1
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
2
|
Roy S, Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J Gastroenterol 2023; 29:2078-2100. [PMID: 37122604 PMCID: PMC10130969 DOI: 10.3748/wjg.v29.i14.2078] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Experimental evidence supports the fact that changes in the bowel microflora due to environmental or dietary factors have been investigated as implicating factors in the etiopathogenesis of inflammatory bowel disease (IBD). The amassing knowledge that the inhabited microbiome regulates the gut physiology and immune functions in IBD, has led researchers to explore the effectiveness of prebiotics, probiotics, and synbiotics in treating IBD. This therapeutic approach focuses on restoring the dynamic balance between the microflora and host defense mechanisms in the intestinal mucosa to prevent the onset and persistence of intestinal inflammation. Numerous microbial strains and carbohydrate blends, along with their combinations have been examined in experimental colitis models and clinical trials, and the results indicated that it can be an attractive therapeutic strategy for the suppression of inflammation, remission induction, and relapse prevention in IBD with minimal side effects. Several mechanisms of action of probiotics (for e.g., Lactobacillus species, and Bifidobacterium species) have been reported such as suppression of pathogen growth by releasing certain antimicrobial mediators (lactic and hydrogen peroxide, acetic acid, and bacteriocins), immunomodulation and initiation of an immune response, enhancement of barrier activity, and suppression of human T-cell proliferation. Prebiotics such as lactulose, lactosucrose, oligofructose, and inulin have been found to induce the growth of certain types of host microflora, resulting in an enriched enteric function. These non-digestible food dietary components have been reported to exert anti-inflammatory effects by inhibiting the expression of tumor necrosis factor-α-related cytokines while augmenting interleukin-10 levels. Although pro-and prebiotics has established their efficacy in healthy subjects, a better understanding of the luminal ecosystem is required to determine which specific bacterial strain or combination of probiotics and prebiotics would prove to be the ideal treatment for IBD. Clinical trials, however, have given some conflicting results, requiring the necessity to cite the more profound clinical effect of these treatments on IBD remission and prevention. The purpose of this review article is to provide the most comprehensive and updated review on the utility of prebiotics, probiotics, and synbiotics in the management of active Crohn's disease and ulcerative colitis/pouchitis.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
3
|
Yi R, Zhou X, Liu T, Xue R, Yang Z. Amelioration effect of Lactobacillus plantarum KFY02 on low-fiber diet-induced constipation in mice by regulating gut microbiota. Front Nutr 2022; 9:938869. [PMID: 36091233 PMCID: PMC9449489 DOI: 10.3389/fnut.2022.938869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/01/2022] [Indexed: 01/30/2023] Open
Abstract
This study aimed to examine the ameliorating effect of Lactobacillus plantarum (LP) KFY02 on low-fiber diet-induced constipation in mice. LP-KFY02 was isolated from the natural fermented yogurt in Korla of Xinjiang. The mice with low-fiber diet-induced constipation in experimental groups were administered 1 × 109 CFU/kg LP-KFY02 (KFY02H) and 1 × 108 CFU/kg LP-KFY02 (KFY02L). After LP-KFY02 treatment with constipation mice, the mice fecal water content, intestinal transit ability and defecation time of constipated mice were improved. The mice fecal flora diversity, abundance and structure of the intestinal flora were regulated to the balanced state. The mice serum levels of gut motility related neuroendocrine factors have been increased, the intestinal mucosal barrier function and gut motility related gene expression were regulated in mice colon tissues. At the same time, the mice colon tissue damage were improved. These parameters in the KFY02H group were close to the normal group. These results suggested that LP-KFY02 could be considered as a potential probiotic to help alleviate low-fiber diet-induced constipation. They also provided a theoretical basis for the study of probiotics to relieve constipation by regulating intestinal flora.
Collapse
Affiliation(s)
- Ruokun Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xin Zhou
- Department of Cardiology, First Affiliated Hospital, Chongqing Institute of Interventional Cardiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tongji Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Rui Xue
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
- *Correspondence: Zhennai Yang,
| |
Collapse
|
4
|
Effects of Lactobacillus plantarum P9 Probiotics on Defecation and Quality of Life of Individuals with Chronic Constipation: Protocol for a Randomized, Double-Blind, Placebo-Controlled Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4144321. [PMID: 35733625 PMCID: PMC9208957 DOI: 10.1155/2022/4144321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/25/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Background Although probiotics have been shown to improve constipation-related symptoms, a clear consensus on the use of probiotics as a constipation-relieving agent has not been reached, which is attributed to the limited available evidence and inconsistent protocols used in existing studies. Method A randomized, double-blind, placebo-controlled clinical trial is designed to study the efficiency and possible mechanism of action of probiotics for chronic constipation, in which 200 eligible volunteers with chronic constipation will be randomly assigned to a probiotic group (oral Lactobacillus plantarum P9 probiotic powder, 100 billion colony-forming units (CFUs)/day) or a placebo group. Volunteers, treatment distributors, data collectors, and data analysts will be blinded. The primary outcome is the weekly mean frequency of complete spontaneous bowel movements (CSBMs), and secondary outcomes include weekly mean frequency of CSBMs ≥3, weekly mean frequency of spontaneous bowel movements (SBMs), weekly mean stool appearance score, weekly mean difficulty of passing stool score, weekly percentage of volunteers who use auxiliary measures to assist with defecation (WPUAMA), quality-of-life (QOL) score, emotional status score, gut microbiome, and faecal metabolome. Each outcome measure will be assessed at the time points of preadministration (day 0), administration (day 14 and/or 28), and postadministration (day 42) to identify inter- and intragroup differences. Adverse events will be recorded to evaluate the safety of L. plantarum P9. Discussion. The protocol will provide methodological guidance for other similar studies, avoiding methodological bias and ultimately facilitating the formulation of consensus on the use of probiotics as a constipation-relieving agent. In addition, the results are more comprehensive than those of existing studies and may objectively and scientifically reflect the effectiveness of L. plantarum P9 on constipation. If the expected study findings are obtained, L. plantarum P9, taken as a probiotic, may become a complementary choice for chronically constipated patients. This trial is registered with Chinese Clinical Trial Registry (ChiCTR) (no. ChiCTR2000038396) registered on November 22, 2020, https://www.chictr.org.cn/showproj.aspx?proj=54024.
Collapse
|
5
|
Zhang N, Jin M, Wang K, Zhang Z, Shah NP, Wei H. Functional oligosaccharide fermentation in the gut: Improving intestinal health and its determinant factors-A review. Carbohydr Polym 2022; 284:119043. [PMID: 35287885 DOI: 10.1016/j.carbpol.2021.119043] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
|
6
|
Moschen AR, Sammy Y, Marjenberg Z, Heptinstall AB, Pooley N, Marczewska AM. The Underestimated and Overlooked Burden of Diarrhea and Constipation in Cancer Patients. Curr Oncol Rep 2022; 24:861-874. [PMID: 35325401 DOI: 10.1007/s11912-022-01267-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize and discuss the diverse causes of two major gastrointestinal dysfunction symptoms, diarrhea and constipation, in cancer patients. We also discuss short- and long-term clinical, economic, and humanistic consequences, including the impact on cancer treatment regimens and patient quality of life, highlighting the limitations of the literature. RECENT FINDINGS Diarrhea and constipation as a result of cancer and its treatment can risk the success of anti-cancer therapies by requiring treatment delay or withdrawal, and imposes a substantial humanistic burden in patients with cancer. Despite its importance and frequency, gastrointestinal side effects may be overlooked due to the focus on cancer treatment, and the impact on patients may be underestimated. Additionally, the burden reported may not fully reflect current cancer management, particularly the true impact of economic consequences. A full understanding of the burden of diarrhea and constipation in patients with cancer is required, including broad evaluation of clinical considerations, the patient experience, and an updated assessment of economic burden. This would improve caregivers' appreciation of the impact of gastrointestinal dysfunction and aid the prioritization of future research efforts.
Collapse
|
7
|
Inatomi T, Honma M. Effects of probiotics on loperamide-induced constipation in rats. Sci Rep 2021; 11:24098. [PMID: 34916548 PMCID: PMC8677781 DOI: 10.1038/s41598-021-02931-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
The role of probiotics in mitigating constipation, gut immunity, and gut microbiota has not been well studied. We aimed to evaluate the effects of probiotics on loperamide (LP)-induced constipation in Sprague-Dawley rats. Altogether, 150 male Sprague-Dawley rats (age 8 weeks) were used in the experiments following a 12-day acclimatisation period and were randomly divided into three treatment groups (groups 1, 2, and 3). Spastic constipation was induced via oral LP administration (3 mg/kg) for 6 days, 1 h before administering each test compound in groups 1 and 2. A probiotic solution (4 mL/kg body weight) was orally administered once a day for 6 days in group 2. In group 1, a phosphate buffer solution was orally administered once a day for 6 days, 1 h after each LP administration. In group 3, a phosphate buffer solution was orally administered once a day for 6 days. In the probiotic group, faecal parameters improved; faecal n-butyric acid, acetic acid, and IgA concentrations were increased; intestinal transit time was shortened; and disturbance of intestinal microbiota was inhibited. Our findings suggest that this probiotic was useful in improving various symptoms caused by constipation.
Collapse
Affiliation(s)
- Takio Inatomi
- Inatomi Animal Hospital, 1-1-24 Denenchofu, Ota-ku, Tokyo, 145-0071, Japan.
| | - Mihoko Honma
- Kusama Animal Health Laboratory, 2240 Tsunehiro, Kashima-shi, Saga, 849-1301, Japan
| |
Collapse
|
8
|
Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021; 22:ijms22147671. [PMID: 34299291 PMCID: PMC8307070 DOI: 10.3390/ijms22147671] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
9
|
Munawar N, Ahsan K, Muhammad K, Ahmad A, Anwar MA, Shah I, Al Ameri AK, Al Mughairbi F. Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
10
|
Deng Z, Fu Z, Yan W, Nie K, Ding L, Ma D, Huang H, Li T, Xie J, Fu L. The different effects of Chinese Herb Solid Drink and lactulose on gut microbiota in rats with slow transit constipation induced by compound diphenoxylate. Food Res Int 2021; 143:110273. [PMID: 33992373 DOI: 10.1016/j.foodres.2021.110273] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/05/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022]
Abstract
Slow transit constipation (STC) has become an epidemic medical problem. There are several kinds of drugs for constipation; however, each drug has its limitations. The gut microbiota has a close relationship with STC. Lactulose is an effective drug for constipation because it is a kind of bulking laxative and microbioecologic, and it relieves the syndromes of STC. We found that the Chinese Herb Solid Drink (CHSD), which contains medicine food homologous materials such as psyllium husk, sweetalmond, semen sesami nigrum, and hemp seed, has a similar effect on relieving constipation as lactulose, although it has different effects on the gut microbiota. We investigated the mechanisms of CHSD in rats with STC, induced by diphenoxylate, via constipation index and enzyme linked immunosorbent assay (ELISA) analyses using serum and 16S rDNA amplicon and gas chromatography-mass spectroscopy (GC-MS). CHSD enhanced the relative abundance of some types of gut microbiota, such as Blautia, Ruminococcus, Roseburia, Coprococcus, Lachnospira, and Phascolarctobacterium, while lactulose enhanced the relative abundance of Blautia, Phascolarctobacterium, Eubacterium, and Akkernansia in diphenoxylate-induced STC rats. Both CHSD and lactulose enhanced the level of short-chain fatty acids in the faeces of rats; however, the composition of those were different between the two drugs. From the perspective of the gut neuroendocrine system, both CHSD and lactulose could elevate neurotransmitters, such as motilin (MTL) and substance P (SP), which promote intestinal peristalsis and reduce the expression of vasoactive intestinal peptide, which inhibits intestinal peristalsis in the serum of STC rats. CHSD could elevate gastrin expression, which also promoted intestinal peristalsis in serum, while lactulose did not have this effect. Our findings suggest that CHSD may be an effective and safe therapeutic choice for STC.
Collapse
Affiliation(s)
- Zhitong Deng
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuotao Fu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Wen Yan
- College of health education, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Kechao Nie
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lingli Ding
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Duanhua Ma
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haodong Huang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Tao Li
- The second medical college of Guangzhou university of Chinese medicine, Guangzhou, PR China
| | - Jianxing Xie
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Linchun Fu
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
11
|
Yao Y, Cai X, Fei W, Ren F, Wang F, Luan X, Chen F, Zheng C. Regulating Gut Microbiome: Therapeutic Strategy for Rheumatoid Arthritis During Pregnancy and Lactation. Front Pharmacol 2020; 11:594042. [PMID: 33343364 PMCID: PMC7748111 DOI: 10.3389/fphar.2020.594042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and bone destruction. Microbial infection is considered to be the most important inducement of RA. The pregnancy planning of women in childbearing age is seriously affected by the disease activity of RA. Gut microbiome, related to immunity and inflammatory response of the host. At present, emerging evidence suggested there are significant differences in the diversity and abundance of gut microbiome during pregnancy and lactation, which may be associated with the fluctuation of RA disease activity. Based on these research foundations, we pioneer the idea of regulating gut microbiome for the treatment of RA during pregnancy and lactation. In this review, we mainly introduce the potential treatment strategies for controlling the disease activity of RA based on gut microbiome during pregnancy and lactation. Besides, we also briefly generalize the effects of conventional anti-rheumatic drugs on gut microbiome, the effects of metabolic changes during pregnancy on gut microbiome, alteration of gut microbiome during pregnancy and lactation, and the effects of anti-rheumatic drugs commonly used during pregnancy and lactation on gut microbiome. These will provide a clear knowledge framework for researchers in immune-related diseases during pregnancy. Regulating gut microbiome may be a potential and effective treatment to control the disease activity of RA during pregnancy and lactation.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofei Luan
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengying Chen
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Li XQ, Zhang XM, Wu X, Lan Y, Xu L, Meng XC, Li JN. Beneficial effects of lactitol on the composition of gut microbiota in constipated patients. J Dig Dis 2020; 21:445-453. [PMID: 32483935 DOI: 10.1111/1751-2980.12912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore the changes in microbial composition and the corresponding impact after lactitol treatment in constipated patients. METHODS Altogether 29 consecutive outpatients diagnosed with chronic constipation from three centers were recruited and stratified based on their history of diabetes mellitus. All patients were administered with oral lactitol for 2 weeks, and a symptoms diary of constipation was recorded. Fecal samples were collected before and after lactitol treatment, and were analyzed by 16S rRNA sequencing and real-time polymerase chain reaction (PCR) to detect gut microbiota. RESULTS Twenty patients with diabetes mellitus and nine without, all with chronic constipation, were enrolled in this study. After 2-week administration of lactitol, their subscale scores and constipation symptoms significantly decreased (P < 0.05). An analysis of fecal flora using 16S rRNA sequencing found an increasing trend of abundance of Bifidobacterium in the post-lactitol group (P = 0.08). Actinobacteria, Actinobacteria, Bifidobacteriales, Bifidobacteriaceae and Bifidobacterium were significantly more abundant after lactitol administration. Real-time PCR showed significantly high DNA copy numbers of Bifidobacterium after lactitol treatment (1.39 × 1010 vs 2.74 × 109 copies/μL, P = 0.01). The results of 16S rRNA sequencing and real-time PCR illustrated an increasing trend of Bifidobacterium in both patients with and without diabetes. In addition, Bifidobacterium was negatively correlated with constipation subscale scores. CONCLUSIONS Alterations in fecal flora composition after lactitol supplementation, especially in terms of an increasing trend of Bifidobacterium, alleviated constipation symptoms. Lactitol may be a promising prebiotic candidate for patients with constipation, regardless of diabetes mellitus.
Collapse
Affiliation(s)
- Xiao Qing Li
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Min Zhang
- Department of Gastroenterology, Beijing Jishuitan Hospital, Beijing, China
| | - Xi Wu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yu Lan
- Department of Gastroenterology, Beijing Jishuitan Hospital, Beijing, China
| | - Le Xu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xiang Chen Meng
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Nan Li
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Li Y, Long S, Liu Q, Ma H, Li J, Xiaoqing W, Yuan J, Li M, Hou B. Gut microbiota is involved in the alleviation of loperamide-induced constipation by honey supplementation in mice. Food Sci Nutr 2020; 8:4388-4398. [PMID: 32884719 PMCID: PMC7455974 DOI: 10.1002/fsn3.1736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Constipation is one of the most common functional gastrointestinal disorders accompanied with intestinal dysbiosis. Laxatives for constipation usually have side effects. Bee honey is a natural food with unique composition, antimicrobial properties, and bifidogenic effect. In order to assess whether honey can ameliorate loperamide-induced constipation in BALB/c mice through the alteration of the gut microbiota, the present study was undertaken. Mice were given Jarrah honey (7.5 g/kg body weight) by gavage once per day for 5 days. Fecal water content, intestinal transit rate together with the colon concentrations of substance P (SP), vasoactive intestinal peptide (VIP), and serotonin (5-hydroxytryptamine; 5-HT) were evaluated. Furthermore, we determined the effect of honey treatment on gut microbiota in mice using stool genomic 16S rRNA sequencing. As a result, honey showed an obvious improvement in fecal water content and alleviated constipation by modulating the microbial composition of the microbiota, and this was highly associated with a proportional decrease in gut Desulfovibrio. In addition, we found that the colon level of neurotransmitters SP and VIP was significantly related to microbial variations. Our results indicate that gut microbiota is involved in the alleviation of loperamide-induced constipation by honey supplementation in mice, and it could be considered as an evaluating parameter in constipation therapy strategies.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Shangqin Long
- Department of MicroecologyCollege of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Qiaochu Liu
- Department of MicroecologyCollege of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Hong Ma
- Department of MicroecologyCollege of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Jianxin Li
- Department of MicroecologyCollege of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Wei Xiaoqing
- The Core Laboratory of Medical Molecular Biology of Liaoning ProvinceDalian Medical UniversityDalianChina
| | - Jieli Yuan
- Department of MicroecologyCollege of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Ming Li
- Department of MicroecologyCollege of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Binbin Hou
- The Second Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
14
|
Cauli O. New Effects of Prebiotics, Probiotics, and Symbiotics. CURRENT CLINICAL PHARMACOLOGY 2020; 15:172-173. [PMID: 33327908 DOI: 10.2174/157488471503201110093435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Omar Cauli
- Department of Nursing University of Valencia Valencia, Spain
| |
Collapse
|