1
|
Ge Y, Wang J, Gu D, Cao W, Feng Y, Wu Y, Liu H, Xu Z, Zhang Z, Xie J, Geng S, Cong J, Liu Y. Low-temperature plasma jet suppresses bacterial colonisation and affects wound healing through reactive species. Wound Repair Regen 2024; 32:407-418. [PMID: 38602090 DOI: 10.1111/wrr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
An argon-based low-temperature plasma jet (LTPJ) was used to treat chronically infected wounds in Staphylococcus aureus-laden mice. Based on physicochemical property analysis and in vitro antibacterial experiments, the effects of plasma parameters on the reactive nitrogen and oxygen species (RNOS) content and antibacterial capacity were determined, and the optimal treatment parameters were determined to be 4 standard litre per minute and 35 W. Additionally, the plasma-treated activation solution had a bactericidal effect. Although RNOS are related to the antimicrobial effect of plasma, excess RNOS may be detrimental to wound remodelling. In vivo studies demonstrated that medium-dose LTPJ promoted MMP-9 expression and inhibited bacterial growth during the early stages of healing. Moreover, LTPJ increased collagen deposition, reduced inflammation, and restored blood vessel density and TGF-β levels to normal in the later stages of wound healing. Therefore, when treating chronically infected wounds with LTPJ, selecting the medium dose of plasma is more advantageous for wound recovery. Overall, our study demonstrated that low-temperature plasma jets may be a potential tool for the treatment of chronically infected wounds.
Collapse
Affiliation(s)
- Yang Ge
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jun Wang
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- Nanjing Guoke Medical Enginneering Technology Development co., LTD, Nanjing, Jiangsu, China
| | - DongHua Gu
- Department of Pathology, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu, China
| | - Wei Cao
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yongtong Feng
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yanfan Wu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Han Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhengping Xu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhe Zhang
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jinsong Xie
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shuang Geng
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Junrui Cong
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yi Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Zhou B, Te Ba, Wang L, Gao Y, He Q, Yan Z, Wang H, Shen G. Combination of sodium butyrate and probiotics ameliorates severe burn-induced intestinal injury by inhibiting oxidative stress and inflammatory response. Burns 2022; 48:1213-1220. [PMID: 34903409 DOI: 10.1016/j.burns.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Burns are a common traumatic injuries with considerable morbidity and mortality rates. Post-burn intestinal injuries are closely related to oxidative stress and inflammatory response. The aim of the current study was to investigate the combined effect of sodium butyrate (NaB) and probiotics (PROB) on severe burn-induced oxidative stress and inflammatory response and the underlying mechanism of action. Sprague-Dawley rats with severe burns were treated with NaB with or without PROB. Pathomorphology of skin and small intestine tissue was observed using hematoxylin and eosin staining and severe burn-induced apoptosis in small intestine tissue was examined via terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The release of factors related to inflammation was quantified using ELISA kits and qRT-PCR and levels of oxidative stress markers were evaluated using biochemical assays. Furthermore, mitochondrial morphological changes in small intestinal epithelial cells were observed using transmission electron microscopy. In addition, the underlying mechanism associated with the combined effect of NaB and PROB on severe burn-induced oxidative stress and inflammatory response was investigated using western blotting. The combination of NaB and PROB exerted protective effects against severe burn-induced intestinal barrier injury by reducing the levels of diamine oxidase and intestinal fatty acid binding protein. Combined NaB and PROB treatment inhibited severe burn-induced oxidative stress by increasing superoxide dismutase levels and decreasing those of malondialdehyde and myeloperoxidase levels. Severe burn-induced inflammation was suppressed by combined NaB and PROB administration, as demonstrated by the decreased mRNA expression of tumor necrosis factor-α, interleukin-6, interleukin-1β, and high mobility group box-1 in the small intestine. In addition, this study showed that combined NaB and PROB administration increased nuclear factor-erythroid 2-related factor 2 (Nrf2) protein expression and decreased the phosphorylation of nuclear factor (NF)-κB and extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, our findings indicate that combined NaB and PROB treatment may inhibit severe burn-induced inflammation and oxidative stress in the small intestine by regulating HMGB1/NF-κB and ERK1/2/Nrf2 signaling, thereby providing a new therapeutic strategy for intestinal injury induced by severe burn.
Collapse
Affiliation(s)
- Biao Zhou
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Te Ba
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Lingfeng Wang
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Yixuan Gao
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Qiaoling He
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Zengqiang Yan
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Hongyu Wang
- Department of Burns, The Third Affiliated Hospital of Inner Mongolia Medical University, Burns Institute of Inner Mongolia, Baotou 014010, PR China
| | - Guoliang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China.
| |
Collapse
|
3
|
Polak K, Jobbágy A, Muszyński T, Wojciechowska K, Frątczak A, Bánvölgyi A, Bergler-Czop B, Kiss N. Microbiome Modulation as a Therapeutic Approach in Chronic Skin Diseases. Biomedicines 2021; 9:biomedicines9101436. [PMID: 34680552 PMCID: PMC8533290 DOI: 10.3390/biomedicines9101436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is a growing quantity of evidence on how skin and gut microbiome composition impacts the course of various dermatological diseases. The strategies involving the modulation of bacterial composition are increasingly in the focus of research attention. The aim of the present review was to analyze the literature available in PubMed (MEDLINE) and EMBASE databases on the topic of microbiome modulation in skin diseases. The effects and possible mechanisms of action of probiotics, prebiotics and synbiotics in dermatological conditions including atopic dermatitis (AD), psoriasis, chronic ulcers, seborrheic dermatitis, burns and acne were analyzed. Due to the very limited number of studies available regarding the topic of microbiome modulation in all skin diseases except for AD, the authors decided to also include case reports and original studies concerning oral administration and topical application of the pro-, pre- and synbiotics in the final analysis. The evaluated studies mostly reported significant health benefits to the patients or show promising results in animal or ex vivo studies. However, due to a limited amount of research and unambiguous results, the topic of microbiome modulation as a therapeutic approach in skin diseases still warrants further investigation.
Collapse
Affiliation(s)
- Karina Polak
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Antal Jobbágy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Tomasz Muszyński
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Cracow, Poland;
| | - Kamila Wojciechowska
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Aleksandra Frątczak
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Beata Bergler-Czop
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
- Correspondence:
| |
Collapse
|