1
|
Yu X, Min H, Yao S, Yao G, Zhang D, Zhang B, Chen M, Liu F, Cui L, Zheng L, Cao Y. Evaluation of different types of adjuvants in a malaria transmission-blocking vaccine. Int Immunopharmacol 2024; 131:111817. [PMID: 38460299 PMCID: PMC11090627 DOI: 10.1016/j.intimp.2024.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Adjuvants are critical components for vaccines, which enhance the strength and longevity of the antibody response and influence the types of immune response. Limited research has been conducted on the immunogenicity and protective efficacy of various adjuvants in malaria transmission-blocking vaccines (TBVs). In this study, we formulated a promising TBV candidate antigen, the P. berghei ookinete surface antigen PSOP25, with different types of adjuvants, including the TLR4 agonist monophosphoryl lipid A (MPLA), the TLR9 agonist cytosine phosphoguanosine oligodeoxynucleotides (CpG ODN 1826) (CpG), a saponin adjuvant QS-21, aluminum hydroxide (Alum), and two combination adjuvants MPLA + QS-21 and QS-21 + CpG. We demonstrated that adjuvanted vaccines results in elevated elicited antibody levels, increased proliferation of plasma cells, and efficient formation of germinal centers (GCs), leading to enhanced long-term protective immune responses. Furthermore, CpG group exhibited the most potent inhibition of ookinete formation and transmission-blocking activity. We found that the rPSOP25 with CpG adjuvant was more effective than MPLA, QS-21, MPLA + QS-21, QS-21 + CpG adjuvants in dendritic cells (DCs) activation and differentiation. Additionally, the CpG adjuvant elicited more rubust immune memory response than Alum adjuvant. CpG and QS-21 adjuvants could activate the Th1 response and promote the secretion of IFN-γ and TNF-α. PSOP25 induced a higher number of Tfh cells in splenocytes when combined with MPLA, CpG, and QS-21 + CpG; and there was no increase in these cell populations when PSOP25 was administered with Alum. In conclusion, CpG may confer enhanced efficacy for the rPSOP25 vaccine, as evidenced by the ability of the elicited antisera to induce protective immune responses and improved transmission-blocking activity.
Collapse
Affiliation(s)
- Xinxin Yu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Shijie Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Guixiang Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Di Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Biying Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Muyan Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
2
|
Ko KH, Cha SB, Lee SH, Bae HS, Ham CS, Lee MG, Kim DH, Han SH. A novel defined TLR3 agonist as an effective vaccine adjuvant. Front Immunol 2023; 14:1075291. [PMID: 36761735 PMCID: PMC9902914 DOI: 10.3389/fimmu.2023.1075291] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Synthetic double-stranded RNA analogs recognized by Toll-like receptor 3 (TLR3) are an attractive adjuvant candidate for vaccines, especially against intracellular pathogens or tumors, because of their ability to enhance T cell and antibody responses. Although poly(I:C) is a representative dsRNA with potent adjuvanticity, its clinical application has been limited due to heterogeneous molecular size, inconsistent activity, poor stability, and toxicity. To overcome these limitations, we developed a novel dsRNA-based TLR3 agonist named NexaVant (NVT) by using PCR-coupled bidirectional in vitro transcription. Agarose gel electrophoresis and reverse phase-HPLC analysis demonstrated that NVT is a single 275-kDa homogeneous molecule. NVT appears to be stable since its appearance, concentration, and molecular size were unaffected under 6 months of accelerated storage conditions. Moreover, preclinical evaluation of toxicity under good laboratory practices showed that NVT is a safe substance without any signs of serious toxicity. NVT stimulated TLR3 and increased the expression of viral nucleic acid sensors TLR3, MDA-5, and RIG-1. When intramuscularly injected into C57BL/6 mice, ovalbumin (OVA) plus NVT highly increased the migration of dendritic cells (DCs), macrophages, and neutrophils into inguinal lymph node (iLN) compared with OVA alone. In addition, NVT substantially induced the phenotypic markers of DC maturation and activation including MHC-II, CD40, CD80, and CD86 together with IFN-β production. Furthermore, NVT exhibited an appropriate adjuvanticity because it elevated OVA-specific IgG, in particular, higher levels of IgG2c (Th1-type) but lower IgG1 (Th2-type). Concomitantly, NVT increased the levels of Th1-type T cells such as IFN-γ+CD4+ and IFN-γ+CD8+ cells in response to OVA stimulation. Collectively, we suggest that NVT with appropriate safety and effectiveness is a novel and promising adjuvant for vaccines, especially those requiring T cell mediated immunity such as viral and cancer vaccines.
Collapse
Affiliation(s)
- Kwang Hyun Ko
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea.,Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Bin Cha
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Hyun Shik Bae
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Chul Soo Ham
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Min-Gyu Lee
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Dong-Ho Kim
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Seung Hyun Han
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Tong Y, Lu G, Wang Z, Hao S, Zhang G, Sun H. Tubeimuside I improves the efficacy of a therapeutic Fusobacterium nucleatum dendritic cell-based vaccine against colorectal cancer. Front Immunol 2023; 14:1154818. [PMID: 37207216 PMCID: PMC10189021 DOI: 10.3389/fimmu.2023.1154818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Fusobacterium nucleatum (F. nucleatum) infection has been confirmed to be associated with the development, chemoresistance, and immune evasion of colorectal cancer (CRC). The complex relationship between the microorganism, host cells, and the immune system throughout all stages of CRC progression, which makes the development of new therapeutic methods difficult. Methods We developed a new dendritic cell (DC) vaccine to investigate the antitumor efficacy of CRC immunotherapy strategies. By mediating a specific mode of interaction between the bacteria, tumor, and host, we found a new plant-derived adjuvant, tubeimuside I (TBI), which simultaneously improved the DC vaccine efficacy and inhibited the F. nucleatum infection. Encapsulating TBI in a nanoemulsion greatly improved the drug efficacy and reduced the drug dosage and administration times. Results The nanoemulsion encapsulated TBI DC vaccine exhibited an excellent antibacterial and antitumor effect and improved the survival rate of CRC mice by inhibiting tumor development and progression. Discussion In this study, we provide a effective strategy for developing a DC-based vaccine against CRC and underlies the importance of further understanding the mechanism of CRC processes caused by F. nucleatum.
Collapse
Affiliation(s)
- Yanan Tong
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Guoxiu Lu
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Zhiguo Wang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Shanhu Hao
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Guoxu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
- *Correspondence: Guoxu Zhang, ; Hongwu Sun,
| | - Hongwu Sun
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- *Correspondence: Guoxu Zhang, ; Hongwu Sun,
| |
Collapse
|
4
|
Rezaei M, Danilova ND, Soltani M, Savvateeva LV, V Tarasov V, Ganjalikhani-Hakemi M, V Bazhinf A, A Zamyatnin A. Cancer Vaccine in Cold Tumors: Clinical Landscape, Challenges, and Opportunities. Curr Cancer Drug Targets 2022; 22:437-453. [PMID: 35156572 DOI: 10.2174/1568009622666220214103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
The idea of cancer immunotherapy is to stimulate the immune system to fight tumors without destroying normal cells. One of the anticancer therapy methods, among many, is based on the use of cancer vaccines that contain tumor antigens in order to induce immune responses against tumors. However, clinical trials have shown that the use of such vaccines as a monotherapy is ineffective in many cases, since they do not cause a strong immune response. Particular tumors are resistant to immunotherapy due to the absence or insufficient infiltration of tumors with CD8+ T cells, and hence, they are called cold or non-inflamed tumors. Cold tumors are characterized by a lack of CD8+ T cell infiltration, the presence of anti-inflammatory myeloid cells, tumor-associated M2 macrophages, and regulatory T cells. It is very important to understand which stage of the antitumor response does not work properly in order to use the right strategy for the treatment of patients. Applying other therapeutic methods alongside cancer vaccines can be more rational for cold tumors which do not provoke the immune system strongly. Herein, we indicate some combinational therapies that have been used or are in progress for cold tumor treatment alongside vaccines.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mozhdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mazdak Ganjalikhani-Hakemi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexandr V Bazhinf
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
5
|
Sharma R, Palanisamy A, Dhama K, Mal G, Singh B, Singh KP. Exploring the possible use of saponin adjuvants in COVID-19 vaccine. Hum Vaccin Immunother 2020; 16:2944-2953. [PMID: 33295829 PMCID: PMC7738204 DOI: 10.1080/21645515.2020.1833579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
There is an urgent need for a safe, efficacious, and cost-effective vaccine for the coronavirus disease 2019 (COVID-19) pandemic caused by novel coronavirus strain, severe acute respiratory syndrome-2 (SARS-CoV-2). The protective immunity of certain types of vaccines can be enhanced by the addition of adjuvants. Many diverse classes of compounds have been identified as adjuvants, including mineral salts, microbial products, emulsions, saponins, cytokines, polymers, microparticles, and liposomes. Several saponins have been shown to stimulate both the Th1-type immune response and the production of cytotoxic T lymphocytes against endogenous antigens, making them very useful for subunit vaccines, especially those for intracellular pathogens. In this review, we discuss the structural characteristics, mechanisms of action, structure-activity relationship of saponins, biological activities, and use of saponins in various viral vaccines and their applicability to a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Arivukarasu Palanisamy
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
6
|
Combining Monophosphoryl Lipid A (MPL), CpG Oligodeoxynucleotide (ODN), and QS-21 Adjuvants Induces Strong and Persistent Functional Antibodies and T Cell Responses against Cell-Traversal Protein for Ookinetes and Sporozoites (CelTOS) of Plasmodium falciparum in BALB/c Mice. Infect Immun 2019; 87:IAI.00911-18. [PMID: 30936155 DOI: 10.1128/iai.00911-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/17/2019] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum cell-traversal protein for ookinetes and sporozoites (PfCelTOS) is an advanced vaccine candidate that has a crucial role in the traversal of the malaria parasite in both mosquito and mammalian hosts. As recombinant purified proteins are normally poor immunogens, they require to be admixed with an adjuvant(s); therefore, the objective of the present study was to evaluate the capacity of different vaccine adjuvants, monophosphoryl lipid A (MPL), CpG, and Quillaja saponaria Molina fraction 21 (QS-21), alone or in combination (MCQ [MPL/CpG/QS-21]), to enhance the immunogenicity of Escherichia coli-expressed PfCelTOS in BALB/c mice. This goal was achieved by the assessment of anti-PfCelTOS IgG antibodies (level, titer, IgG isotype profile, avidity, and persistence) and extracellular Th1 cytokines using an enzyme-linked immunosorbent assay (ELISA) on postimmunized BALB/c mouse sera and PfCelTOS-stimulated splenocytes, respectively. Also, an assessment of the transmission-reducing activity (TRA) of anti-PfCelTOS obtained from different vaccine groups was carried out in female Anopheles stephensi mosquitoes by using a standard membrane feeding assay (SMFA). In comparison to PfCelTOS alone, administration of PfCelTOS with three distinct potent Th1 adjuvants in vaccine mouse groups showed enhancement and improvement of PfCelTOS immunogenicity that generated more bias toward a Th1 response with significantly enhanced titers and avidity of the anti-PfCelTOS responses that could impair ookinete development in A. stephensi However, immunization of mice with PfCelTOS with MCQ mixture adjuvants resulted in the highest levels of induction of antibody titers, avidity, and inhibitory antibodies in oocyst development (88%/26.7% reductions in intensity/prevalence) in A. stephensi It could be suggested that adjuvant combinations with different mechanisms stimulate better functional antibody responses than adjuvants individually against challenging diseases such as malaria.
Collapse
|
7
|
Kartikasari AER, Prakash MD, Cox M, Wilson K, Boer JC, Cauchi JA, Plebanski M. Therapeutic Cancer Vaccines-T Cell Responses and Epigenetic Modulation. Front Immunol 2019; 9:3109. [PMID: 30740111 PMCID: PMC6357987 DOI: 10.3389/fimmu.2018.03109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
There is great interest in developing efficient therapeutic cancer vaccines, as this type of therapy allows targeted killing of tumor cells as well as long-lasting immune protection. High levels of tumor-infiltrating CD8+ T cells are associated with better prognosis in many cancers, and it is expected that new generation vaccines will induce effective production of these cells. Epigenetic mechanisms can promote changes in host immune responses, as well as mediate immune evasion by cancer cells. Here, we focus on epigenetic modifications involved in both vaccine-adjuvant-generated T cell immunity and cancer immune escape mechanisms. We propose that vaccine-adjuvant systems may be utilized to induce beneficial epigenetic modifications and discuss how epigenetic interventions could improve vaccine-based therapies. Additionally, we speculate on how, given the unique nature of individual epigenetic landscapes, epigenetic mapping of cancer progression and specific subsequent immune responses, could be harnessed to tailor therapeutic vaccines to each patient.
Collapse
Affiliation(s)
- Apriliana E R Kartikasari
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Monica D Prakash
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Momodou Cox
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Kirsty Wilson
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Jennifer C Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jennifer A Cauchi
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
8
|
Affiliation(s)
- Xuedan He
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| | - Scott I. Abrams
- Roswell Park Comprehensive Cancer Center; Department of Immunology; Buffalo NY 14263 USA
| | - Jonathan F. Lovell
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| |
Collapse
|
9
|
Çokçalışkan C, Türkoğlu T, Sareyyüpoğlu B, Uzunlu E, Babak A, Özbilge BB, Gülyaz V. QS-21 enhances the early antibody response to oil adjuvant foot-and-mouth disease vaccine in cattle. Clin Exp Vaccine Res 2016; 5:138-47. [PMID: 27489804 PMCID: PMC4969278 DOI: 10.7774/cevr.2016.5.2.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/25/2016] [Accepted: 03/05/2016] [Indexed: 12/27/2022] Open
Abstract
Purpose One of the most important tools against foot-and-mouth disease, a highly contagious and variable viral disease of cloven-hoofed animals, is vaccination. However, the effectiveness of foot-and-mouth disease vaccines on slowing the spread of the disease is questionable. In contrast, high potency vaccines providing early protection may solve issues with the spread of the disease, escaping mutants, and persistency. To increase the potency of the vaccine, additives such as saponin and aluminium hydroxide are used. However, the use of saponin with an oil adjuvant is not common and is sometimes linked to toxicity. QS-21, which is less toxic than Quil A, has been presented as an alternative for use with saponin. In this study, the addition of QS-21 to a commercially available foot-and-mouth disease water-in-oil-in-water emulsion vaccine was evaluated in cattle. Materials and Methods After vaccination, serum samples were collected periodically over 3 months. Sera of the QS-21 and normal oil vaccine groups were compared via serum virus neutralization antibody titre and liquid phase blocking enzyme-linked immunosorbent assay antibody titre. Results The results showed that there was a significant early antibody increase in the QS-21 group. Conclusion Strong early virus neutralizing antibody response will be useful for emergency or ring vaccinations against foot-and-mouth disease in target animals.
Collapse
Affiliation(s)
- Can Çokçalışkan
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Tunçer Türkoğlu
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Beyhan Sareyyüpoğlu
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Ergün Uzunlu
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Ayca Babak
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Directorate-General for Agriculture and Rural Development, Ankara, Turkey
| | - Banu B Özbilge
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Veli Gülyaz
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| |
Collapse
|
10
|
Temizoz B, Kuroda E, Ishii KJ. Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol 2016; 28:329-38. [PMID: 27006304 PMCID: PMC4922024 DOI: 10.1093/intimm/dxw015] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Accumulated evidence obtained from various clinical trials and animal studies suggested that cancer vaccines need better adjuvants than those that are currently licensed, which include the most commonly used alum and incomplete Freund's adjuvant, because of either a lack of potent anti-tumor immunity or the induction of undesired immunity. Several clinical trials using immunostimulatory adjuvants, particularly agonistic as well as non-agonistic ligands for TLRs, C-type lectin receptors, retinoic acid-inducible gene I-like receptors and stimulator of interferon genes, have revealed their therapeutic potential not only as vaccine adjuvants but also as anti-tumor agents. Recently, combinations of such immunostimulatory or immunomodulatory adjuvants have shown superior efficacy over their singular use, suggesting that seeking optimal combinations of the currently available or well-characterized adjuvants may provide a better chance for the development of novel adjuvants for cancer immunotherapy.
Collapse
Affiliation(s)
- Burcu Temizoz
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| |
Collapse
|
11
|
Marty-Roix R, Vladimer GI, Pouliot K, Weng D, Buglione-Corbett R, West K, MacMicking JD, Chee JD, Wang S, Lu S, Lien E. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants. J Biol Chem 2015; 291:1123-36. [PMID: 26555265 DOI: 10.1074/jbc.m115.683011] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 01/09/2023] Open
Abstract
Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo.
Collapse
Affiliation(s)
- Robyn Marty-Roix
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Gregory I Vladimer
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Kimberly Pouliot
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Dan Weng
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Rachel Buglione-Corbett
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Kim West
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - John D MacMicking
- the Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, and
| | - Jonathan D Chee
- the Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, and
| | - Shixia Wang
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Shan Lu
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Egil Lien
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and the Centre of Molecular Inflammation Research, Department of Cancer and Molecular Medicine, NTNU, 7491 Trondheim, Norway
| |
Collapse
|
12
|
Hu J, Qiu L, Wang X, Zou X, Lu M, Yin J. Carbohydrate-based vaccine adjuvants - discovery and development. Expert Opin Drug Discov 2015; 10:1133-44. [PMID: 26372693 DOI: 10.1517/17460441.2015.1067198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. AREAS COVERED The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. EXPERT OPINION Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.
Collapse
Affiliation(s)
- Jing Hu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Liying Qiu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Xiaoli Wang
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Xiaopeng Zou
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Mengji Lu
- c 3 University Hospital Essen, Institute of Virology , Hufelandstr, 55, 45122 Essen, Germany +49 2 017 233 530 ; +49 2 017 235 929 ;
| | - Jian Yin
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| |
Collapse
|
13
|
Gu G, An L, Fang M, Guo Z. Efficient one-pot synthesis of tigogenin saponins and their antitumor activities. Carbohydr Res 2014; 383:21-6. [PMID: 24239606 DOI: 10.1016/j.carres.2013.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/20/2022]
Abstract
An efficient synthesis of naturally occurring tigogenin triglycoside 1a and its three derivatives 1b-d bearing different carbohydrate moieties, as well as their antitumor activities, is described. Partially protected thiogalactosides bearing unprotected 2,4-OH or 4-OH groups were used to facilitate regioselective reactions for one-pot sequential multi-step glycosylation, which has significantly simplified the target molecule synthesis. The synthetic saponins 1a-d exhibited much higher anti-tumor activities than the positive control cisplatin against the human epithelial cervical cancer cell (HeLa) as evaluated by CCK-8 assay.
Collapse
Affiliation(s)
- Guofeng Gu
- National Glycoengineering Research Center, Shandong University, Jinan 250010, PR China.
| | - Lian An
- National Glycoengineering Research Center, Shandong University, Jinan 250010, PR China
| | - Min Fang
- National Glycoengineering Research Center, Shandong University, Jinan 250010, PR China
| | - Zhongwu Guo
- National Glycoengineering Research Center, Shandong University, Jinan 250010, PR China.
| |
Collapse
|
14
|
Gu G, Zhao Y, Guo Z. Synthesis of Leonosides E and F derived from Leonurus japonicas Houtt. Carbohydr Res 2013; 380:174-80. [DOI: 10.1016/j.carres.2013.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 10/26/2022]
|