with a multi-walled carbon nanotube-Co3O4 nanocomposite, benzoyl-ferrocene (BF), and ionic liquid (IL) (MWCNT-Co3O4/BF/ILCPE). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CHA) were employed to explore the electrochemical response of D-PA on the developed sensor, the results of which verified a commendable electrochemical performance towards D-PA. Under optimized conditions, the developed sensor demonstrated a rapid response to D-PA with a linear dynamic range of 0.05 μM-100.0 μM, a low detection limit of 0.015 μM, and a considerable sensitivity of 0.179 μA μM-1. Also, the repeatability, stability, and reproducibility of the MWCNT-Co3O4/BF/ILCPE sensor were studied and showed good characteristics. In addition, the detection of D-PA in pharmaceutical and biological matrices yielded satisfactory recoveries and relative standard deviation (RSD) values.
Collapse
Affiliation(s)
- Arefeh Mohammadnavaz
- Department of Chemistry, Graduate University of Advanced Technology, Kerman 76311-33131, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76311-33131, Iran
| | - Sina Modiri
- Polymer Department, Graduate University of Advanced Technology, Kerman 76311-33131, Iran;
| |
Collapse
|
7
|
Soliman SS, Mahmoud AM, Elghobashy MR, Zaazaa HE, Sedik GA. Eco-friendly electrochemical sensor for determination of conscious sedating drug "midazolam'' based on Au-NPs@Silica modified carbon paste electrode. Talanta 2024; 267:125238. [PMID: 37774450 DOI: 10.1016/j.talanta.2023.125238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Benzodiazepines (BZDs) are a group of drugs prescribed for their sedating effect. Their misuse and addictive properties stipulate different authorities for developing simple, fast and accurate analytical methods for instantaneous detection. Differential pulse voltammetric technique (DPV) was utilized for the selective assay of midazolam hydrochloride (MDZ) in the pure, parenteral dosage forms and plasma samples. A chemically modified carbon paste electrode (CPE) was implemented during the study. The method depended on the electroreduction of MDZ on the surface of the electrode over a potential range of 0.0 V to -1.6 V. The electrode was fabricated using silica nanoparticles (Si-NPs) which were incorporated into the composition of the CPE and used to enhance the electrode performance. Then, to enhance the sensitivity of the method, a chronoamperometric modification step was applied for depositing gold nanoparticles (Au-NPs) on the carbon paste electrode surface. Modification with Au-NPs showed a higher reduction current peak for MDZ with well-defined peaks. Various parameters such as pH of the media and measurements scan rate were investigated and optimized to enhance the sensor sensitivity. The sensor showed a dynamic linear response over a concentration range of 4.0 × 10-7 M to 2.9 × 10-4 M of MDZ with a LOD of 2.24 × 10-8 M using 0.1 M acetate buffer (pH 5.6). The sensor was validated in accordance with the ICH guidelines regarding accuracy, precision and specificity for the selective assay of MDZ in the presence of excipients. A greenness evaluation was performed using three different assessment tools, namely, the "Green Analytical Procedure Index" (GAPI), the "Analytical Greenness metric" (AGREE) and the "Whiteness Analytical Chemistry tool" (WAC) using the RGB12 model.
Collapse
Affiliation(s)
- Shymaa S Soliman
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, October 6 City, Giza, 12858, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Mohamed R Elghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, October 6 City, Giza, 12858, Egypt; Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Ghada A Sedik
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
8
|
Sadr S, Lotfalizadeh N, Abbasi AM, Soleymani N, Hajjafari A, Roohbaksh Amooli Moghadam E, Borji H. Challenges and Prospective of Enhancing Hydatid Cyst Chemotherapy by Nanotechnology and the Future of Nanobiosensors for Diagnosis. Trop Med Infect Dis 2023; 8:494. [PMID: 37999613 PMCID: PMC10674171 DOI: 10.3390/tropicalmed8110494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Hydatid cysts have been widely recognized for decades as a common medical problem that affects millions of people. A revolution in medical treatment may be on the prospect of nanotechnology enhancing chemotherapy against hydatid cysts. An overview of nanotechnology's impact on chemotherapeutics is presented in the current review. It discusses some of the challenges as well as some of the opportunities. The application of nanotechnology to enhance chemotherapy against hydatid cysts is what this review will explore. Nanotechnology is a critical component of delivering therapeutic agents with greater precision and efficiency and targeting hydatid cysts with better efficacy, and minimizing interference with surrounding tissue. However, there are biodistribution challenges, toxicity, and resistance problems associated with nanotherapeutics. Additionally, nanobiosensors are being investigated to enable the early diagnosis of hydatid cysts. A nanobiosensor can detect hydatid cysts by catching them early, non-invasively, rapidly, and accurately. The sensitivity and specificity of diagnostic tests can be enhanced with nanobiosensors because they take advantage of the unique properties of nanomaterials. By providing more precise and customized treatment options for hydatid cysts, nanotechnology may improve therapeutic options and strategies for diagnosing the disease. In conclusion, treatment with nanotechnology to treat hydatid cysts is potentially effective but presents many obstacles. Furthermore, nanobiosensors are being integrated into diagnostic techniques, as well as helping to diagnose patients earlier and more accurately.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Amir Mohammad Abbasi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | | | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| |
Collapse
|
9
|
Stoytcheva M, Zlatev R, Velkova Z, Gochev V, Valdez B, Curiel M. A Zirconia‐Nanoparticles‐Modified Carbon Paste Electrode for Voltammetric Determination of Ibuprofen. ChemistrySelect 2022. [DOI: 10.1002/slct.202203950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Margarita Stoytcheva
- Instituto de Ingeniería Universidad Autónoma de Baja California Mexicali México 21280
| | - Roumen Zlatev
- Instituto de Ingeniería Universidad Autónoma de Baja California Mexicali México 21280
| | - Zdravka Velkova
- Department Chemical Sciences Medical University of Plovdiv Faculty of Pharmacy Plovdiv Bulgaria
| | - Velizar Gochev
- Department Biochemistry and Microbiology Plovdiv University “P. Hilendarski” Faculty of Biology Plovdiv Bulgaria
| | - Benjamin Valdez
- Instituto de Ingeniería Universidad Autónoma de Baja California Mexicali México 21280
| | - Mario Curiel
- Instituto de Ingeniería Universidad Autónoma de Baja California Mexicali México 21280
| |
Collapse
|
10
|
Nigović B. New approach on sensitive analysis of pimavanserin, levodopa and entacapone based on synergistic effect of graphene nanoplatelets and graphitized carbon nanotubes in functionalized polymer matrix. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Beitollahi H, Tajik S, Dourandish Z, Garkani Nejad F. Simple Preparation and Characterization of Hierarchical Flower-like NiCo 2O 4 Nanoplates: Applications for Sunset Yellow Electrochemical Analysis. BIOSENSORS 2022; 12:bios12110912. [PMID: 36354421 PMCID: PMC9688067 DOI: 10.3390/bios12110912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2023]
Abstract
The current work was performed to construct a novel electrochemical sensing system for determination of sunset yellow via the modification of screen-printed graphite electrode modified with hierarchical flower-like NiCo2O4 nanoplates (NiCo2O4/SPGE). The prepared material (hierarchical flower-like NiCo2O4 nanoplates) was analyzed by diverse microscopic and spectroscopic approaches for the crystallinity, composition, and morphology. Chronoamperometry, differential pulse voltammetry, linear sweep voltammetry, and cyclic voltammetry were used for determination of the electrochemical behavior of sunset yellow. The as-fabricated sensor had appreciable electro-catalytic performance and current sensitivity in detecting the sunset yellow. There were some advantages for NiCo2O4/SPGE under the optimized circumstances of sunset yellow determination, including a broad dynamic linear between 0.02 and 145.0 µM, high sensitivity of 0.67 μA/(μM.cm2), and a narrow limit of detection of 0.008 μM. The practical applicability of the proposed sensor was verified by determining the sunset yellow in real matrices, with satisfactory recoveries.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| |
Collapse
|
12
|
Zagitova L, Yarkaeva Y, Zagitov V, Nazyrov M, Gainanova S, Maistrenko V. Voltammetric chiral recognition of naproxen enantiomers by N-tosylproline functionalized chitosan and reduced graphene oxide based sensor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zilberg RA, Vakulin IV, Teres JB, Galimov II, Maistrenko VN. Rational design of highly enantioselective composite voltammetric sensors using a computationally predicted chiral modifier. Chirality 2022; 34:1472-1488. [PMID: 36076310 DOI: 10.1002/chir.23502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
The use of chiral modifiers is among the simplest and most popular strategies for synthesizing enantioselective voltammetric sensors that are applied for the analysis and discrimination of enantiomerical drugs in various media. The type and structure of the chiral modifier are the key factors for the creation of enantioselectivity to a specified analyte. We suggest a novel approach to the prediction of the quality of a chiral modifier for preparing highly enantioselective sensors. The suggested approach is based on the molecular mechanics modeling of the adsorption of analyte enantiomers on chiral modifiers and on the comparison of the corresponding adsorption energies (ΔEads ). The efficiency of our approach is demonstrated using the example of cyclodextrins and chiral single-wall carbon nanotubes as chiral modifiers, and a wide range of chiral analytes. We found that the experimental enantioselectivity (ϑexp ) measured using voltammetry linearly correlates with ΔEads . The suggested approach also showed good predictive power in application to enantioselective chromatography, which further validates its general applicability.
Collapse
|
14
|
Electroanalytical sensors for antiretroviral drugs determination in pharmaceutical and biological samples: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Electrochemical modified electrode with bismuth film for ultrasensitive determination of aluminum (iii). J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Salikhov RB, Zilberg RA, Mullagaliev IN, Salikhov TR, Teres YB. Nanocomposite thin film structures based on polyarylenephthalide with SWCNT and graphene oxide fillers. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Voltammetric Determination of Active Pharmaceutical Ingredients Using Screen-Printed Electrodes. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
A simple, fast, sensitive and low-cost voltammetric method using a screen-printed carbon electrode (SPCE) is presented in this work for the simultaneous determination of ascorbic acid (AA), paracetamol (PA), dextromethorphan (DX) and caffeine (CF) in both pharmaceutical formulations and samples of environmental interest. The oxidative peak current displayed linear dependence on concentration within the range 1.7–60.5, 0.6–40.0, 0.9–8.4 (1st linear part) and 1.8–22.0 mg L−1 for AA, PA, DX and CF, respectively; and detection limits of 0.5, 0.2, 0.3 and 0.5 mg L−1, respectively. The developed differential pulse voltammetric (DPV) method was validated using both a pharmaceutical product and a spiked well water sample. A very good agreement between the determined and the theoretical label drug content and recoveries in the range of 99.5–100.8% were obtained for pharmaceutical product and well water samples, respectively.
Collapse
|
18
|
Electrocatalytic Analysis of Diclofenac in the Presence of Dopamine at Surface Amplified Voltammetric Sensor Based on Poly Glycine Modified Carbon Nano Tube Paste Electrode. Top Catal 2022. [DOI: 10.1007/s11244-022-01567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Mousazadeh F, Mohammadi SZ, Akbari S, Mofidinasab N, Aflatoonian MR, Shokooh-Saljooghi A. Recent Advantages of Mediator Based Chemically Modified Electrodes;
Powerful Approach in Electroanalytical Chemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017999201224124347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Modified electrodes have advanced from the initial studies aimed at understanding
electron transfer in films to applications in areas such as energy production and analytical
chemistry. This review emphasizes the major classes of modified electrodes with mediators
that are being explored for improving analytical methodology. Chemically modified electrodes
(CMEs) have been widely used to counter the problems of poor sensitivity and selectivity faced in
bare electrodes. We have briefly reviewed the organometallic and organic mediators that have been
extensively employed to engineer adapted electrode surfaces for the detection of different compounds.
Also, the characteristics of the materials that improve the electrocatalytic activity of the
modified surfaces are discussed.
Objective:
Improvement and promotion of pragmatic CMEs have generated a diversity of novel
and probable strong detection prospects for electroanalysis. While the capability of handling the
chemical nature of the electrode/solution interface accurately and creatively increases , it is predictable
that different mediators-based CMEs could be developed with electrocatalytic activity and
completely new applications be advanced.
Collapse
Affiliation(s)
| | | | - Sedighe Akbari
- Islamic Azad University, Shahrbabak Branch, Shahrbabak,Iran
| | | | - Mohammad Reza Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | | |
Collapse
|
20
|
Zahid A, Karadurmuş L, Bakirhan NK, Altay Unal M, Nazır H, Shah A, Ozkan SA. An electrochemical and theoretical approach for the development of a sensitive flower-like nanosensor as serotonin receptor antagonist tropisetron. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Voltammetry in sheep's blood: Membrane-free amperometric measurement of O 2 concentration. Talanta 2021; 239:123127. [PMID: 34896823 DOI: 10.1016/j.talanta.2021.123127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022]
Abstract
An amperometric method was applied for the electroanalytical measurement of oxygen content in sheep's blood. This method was based on a bare platinum microdisc electrode coupled with the use of chronoamperometry. A linear relationship between the chronoamperometric current and the oxygen concentration was observed in both saline solution and sheep's blood. The developed method was able to measure the oxygen percentage with an error of ca. 1.3% in sheep's blood. In addition, this article presents the first study on direct voltammetry in sheep's blood and a dissociative CE process was proposed to explain the electrochemical behaviour of oxygen reduction in blood on a platinum electrode in which the 'free' oxygen was first dissociated from oxyhaemoglobin prior to electron transfer with the magnitude of the observed current controlled by the diffusion of oxyhaemoglobin to the electrode where for sufficiently large electrodes (greater than ca. 1 μm in radius) the dissociation proceeds to completion on the voltammetric timescale allowing quantitative measurements.
Collapse
|
22
|
Voltammetric sensor system based on Cu(II) and Zn(II) amino acid complexes for recognition and determination of atenolol enantiomers. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Plotnikova K, Dubenska L, Rydchuk P, Pysarevska S, Rydchuk M, Ivakh S, Yanovych D, Zasadna Z, Plotycya S. Voltammetric determination of 5-nitroimidazole derivatives in honey and HPLC-MS/MS confirmation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01214-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Liang F, Li C, Fu X. Evaluation of the Effectiveness of Artificial Intelligence Chest CT Lung Nodule Detection Based on Deep Learning. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9971325. [PMID: 34447527 PMCID: PMC8384550 DOI: 10.1155/2021/9971325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/03/2021] [Accepted: 07/14/2021] [Indexed: 01/29/2023]
Abstract
Lung cancer is one of the most malignant tumors. If it can be detected early and treated actively, it can effectively improve a patient's survival rate. Therefore, early diagnosis of lung cancer is very important. Early-stage lung cancer usually appears as a solitary lung nodule on medical imaging. It usually appears as a round or nearly round dense shadow in the chest radiograph. It is difficult to distinguish lung nodules and lung soft tissues with the naked eye. Therefore, this article proposes a deep learning-based artificial intelligence chest CT lung nodule detection performance evaluation study, aiming to evaluate the value of chest CT imaging technology in the detection of noncalcified nodules and provide help for the detection and treatment of lung cancer. In this article, the Lung Medical Imaging Database Consortium (LIDC) was selected to obtain 536 usable cases based on inclusion criteria; 80 cases were selected for examination, artificial intelligence software, radiologists, and thoracic imaging specialists. Using 80 pulmonary nodules detection in each case, the pathological type of pulmonary nodules, nonlime tuberculous test results, detection sensitivity, false negative rate, false positive rate, and CT findings were individually analyzed, and the detection efficiency software of artificial intelligence was evaluated. Experiments have proved that the sensitivity of artificial intelligence software to detect noncalcified nodules in the pleural, peripheral, central, and hilar areas is higher than that of radiologists, indicating that the method proposed in this article has achieved good detection results. It has a better nodule detection sensitivity than a radiologist, reducing the complexity of the detection process.
Collapse
Affiliation(s)
- Fukui Liang
- Changle People Hospital, Weifang 262400, Shandong, China
| | - Caiqin Li
- Changle People Hospital, Weifang 262400, Shandong, China
| | - Xiaoqin Fu
- Changle People Hospital, Weifang 262400, Shandong, China
| |
Collapse
|
25
|
Voltammetric Determination of Ceftizoxime by a Carbon Paste Electrode Modified with Ionic Liquid and Cu (Him)2 Nanoparticles. Top Catal 2021. [DOI: 10.1007/s11244-021-01469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Madej M, Fendrych K, Porada R, Flacha M, Kochana J, Baś B. Application of Fe(III)-exchanged clinoptilolite/graphite nanocomposite for electrochemical sensing of amitriptyline. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Maistrenko VN, Zil’berg RA. Enantioselective Voltammetric Sensors on the Basis of Chiral Materials. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Yarkaeva YA, Dubrovskii DI, Zil’berg RA, Maistrenko VN, Kornilov VM. A Voltammetric Sensor Based on a 3,4,9,10-Perylenetetracarboxylic Acid Composite for the Recognition and Determination of Tyrosine Enantiomers. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820110143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Bitew Z, Amare M. Recent reports on electrochemical determination of selected antibiotics in pharmaceutical formulations: A mini review. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
30
|
Lindner E, Guzinski M, Pendley B, Chaum E. Plasticized PVC Membrane Modified Electrodes: Voltammetry of Highly Hydrophobic Compounds. MEMBRANES 2020; 10:E202. [PMID: 32867276 PMCID: PMC7558981 DOI: 10.3390/membranes10090202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022]
Abstract
In the last 50 years, plasticized polyvinyl chloride (PVC) membranes have gained unique importance in chemical sensor development. Originally, these membranes separated two solutions in conventional ion-selective electrodes. Later, the same membranes were applied over a variety of supporting electrodes and used in both potentiometric and voltammetric measurements of ions and electrically charged molecules. The focus of this paper is to demonstrate the utility of the plasticized PVC membrane modified working electrode for the voltammetric measurement of highly lipophilic molecules. The plasticized PVC membrane prevents electrode fouling, extends the detection limit of the voltammetric methods to sub-micromolar concentrations, and minimizes interference by electrochemically active hydrophilic analytes.
Collapse
Affiliation(s)
- Ernő Lindner
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA;
| | - Marcin Guzinski
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (E.C.)
| | - Bradford Pendley
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA;
| | - Edward Chaum
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (E.C.)
| |
Collapse
|
31
|
Beitollahi H, Tajik S, Dourandish Z, Zhang K, Le QV, Jang HW, Kim SY, Shokouhimehr M. Recent Advances in the Aptamer-Based Electrochemical Biosensors for Detecting Aflatoxin B1 and Its Pertinent Metabolite Aflatoxin M1. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3256. [PMID: 32521629 PMCID: PMC7309004 DOI: 10.3390/s20113256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
The notable toxicological impacts of aflatoxin B1 (AFB1) and its main metabolite, aflatoxin M1 (AFM1), on human being health make the evaluation of food quality highly significant. Due to the toxicity of those metabolites-even very low content in foodstuffs-it is crucial to design a sensitive and reliable procedure for their detection. Electrochemical aptamer-based biosensors are considered the most encouraging option, based on multi-placed analysis, rapid response, high sensitivity and specificity. The present review specifically emphasizes the potential utilization of the electrochemical aptasensors for determining the AFM1 and AFB1 with different electrodes.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76315117, Iran; (H.B.); (Z.D.)
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76315117, Iran; (H.B.); (Z.D.)
| | - Kaiqiang Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China;
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea;
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul 02841, Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|
32
|
Sanz CG, Serrano SHP, Brett CMA. Electroanalysis of Cefadroxil Antibiotic at Carbon Nanotube/Gold Nanoparticle Modified Glassy Carbon Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Caroline G. Sanz
- University of Coimbra, CEMMPREFaculty of Sciences and Technology, Department of Chemistry 3004-535 Coimbra Portugal
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of São Paulo 05508-000 São Paulo/SP Brazil
| | - Silvia H. P. Serrano
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of São Paulo 05508-000 São Paulo/SP Brazil
| | - Christopher M. A. Brett
- University of Coimbra, CEMMPREFaculty of Sciences and Technology, Department of Chemistry 3004-535 Coimbra Portugal
| |
Collapse
|
33
|
Zilberg RA, Maistrenko VN, Zagitova LR, Guskov VY, Dubrovsky DI. Chiral voltammetric sensor for warfarin enantiomers based on carbon black paste electrode modified by 3,4,9,10-perylenetetracarboxylic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Casimero C, Bigham T, McGlynn RJ, Dooley JS, Ternan NG, Snelling WJ, Critchley ME, Zinkel CL, Smith RB, Sabogal-Paz LP, Davis J. Electroanalytical properties of chlorophenol red at disposable carbon electrodes: Implications for Escherichia coli detection. Bioelectrochemistry 2019; 130:107321. [DOI: 10.1016/j.bioelechem.2019.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
|
35
|
Nigović B, Mornar A, Brusač E, Jeličić ML. Selective sensor for simultaneous determination of mesalazine and folic acid using chitosan coated carbon nanotubes functionalized with amino groups. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Kurbanoglu S, Ozkan SA. “Current Analytical Techniques and Applications in Pharmaceutical Analysis – Volume I”. CURR ANAL CHEM 2019. [DOI: 10.2174/157341101503190403111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy Department of Analytical Chemistry 06560, Tandogan, Ankara, Turkey
| | - Sibel A. Ozkan
- Ankara University, Faculty of Pharmacy Department of Analytical Chemistry 06560, Tandogan, Ankara, Turkey
| |
Collapse
|
37
|
Upadhyay SS, Srivastava AK. Hydroxypropyl β-cyclodextrin cross-linked multiwalled carbon nanotube-based chiral nanocomposite electrochemical sensors for the discrimination of multichiral drug atorvastatin isomers. NEW J CHEM 2019. [DOI: 10.1039/c9nj02508a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drugs having multiple chiral centres pose a greater risk to the human health as their pharmacological effects on human organs, cells and systems due to more number of enantiomers as compared to that of a single enantiomeric drug.
Collapse
Affiliation(s)
- Sharad S. Upadhyay
- Department of Chemistry
- University of Mumbai
- Vidyanagari
- Mumbai-400 098
- India
| | | |
Collapse
|