1
|
Huang TY, Naruphontjirakul P, Tseng SC, Su WT. Protective effect of conditioned medium derived from melatonin-stimulated stem cells from the apical papilla on glutamate-induced neurotoxicity in PC12 cells. Neuroscience 2025; 570:72-83. [PMID: 39965741 DOI: 10.1016/j.neuroscience.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/01/2024] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Glutamate-induced neurotoxicity can be attenuated via paracrine mechanisms involving mesenchymal stem cells (MSCs). Conditioned medium (CM) from dental MSCs stimulates neuroprotective effects through trophic factors, and melatonin is a known enhancer of the efficacy of conditional media. Here, we investigated the protective effect of CM derived from stem cells from the apical papilla (SCAPs), supplemented without and with melatonin CM (SCAP-CM and Mel-CM), against glutamate-induced PC12 cell apoptosis via the inhibition of intracellular calcium influx and reactive oxygen species (ROS) production. The results showed that CM effectively reduced glutamate-induced intracellular calcium ion concentration, ROS production, and LDH levels in PC12 cells, elevated mitochondrial membrane potential, and inhibited Bax and Cytochrome c protein expression while increasing Bcl-2 protein expression. Moreover, CM significantly reduced the expression of caspase-9 and caspase-3 to inhibit glutamate-induced PC12 cell apoptosis. Notably, Mel-CM outperformed SCAP-CM in all aspects. This study demonstrates that melatonin can enhance the paracrine effects of stem cells and that Mel-CM mediates neuroprotection by inhibiting neuronal cell damage and apoptosis induced by glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei 104217, Taiwan
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Shih-Ching Tseng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan.
| |
Collapse
|
2
|
Basabrain MS, Zaeneldin A, Bijle MN, Zhang C. Dental stem cell sphere formation and potential for neural regeneration: A scoping review. Heliyon 2024; 10:e40262. [PMID: 39619582 PMCID: PMC11605411 DOI: 10.1016/j.heliyon.2024.e40262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 01/31/2025] Open
Abstract
Background Dental stem cells with neurosphere-forming abilities are a promising cell source for the treatment of neural diseases and injuries. This scoping review aimed to systematically map the existing literature on dental sphere formation assays and their characteristics associated with neural regeneration potential. Methods The Web of Science, EMBASE, SCOPUS, and PubMed databases were systematically searched for in vitro, animal, and clinical studies and reviews focusing on stem cells isolated from the oral cavity, subsequently cultured as spheres with neural regeneration potential. Data were extracted and evidence was synthesized according to the predetermined variables in the registered protocol. Results A total of 35 articles (31 in vitro, 1 combined in vitro and in vivo, and 3 reviews) were included. The predominant method utilized for sphere formation was low-attachment culture. Spheres were characterized using assessment of neural marker expression via confocal microscopy, immunohistochemistry, RT-qPCR, or western blotting. Overall, the synthesized results indicate a lack of in vivo studies investigating the utility of dental neurospheres for neural regeneration, with dental pulp stem cells being the most investigated for their neural regenerative potential. Conclusion Dental stem cell spheres demonstrate significant potential for neural regeneration. Several assays and characterizations have been performed to characterized the mechanisms underlying dental sphere formation. Furthermore, in vivo studies are imperative to deduce the neural regenerative potential of stem cells in complex biological environments.
Collapse
Affiliation(s)
- Mohammed S. Basabrain
- Restorative Dental Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed Zaeneldin
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Mohammed Nadeem Bijle
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
3
|
Cheng R, Xie T, Ma W, Deng P, Liu C, Hong Y, Liu C, Tian J, Xu Y. Application of polydopamine-modified triphasic PLA/PCL-PLGA/Mg(OH) 2-velvet antler polypeptides scaffold loaded with fibrocartilage stem cells for the repair of osteochondral defects. Front Bioeng Biotechnol 2024; 12:1460623. [PMID: 39372430 PMCID: PMC11450761 DOI: 10.3389/fbioe.2024.1460623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Articular cartilage defects often involve damage to both the cartilage and subchondral bone, requiring a scaffold that can meet the unique needs of each tissue type and establish an effective barrier between the bone and cartilage. In this study, we used 3D printing technology to fabricate a tri-phasic scaffold composed of PLA/PCL-PLGA/Mg(OH)₂, which includes a cartilage layer, an osteochondral interface, and a bone layer. The scaffold was filled with Velvet antler polypeptides (VAP), and its characterization was assessed using compression testing, XRD, FTIR, SEM, fluorescence microscopy, and EDS. In vitro investigation demonstrated that the scaffold not only supported osteogenesis but also promoted chondrogenic differentiation of fibrocartilage stem cells (FCSCs). n vivo experiments showed that the tri-phasic PLA/PCL-PLGA/Mg(OH)2-VAP scaffold together with FCSC, when transplanted to animal models, increased the recovery of osteochondral defects. Those results demonstrate the promising future of illustrated tri-phasic PLA/PCL-PLGA/Mg(OH)2-VAP scaffold loaded with FCSCs as a new bone and cartilage tissue engineering approach for osteochondral defects treatment.
Collapse
Affiliation(s)
- Renyi Cheng
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Tao Xie
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Wen Ma
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peishen Deng
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Chaofeng Liu
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Second Clinic, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuchen Hong
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Changyu Liu
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jinjun Tian
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yanhua Xu
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| |
Collapse
|
4
|
Li J, Sun J, Xu M, Yang L, Yang N, Deng J, Ma Y, Qi Y, Liu Z, Ruan Q, Liu Y, Huang Y. Human cytomegalovirus infection impairs neural differentiation via repressing sterol regulatory element binding protein 2-mediated cholesterol biosynthesis. Cell Mol Life Sci 2024; 81:289. [PMID: 38970696 PMCID: PMC11335213 DOI: 10.1007/s00018-024-05278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
Congenital human cytomegalovirus (HCMV) infection is a major cause of abnormalities and disorders in the central nervous system (CNS) and/or the peripheral nervous system (PNS). However, the complete pathogenesis of neural differentiation disorders caused by HCMV infection remains to be fully elucidated. Stem cells from human exfoliated deciduous teeth (SHEDs) are mesenchymal stem cells (MSCs) with a high proliferation and neurogenic differentiation capacity. Since SHEDs originate from the neural crest of the early embryonic ectoderm, SHEDs were hypothesized to serve as a promising cell line for investigating the pathogenesis of neural differentiation disorders in the PNS caused by congenital HCMV infection. In this work, SHEDs were demonstrated to be fully permissive to HCMV infection and the virus was able to complete its life cycle in SHEDs. Under neurogenic inductive conditions, HCMV infection of SHEDs caused an abnormal neural morphology. The expression of stem/neural cell markers was also disturbed by HCMV infection. The impairment of neural differentiation was mainly due to a reduction of intracellular cholesterol levels caused by HCMV infection. Sterol regulatory element binding protein-2 (SREBP2) is a critical transcription regulator that guides cholesterol synthesis. HCMV infection was shown to hinder the migration of SREBP2 into nucleus and resulted in perinuclear aggregations of SREBP2 during neural differentiation. Our findings provide new insights into the prevention and treatment of nervous system diseases caused by congenital HCMV infection.
Collapse
Affiliation(s)
- Jianming Li
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingxuan Sun
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingyi Xu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lei Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jingui Deng
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Microorganism Laboratory, Shenyang Center for Disease Control and Prevention, Shenyang, Liaoning, China
| | - Yanping Ma
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongyang Liu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiang Ruan
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China.
| | - Yujing Huang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Ma M. Role of Hypoxia in Mesenchymal Stem Cells from Dental Pulp: Influence, Mechanism and Application. Cell Biochem Biophys 2024; 82:535-547. [PMID: 38713403 PMCID: PMC11344735 DOI: 10.1007/s12013-024-01274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Mesenchymal stem cells (MSCs) from dental pulp (DP-MSCs), which include dental pulp stem cells (DPSCs) isolated from permanent teeth and stem cells from human exfoliated deciduous teeth (SHED), have emerged as highly promising cell sources for tissue regeneration, due to their high proliferative rate, multi-lineage differentiation capability and non-invasive accessibility. DP-MSCs also exert extensive paracrine effects through the release of extracellular vesicles (EVs) and multiple trophic factors. To be noted, the microenvironment, commonly referred to as the stem cell niche, plays a crucial role in shaping the functionality and therapeutic effects of DP-MSCs, within which hypoxia has garnered considerable attention. Extensive research has demonstrated that hypoxic conditions profoundly impact DP-MSCs. Specifically, hypoxia promotes DP-MSC proliferation, survival, stemness, migration, and pro-angiogenic potential while modulating their multi-lineage differentiation capacity. Furthermore, hypoxia stimulates the paracrine activities of DP-MSCs, leading to an increased production of EVs and soluble factors. Considering these findings, hypoxia preconditioning has emerged as a promising approach to enhance the therapeutic potential of DP-MSCs. In this comprehensive review, we provide a systematic overview of the influence of hypoxia on DP-MSCs, shedding light on the underlying mechanisms involved. Moreover, we also discuss the potential applications of hypoxia-preconditioned DP-MSCs or their secretome in tissue regeneration. Additionally, we delve into the methodologies employed to simulate hypoxic environments. This review aims to promote a comprehensive and systematic understanding of the hypoxia-induced effects on DP-MSCs and facilitate the refinement of regenerative therapeutic strategies based on DP-MSCs.
Collapse
Affiliation(s)
- Muyuan Ma
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
6
|
Al-Hadi MAA. Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro study. BDJ Open 2024; 10:21. [PMID: 38480735 PMCID: PMC10937720 DOI: 10.1038/s41405-024-00197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION Bone diseases have a profound global impact, especially when the body's innate regenerative capacity falls short in the face of extensive damage. Stem cells from human exfoliated deciduous teeth (SHEDs), discovered in 2003, offer a promising solution for tissue repair, as they self-renew naturally and are easily obtainable. Mesenchymal stem cells (MSCs), including SHEDs, are believed to promote tissue regeneration by releasing growth factors, collectively known as the secretome. AIMS This study explored the potential of combining SHED-derived secretome with Yemeni Sidr honey to improve osteoblast and fibroblast cell viability and migration. MATERIALS AND METHODS The experiment involved treating cell cultures of two types of rat cell lines - 7F2 osteoblast and BHK-21 fibroblast immortalized cells - with SHED-derived secretome and Yemeni Sidr honey. After the treatment, cell viability was measured using the MTT assay, which calculates OD at 590 nm. Additionally, the scratch assay was conducted to evaluate cell migration, and ImageJ software was used for data processing. RESULTS The findings indicated that combining SHED-derived secretome and Yemeni Sidr honey enhanced osteoblast and fibroblast cell viability and migration. Furthermore, the study highlighted the difference in the stimulative potential of SHED-derived secretome, Yemeni Sidr honey, and their combination, on the viability and migration of the cultured cells. CONCLUSION The research concludes that combining SHED-derived secretome with Yemeni Sidr honey has the potential to promote cell viability and migration in in-vitro settings. The synergistic application of these substances has been found to be more effective -when combined in a dose-dependent manner- than their counterparts. Overall, the current study serves as a foundation for further investigations to establish if the explored substance has any useful clinical applications.
Collapse
Affiliation(s)
- Mona Abdulrahman Abdullah Al-Hadi
- Faculty of Dentistry, Airlangga University, Surabaya, Indonesia.
- Faculty of Dentistry, University of Science and Technology, Sana'a, Yemen.
| |
Collapse
|
7
|
Deng S, Li C, Chen J, Cui Z, Lei T, Yang H, Chen P. Effects of triclosan exposure on stem cells from human exfoliated deciduous teeth (SHED) fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167053. [PMID: 37709070 DOI: 10.1016/j.scitotenv.2023.167053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Triclosan (TCS), a widely used broad-spectrum antibacterial agent and preservative, is commonly found in products and environments. Widespread human exposure to TCS has drawn increasing attention from researchers concerning its toxicological effect. However, minimal studies have focused on the impact of TCS exposure on human stem cells. Therefore, the aim of the present study was to evaluate the effects of TCS exposure on stem cells from human exfoliated deciduous teeth (SHED) and its molecular mechanisms. A series of experimental methods were conducted to assess cell viability, morphology, proliferation, differentiation, senescence, apoptosis, mitochondrial function, and oxidative stress after SHED exposure to TCS. Furthermore, transcriptome analysis was applied to investigate the response of SHED to different concentrations of TCS exposure and to explore the molecular mechanisms. We demonstrated that TCS has a dose-dependent proliferation and differentiation inhibition of SHED, while promoting cellular senescence, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and oxidative stress, as well as significantly induces apoptosis and autophagy flux inhibition at high concentrations. Interestingly, no significant morphological changes in SHED were observed after TCS exposure. Transcriptome analysis of normal and TCS-induced SHED suggested that SHED may use different strategies to counteract stress from different concentrations of TCS and showed significant differences. We discovered that TCS mediates cellular injury of SHED by enhancing the expression of PTEN, thereby inhibiting the phosphorylation levels of PI3K and AKT as well as mTOR expression. Collectively, our findings provide a new understanding of the toxic effects of TCS on human stem cell fate, which is important for determining the risk posed by TCS to human health.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junqi Chen
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| |
Collapse
|
8
|
Du Z, Wei P, Jiang N, Wu L, Ding C, Yu G. SHED-derived exosomes ameliorate hyposalivation caused by Sjögren's syndrome via Akt/GSK-3β/Slug-mediated ZO-1 expression. Chin Med J (Engl) 2023; 136:2596-2608. [PMID: 37052137 PMCID: PMC10617935 DOI: 10.1097/cm9.0000000000002610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Sjögren's syndrome (SS) is an autoimmune disorder characterized by sicca syndrome and/or systemic manifestations. The treatment is still challenging. This study aimed to explore the therapeutic role and mechanism of exosomes obtained from the supernatant of stem cells derived from human exfoliated deciduous teeth (SHED-exos) in sialadenitis caused by SS. METHODS SHED-exos were administered to the submandibular glands (SMGs) of 14-week-old non-obese diabetic (NOD) mice, an animal model of the clinical phase of SS, by local injection or intraductal infusion. The saliva flow rate was measured after pilocarpine intraperitoneal injection in 21-week-old NOD mice. Protein expression was examined by western blot analysis. Exosomal microRNA (miRNAs) were identified by microarray analysis. Paracellular permeability was evaluated by transepithelial electrical resistance measurement. RESULTS SHED-exos were injected into the SMG of NOD mice and increased saliva secretion. The injected SHED-exos were taken up by glandular epithelial cells, and further increased paracellular permeability mediated by zonula occluden-1 (ZO-1). A total of 180 exosomal miRNAs were identified from SHED-exos, and Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway might play an important role. SHED-exos treatment down-regulated phospho-Akt (p-Akt)/Akt, phospho-glycogen synthase kinase 3β (p-GSK-3β)/GSK-3β, and Slug expressions and up-regulated ZO-1 expression in SMGs and SMG-C6 cells. Both the increased ZO-1 expression and paracellular permeability induced by SHED-exos were abolished by insulin-like growth factor 1, a PI3K agonist. Slug bound to the ZO-1 promoter and suppressed its expression. For safer and more effective clinical application, SHED-exos were intraductally infused into the SMGs of NOD mice, and saliva secretion was increased and accompanied by decreased levels of p-Akt/Akt, p-GSK-3β/GSK-3β, and Slug and increased ZO-1 expression. CONCLUSION Local application of SHED-exos in SMGs can ameliorate Sjögren syndrome-induced hyposalivation by increasing the paracellular permeability of glandular epithelial cells through Akt/GSK-3β/Slug pathway-mediated ZO-1 expression.
Collapse
Affiliation(s)
- Zhihao Du
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Pan Wei
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Nan Jiang
- Center Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Liling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Chong Ding
- Center Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Guangyan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
9
|
Fawzy El-Sayed KM, Rudert A, Geiken A, Tölle J, Mekhemar M, Dörfer CE. Toll-like receptor expression profile of stem/progenitor cells from human exfoliated deciduous teeth. Int J Paediatr Dent 2023; 33:607-614. [PMID: 37158295 DOI: 10.1111/ipd.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Stem/progenitor cells from human exfoliated deciduous teeth (SHED) show remarkable pluripotent, regenerative, and immunological capacities. During in vivo regenerative processes, there could be the presence of SHED in the surrounding inflammatory microenvironment, through toll-like receptors (TLRs). AIM The aim of this paper was to present a characteristic TLR expression profile on SHED for the first time. DESIGN Cells were harvested from extracted primary teeth (n = 10), anti-STRO-1 immunomagnetically sorted and cultivated, through colony-forming units (CFUs). SHED were examined for mesenchymal stem/progenitor cell traits, including the expression of clusters of differentiation (CDs) 14, 34, 45, 73, 90, 105, and 146, and their multilineage differentiation aptitude. TLRs 1-10 expression was investigated for SHED in uninflamed and inflamed (25 ng/mL IL-1β, 103 U/mL IFN-γ, 50 ng/mL TNF-α, and 3 × 103 U/mL IFN-α; SHED-i) microenvironmental conditions. RESULTS SHED were negative for CDs 14, 34, and 45, but were positive for CDs 73, 90, 105, and 146, and demonstrated characteristic multilineage differentiation. In an uninflamed microenvironment, SHED expressed TLRs 1, 2, 3, 4, 6, 8, 9, and 10. The inflammatory microenvironment downregulated TLR7 significantly on gene level and upregulated TLR8 on gene and protein levels (p < .05; Wilcoxon signed-rank test). CONCLUSION There appears to be a unique TLR expression profile on SHED, which could modulate their immunological and regenerative abilities in oral tissue engineering approaches.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem Cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Antonia Rudert
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Antje Geiken
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Johannes Tölle
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Mohamed Mekhemar
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Christof E Dörfer
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
10
|
Pan H, Yang Y, Xu H, Jin A, Huang X, Gao X, Sun S, Liu Y, Liu J, Lu T, Wang X, Zhu Y, Jiang L. The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes. Front Cell Dev Biol 2023; 11:1174579. [PMID: 37818127 PMCID: PMC10561098 DOI: 10.3389/fcell.2023.1174579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.
Collapse
Affiliation(s)
- Houwen Pan
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
11
|
Zheng Z, Tang S, Yang T, Wang X, Ding G. Advances in combined application of dental stem cells and small-molecule drugs in regenerative medicine. Hum Cell 2023; 36:1620-1637. [PMID: 37358734 DOI: 10.1007/s13577-023-00943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Teeth are a kind of masticatory organs of special histological origin, unique to vertebrates, playing an important role in chewing, esthetics, and auxiliary pronunciation. In the past decades, with the development of tissue engineering and regenerative medicine, the studies of mesenchymal stem cells (MSCs) gradually attracted the interest of researchers. Accordingly, several types of MSCs have been successively isolated in teeth or teeth-related tissues, including dental pulp stem cells, periodontal ligament stem cells, stem cells from human exfoliated deciduous teeth, dental follicle stem cells, stem cells from apical papilla and gingival mesenchymal stem cells. These dental stem cells (DSCs) are easily accessible, possess excellent stem cell characteristics, such as high proliferation rates and profound immunomodulatory properties. Small-molecule drugs are widely used and show great advantages in clinical practice. As research progressed, small-molecule drugs are found to have various complex effects on the characteristics of DSCs, especially the enhancement of biological characteristics of DSCs, which has gradually become a hot issue in the field of DSCs research. This review summarizes the background, current status, existing problems, future research directions, and prospects of the combination of DSCs with three common small-molecule drugs: aspirin, metformin, and berberine.
Collapse
Affiliation(s)
- Zejun Zheng
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Shuai Tang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Tong Yang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Xiaolan Wang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Gang Ding
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China.
| |
Collapse
|
12
|
Zeng Y, Liu L, Huang D, Song D. Immortalized cell lines derived from dental/odontogenic tissue. Cell Tissue Res 2023:10.1007/s00441-023-03767-5. [PMID: 37039940 DOI: 10.1007/s00441-023-03767-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Stem cells derived from dental/odontogenic tissue have the property of multiple differentiation and are prospective in tooth regenerative medicine and cellular and molecular studies. However, in the face of cellular senescence soon in vitro, the proliferation ability of the cells is limited, so studies are hindered to some extent. Fortunately, immortalization strategies are expected to solve the above issues. Cellular immortalization is that cells are immortalized by introducing oncogenes, human telomerase reverse transcriptase genes (hTERT), or miscellaneous immortalization genes to get unlimited proliferation. At present, a variety of immortalized stem cells from dental/odontogenic tissue has been successfully generated, such as dental pulp stem cells (DPSCs), periodontal ligament cells (PDLs), stem cells from human exfoliated deciduous teeth (SHEDs), dental papilla cells (DPCs), and tooth germ mesenchymal cells (TGMCs). This review summarized establishment and applications of immortalized stem cells from dental/odontogenic tissues and then discussed the advantages and challenges of immortalization.
Collapse
Affiliation(s)
- Yanglin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Xiong H, Zhao F, Peng Y, Li M, Qiu H, Chen K. Easily attainable and low immunogenic stem cells from exfoliated deciduous teeth enhanced the in vivo bone regeneration ability of gelatin/bioactive glass microsphere composite scaffolds. Front Bioeng Biotechnol 2022; 10:1049626. [PMID: 36568292 PMCID: PMC9780285 DOI: 10.3389/fbioe.2022.1049626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Repair of critical-size bone defects remains a considerable challenge in the clinic. The most critical cause for incomplete healing is that osteoprogenitors cannot migrate to the central portion of the defects. Herein, stem cells from exfoliated deciduous teeth (SHED) with the properties of easy attainability and low immunogenicity were loaded into gelatin/bioactive glass (GEL/BGM) scaffolds to construct GEL/BGM + SHED engineering scaffolds. An in vitro study showed that BGM could augment the osteogenic differentiation of SHED by activating the AMPK signaling cascade, as confirmed by the elevated expression of osteogenic-related genes, and enhanced ALP activity and mineralization formation in SHED. After implantation in the critical bone defect model, GEL/BGM + SHED scaffolds exhibited low immunogenicity and significantly enhanced new bone formation in the center of the defect. These results indicated that GEL/BGM + SHED scaffolds present a new promising strategy for critical-size bone healing.
Collapse
|
14
|
Wang D, Zhu N, Xie F, Qin M, Wang Y. Long non-coding RNA IGFBP7-AS1 accelerates the odontogenic differentiation of stem cells from human exfoliated deciduous teeth by regulating IGFBP7 expression. Hum Cell 2022; 35:1697-1707. [PMID: 36038801 PMCID: PMC9515061 DOI: 10.1007/s13577-022-00763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are attractive seed cells for dental tissue engineering. We identified the effect of the long noncoding RNA insulin-like growth factor-binding protein 7 antisense RNA 1 (lncRNA IGFBP7-AS1) in vivo and its underlying mechanism during SHED odontogenic differentiation. IGFBP7-AS1 and insulin-like growth factor-binding protein 7 (IGFBP7) were overexpressed using lentiviruses. IGFBP7 expression was knocked down with small interfering RNA. The effect of IGFBP7-AS1 in vivo was confirmed by animal experiments. The effect of IGFBP7 on SHED odontogenic differentiation was assessed with alkaline phosphatase staining, alizarin red S staining, quantitative reverse transcription-PCR, and western blotting. The relationship between IGFBP7-AS1 and IGFBP7 was confirmed by quantitative reverse transcription–PCR and western blotting. IGFBP7-AS1 promoted SHED odontogenesis in vivo, and regulated the expression of the coding gene IGFBP7 positively. Inhibiting IGFBP7 led to suppress SHED odontogenic differentiation while IGFBP7 overexpression had the opposite effect. IGFBP7-AS1 enhanced the stability of IGFBP7. IGFBP7-AS1 promoted SHED odontogenic differentiation in vivo. The underlying mechanism may involve the enhancement of IGFBP7 stability. This may provide novel potential targets for dental tissue engineering.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China.
| |
Collapse
|
15
|
Stem Cells from Human Exfoliated Deciduous Teeth Attenuate Atopic Dermatitis Symptoms in Mice through Modulating Immune Balance and Skin Barrier Function. Mediators Inflamm 2022; 2022:6206883. [PMID: 35909660 PMCID: PMC9334056 DOI: 10.1155/2022/6206883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic skin inflammatory disease associated with immune abnormalities and disrupted skin barrier function. Mesenchymal stem cells (MSCs) have been suggested as an alternative therapeutic option in AD. Stem cells from human exfoliated deciduous teeth (SHEDs) are a unique postnatal stem cell population with high immunomodulatory properties. The aim of this study was to explore the effects of SHEDs on AD in the BALB/c mouse model induced by 2,4-dinitrochlorobenzene (DNCB). SHEDs were administrated intravenously or subcutaneously, and clinical severity, histopathological findings, skin barrier function, and organ indexes were evaluated. Skin tissue cytokine mRNA levels and serum cytokine protein levels were further analysed. SHED administration significantly alleviated AD clinical severity, including dermatitis scores, ear thickness, scratching behaviour, and infiltration of mast cells. In addition, disrupted skin barrier function and enlarged spleens were restored by SHED administration. Further, SHED treatment reduced the levels of IgE, IgG1, and thymic stromal lymphopoietin (TSLP) in the serum and the modulated expression of Th1-, Th2-, and Th17-associated cytokines in skin lesions. In conclusion, SHEDs attenuated AD-like skin lesions in mice by modulating the immune balance and skin barrier function. SHEDs could be a potential new treatment agent for AD.
Collapse
|
16
|
Huang TY, Chien MS, Su WT. Therapeutic Potential of Pretreatment with Exosomes Derived from Stem Cells from the Apical Papilla against Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2022; 23:5721. [PMID: 35628538 PMCID: PMC9146099 DOI: 10.3390/ijms23105721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Acute kidney injury (AKI) is the most serious side effect of treatment with cisplatin in clinical practice. The aim of this study was to investigate the therapeutic effect of exosomes derived from stem cells from the apical papilla (SCAPs) on AKI. The medium from a SCAP culture was collected after 2 d of culture. From this, SCAP-derived exosomes (SCAP-ex), which were round (diameter: 30-150 nm) and expressed the characteristic proteins CD63 and CD81, were collected via differential ultracentrifugation. Rat renal epithelial cells (NRK-52E) were pretreated with SCAP-ex for 30 min and subsequently treated with cisplatin to induce acute injury. The extent of oxidative stress, inflammation, and apoptosis were used to evaluate the therapeutic effect of SCAP-ex against cisplatin-induced nephrotoxicity. The viability assay showed that the survival of damaged cells increased from 65% to 89%. The levels of reactive oxygen species decreased from 176% to 123%. The glutathione content increased by 78%, whereas the levels of malondialdehyde and tumor necrosis factor alpha (TNF-α) decreased by 35% and 9%, respectively. These results showed that SCAP-ex can retard oxidative stimulation in damaged kidney cells. Quantitative reverse transcription-polymerase chain-reaction gene analysis showed that they can also reduce the expression of nuclear factor-κβ (NF-κβ), interleukin-1β (IL-1β), and p53 in AKI. Further, they increased the gene expression of antiapoptotic factor B-cell lymphoma-2 (Bcl-2), whereas they reduced that of proapoptotic factors Bcl-2-associated X (Bax) and caspase-8 (CASP8), CASP9, and CASP3, thereby reducing the risk of cell apoptosis.
Collapse
Affiliation(s)
- Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei 104217, Taiwan;
| | - Miao-San Chien
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 104217, Taiwan;
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 104217, Taiwan;
| |
Collapse
|
17
|
Yong Z, Kuang G, Fengying S, Shoumei X, Duohong Z, Jiacai H, Xuyan T. Comparison of the Angiogenic Ability between SHED and DPSC in a Mice Model with Critical Limb Ischemic. Tissue Eng Regen Med 2022; 19:861-870. [PMID: 35474506 PMCID: PMC9294125 DOI: 10.1007/s13770-022-00452-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Regenerative medicine by using stem cells from dental pulp is promising for treating patients with critical limb ischemic (CLI). Here, we investigated the difference in the angiogenetic ability of stem cells from human exfoliated deciduous teeth (SHED) and human dental pulp stem cells (DPSC). METHODS SHED and DPSC were harvested from dental pulp and analyzed in flow- cytometry for detecting the expression of surface markers. Levels of angiogenetic marker were examined by RT-PCR and Western-blot. Eighteen immunodeficient mice of critical limb ischemic model were divided into three groups: SHED, DPSC and saline, which was administered with SHED, DPSC or saline intramuscularly. Histological examination was performed to detect the regenerative results. RESULTS A highly expression of CD146 was detected in SHED. Moreover, cells with negative expression of both CD146 and CD31 in SHED were more in comparison with those in DPSC. Expression of angiogenesis factors including CXCL12, CXCR4, Hif-1a, CD31, VEGF and bFGF were significant higher in SHED than DPSC by the RT-PCR and Western-Blot results. SHED induced more CD31 expression and less fibrous tissue formation in the critical limb ischemic model as compare with DPSC and saline. CONCLUSION Both SHED and DPSC possessed the ability of repairing CLI. With expressing more proangiogenesis factors, SHED may have the advantage of repairing CLI.
Collapse
Affiliation(s)
- Zhou Yong
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.,Department of Dental Implantology, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China.,Periodontal Department College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Gu Kuang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.,Periodontal Department College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Sun Fengying
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.,Periodontal Department College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Xuan Shoumei
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.,Periodontal Department College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Zou Duohong
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China.,Periodontal Department College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - He Jiacai
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.,Department of Dental Implantology, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China.,Periodontal Department College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, China
| | - Tang Xuyan
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
18
|
Luo DS, Li YQ, Deng ZQ, Liu GH. Progress and prospect of stem cell therapy for diabetic erectile dysfunction. World J Diabetes 2021; 12:2000-2010. [PMID: 35047115 PMCID: PMC8696650 DOI: 10.4239/wjd.v12.i12.2000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/18/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic erectile dysfunction (DED) is a common complication of diabetes mellitus, significantly impairing the quality of life of patients. The conventional clinical treatment still has limitations. Stem cells (SCs), as a type of cells with multidirectional or directional differentiation capability and sustainable self-renewal potential, are widely used in regenerative medicine and tissue engineering. With the continuous update of regenerative medicine theory and the success of animal experiments, SCs as a treatment for male erectile dysfunction, especially DED, have attracted widespread attention because of curable possibility. This review focus on the current progress in the clinical application of SC treatment for DED. Moreover, we summarize the development prospects of SCs in the field of DMED therapy.
Collapse
Affiliation(s)
- Dao-Sheng Luo
- Department of Urology, Dongguan People’s Hospital, Dongguan 523000, Guangdong Province, China
| | - Yan-Qing Li
- Reproductive Centre, Sun Yat-Sen University, The Sixth Affiliated Hospital, Guangzhou 510000, Guangdong Province, China
| | - Zhi-Quan Deng
- Department of Urology, Dongguan People’s Hospital, Dongguan 523000, Guangdong Province, China
| | - Gui-Hua Liu
- Reproductive Centre, Sun Yat-Sen University, The Sixth Affiliated Hospital, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
19
|
Jeyaraman N, Prajwal GS, Jeyaraman M, Muthu S, Khanna M. Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. OSTEOLOGY 2021; 1:149-174. [DOI: 10.3390/osteology1030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.
Collapse
|
20
|
Bai X, Xiao K, Yang Z, Zhang Z, Li J, Yan Z, Cao K, Zhang W, Zhang X. Stem cells from human exfoliated deciduous teeth relieve pain via downregulation of c-Jun in a rat model of trigeminal neuralgia. J Oral Rehabil 2021; 49:219-227. [PMID: 34386989 DOI: 10.1111/joor.13243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Stem cells from human exfoliated deciduous teeth (SHED) have excellent immunomodulatory and neuroprotective abilities. It is possible that systemic SHED transplantation could ameliorate trigeminal neuralgia. The phosphorylation of c-Jun contributes to the development of hyperalgesia and allodynia. OBJECTIVE The present study aimed to evaluate whether systemic SHED transplantation could lead to analgesic effects by regulating peripheral c-Jun in the trigeminal ganglia (TG) in a rat model of trigeminal neuralgia. METHODS Chronic constriction injury of the infraorbital nerve (CCI-ION) was performed to establish a rat pain model. SHED were obtained from discarded exfoliated deciduous teeth from children and transplanted by a single infusion through the tail vein. SHED were labelled with the PKH26 red fluorescent cell linker mini kit for tract distribution. The mechanical threshold was determined using von Frey filaments. The mRNA levels of c-Jun in the ipsilateral TG were quantified. The phosphorylation of c-Jun in the ipsilateral TG was assessed by immunohistochemistry and Western blotting. RESULTS PKH26-labelled SHED were distributed to both sides of TG, lung, liver and spleen. Systemic SHED transplantation significantly elevated the mechanical thresholds in CCI-ION rats and blocked the upregulation of c-Jun mRNA levels in the TG caused by nerve ligation. The activation of c-Jun in the TG was blocked by SHED transplantation. CONCLUSIONS These findings demonstrate that systemic SHED administration reverts trigeminal neuralgia via downregulation of c-Jun in the TG.
Collapse
Affiliation(s)
- Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ke Xiao
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.,Painless Dental Treatment Center, Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhijie Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ziqi Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jing Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ziyi Yan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Keda Cao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Weiqian Zhang
- Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xia Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.,Painless Dental Treatment Center, Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Huang TY, Shahrousvand M, Hsu YT, Su WT. Polycaprolactone/Polyethylene Glycol Blended with Dipsacus asper Wall Extract Nanofibers Promote Osteogenic Differentiation of Periodontal Ligament Stem Cells. Polymers (Basel) 2021; 13:polym13142245. [PMID: 34301001 PMCID: PMC8309225 DOI: 10.3390/polym13142245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Dipsacus asper wall (DA) is an ancient Chinese medicinal material that has long been used to maintain the health of human bones. The present study aimed to evaluate the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) of Dipsacus asper wall extracts (DAE). Microwave-assisted alcohol extraction of 100 mesh DA powder under optimal conditions can obtain 58.66% (w/w) yield of the crude extract. PDLSCs have excellent differentiation potential. PDLSCs treated with DA extract (DAE) underwent osteogenesis, exhibiting a higher expression of the Col-1, ALP, Runx2, and OCN genes, and had a 1.4-fold increase in mineralization, demonstrating the potential of DAE to promote osteogenic differentiation. After the addition of PI3K inhibitor LY294002, the expression of osteogenic genes was significantly inhibited, confirming that PI3K is an important pathway for DAE to induce osteogenesis. Mix DAE with polycaprolactone/polyethylene glycol (PCL/PEO) to obtain nanofibers with a diameter of 488 nm under optimal electrospinning conditions. The physical property analysis of nanofibers with and without DAE includes FTIR, mechanical strength, biodegradability, swelling ratio and porosity, and cell compatibility. When cells induced by nanofibers with or without DAE, the mineralization of PDLSCs cultured on PCL/PEO/DAE was 2.6-fold higher than that of PCL/PEO. The results of the study confirm that both DAE and PCL/PEO nanofibers have the effect of promoting osteogenic differentiation. In order to obtain the best induction effect, the optimal amount of DAE can be discussed in future research.
Collapse
Affiliation(s)
- Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei 104217, Taiwan;
| | - Mohsen Shahrousvand
- Department of Caspian Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran;
| | - Yu-Teng Hsu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan;
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan;
- Correspondence: ; Tel.: +886-2-27712171 (ext. 2554)
| |
Collapse
|
22
|
da Silva AAF, Rinco UGR, Jacob RGM, Sakai VT, Mariano RC. The effectiveness of hydroxyapatite-beta tricalcium phosphate incorporated into stem cells from human exfoliated deciduous teeth for reconstruction of rat calvarial bone defects. Clin Oral Investig 2021; 26:595-608. [PMID: 34169375 DOI: 10.1007/s00784-021-04038-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the effects of stem cells from the pulp of human exfoliated deciduous teeth (SHED) on biphasic calcium phosphate granules (BCP) to repair rat calvarial defects as compared to autogenous bone grafting. MATERIALS AND METHODS A defect with a 6-mm diameter was produced on the calvaria of 50 rats. BCP granules were incorporated into SHED cultures grown for 7 days in conventional (CM) or osteogenic (OM) culture media. The animals were allocated into 5 groups of 10, namely: clot, autogenous bone, BCP, BCP+SHED in CM (BCP-CM), and BCP+SHED in OM (BCP-OM). The presence of newly formed bone and residual biomaterial particles was assessed by histometric analysis after 4 and 8 weeks. RESULTS The autogenous group showed the largest newly formed bone area at week 8 and in the entire experimental period, with a significant difference in relation to the other groups (P < 0.05). At week 8, BCP-CM and BCP-OM groups showed homogeneous new bone formation (P = 0.13). When considering the entire experimental period, the BCP group had the highest percentage of residual particle area, with no significant difference from the BCP-CM group (P = 0.06) and with a significant difference from the BCP-OM group (P = 0.01). BCP-CM and BCP-OM groups were homogeneous throughout the experimental period (P = 0.59). CONCLUSIONS BCP incorporated into SHED cultures showed promising outcomes, albeit less pronounced than autogenous grafting, for the repair of rat calvarial defects. CLINICAL RELEVANCE BCP incorporated into SHED cultures showed to be an alternative in view of the disadvantages to obtain autogenous bone graft.
Collapse
Affiliation(s)
- Alexandre Augusto Ferreira da Silva
- Faculty of Dentistry, Department of Clinic and Surgery, Federal University of Alfenas-MG, Rua Gabriel Monteiro da Silva, 700 - 37130-001, Cenro, Alfenas, MG, Brazil.
| | - Ugo Guilherme Roque Rinco
- Faculty of Dentistry, Department of Clinic and Surgery, Federal University of Alfenas-MG, Rua Gabriel Monteiro da Silva, 700 - 37130-001, Cenro, Alfenas, MG, Brazil
| | - Ricardo Garcia Mureb Jacob
- Faculty of Dentistry, José do Rosário Vellano University, Rodovia MG-179 Km 0, s/n -37130-000, Bairro Trevo, Alfenas, MG, Brazil
| | - Vivien Thiemy Sakai
- Faculty of Dentistry, Department of Clinic and Surgery, Federal University of Alfenas-MG, Rua Gabriel Monteiro da Silva, 700 - 37130-001, Cenro, Alfenas, MG, Brazil
| | - Ronaldo Célio Mariano
- Faculty of Dentistry, Department of Clinic and Surgery, Federal University of Alfenas-MG, Rua Gabriel Monteiro da Silva, 700 - 37130-001, Cenro, Alfenas, MG, Brazil
| |
Collapse
|