1
|
Zhang L, Zhuo Y, Yu H. Spatio-temporal metabolokinetics and therapeutic effect of CD106 + mesenchymal stem/stromal cells upon mice with acute lung injury. Cell Biol Int 2023; 47:720-730. [PMID: 36490221 DOI: 10.1002/cbin.11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Longitudinal investigations have revealed the unique attributes of mesenchymal stem/stromal cells (MSCs) in regenerative medicine. However, the spatio-temporal metabolokinetics and efficacy of MSCs with vascular cell adhesion molecule 1 (also known as CD106) expression in phenotypes and therapeutic effect upon acute lung injury (ALI) mice are largely obscure. For the purpose, we took advantage of the "3IL"-based strategy and Lentivirus-mediated green fluorescent protein (GFP) delivery for the generation of the CD106+ subset (denote as CD106+ -MSCs) from umbilical cord-derived MSCs (denote as NT-MSCs). Therewith, the cellular phenotypes of CD106+ -MSCs including immunophenotypes, multilineage differentiation potential towards adipocytes and osteoblasts were confirmed by flow cytometry and qRT-PCR assay. Meanwhile, multifaceted characteristics of transcriptomic features were analyzed by utilizing the RNA-SEQ and bioinformatics. Furthermore, to compare the therapeutic effects and spatio-temporal dynamics of CD106+ -MSCs, we conducted in vivo fluorescent tracer, hematoxylin and eosin staining, blood smear, blood routine and cytokine detection in mice. Herein, we generated CD106+ -MSCs with GFP expression and confirmed the conservative property of phenotypes. Compared to NT-MSCs with minimal CD106 expression, CD106+ -MSCs manifested consistent distribution and metabolokinetics in vivo but with preferable ameliorative effect upon the pathological appearance and proinflammatory cytokine secretion in ALI mice. Collectively, our data indicated the preferable therapeutic effects of CD106+ -MSCs upon ALI mice, which would benefit the further exploration of the CD106+ subset for pulmonary diseases and investigational new drug application purposes.
Collapse
Affiliation(s)
- Leisheng Zhang
- School of Medicine, Nankai University, Tianjin, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China.,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, China.,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yi Zhuo
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin, China.,National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, Tianjin, China
| |
Collapse
|
2
|
Sun Y, Wang TE, Hu Q, Zhang W, Zeng Y, Lai X, Zhang L, Shi M. Systematic comparation of the biological and transcriptomic landscapes of human amniotic mesenchymal stem cells under serum-containing and serum-free conditions. Stem Cell Res Ther 2022; 13:490. [PMID: 36195964 PMCID: PMC9530421 DOI: 10.1186/s13287-022-03179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Human amniotic mesenchymal stem cells (hAMSCs) are splendid cell sources for clinical application in the administration of numerous refractory and relapse diseases. Despite the preferable prospect of serum-free (SF) condition for cell product standardization and pathogenic contamination remission, yet the systematic and detailed impact upon hAMSCs at both cellular and transcriptomic levels is largely obscure. Methods For the purpose, we preconditioned hAMSCs under serum-containing (SC) and SF medium for 48 h and compared the biological signatures and biofunctions from the view of cell morphology, immunophenotypes, multi-lineage differentiation in vitro, cell vitality, cytokine expression, and immunosuppressive effect upon the subpopulations of T lymphocytes, together with the PI3K-AKT-mTOR signaling reactivation upon cell vitality. Meanwhile, we took advantage of RNA-SEQ and bioinformatic analyses to verify the gene expression profiling and genetic variation spectrum in the indicated hAMSCs. Results Compared with those maintained in SC medium, hAMSCs pretreated in SF conditions manifested conservation in cell morphology, immunophenotypes, adipogenic differentiation, and immunosuppressive effect upon the proliferation and activation of most of the T cell subpopulations, but with evaluated cytokine expression (e.g., TGF-β1, IDO1, NOS2) and declined osteogenic differentiation and cell proliferation as well as proapoptotic and apoptotic cells. The declined proliferation in the SF group was efficiently rescued by PI3K-AKT-mTOR signaling reactivation. Notably, hAMSCs cultured in SF and SC conditions revealed similarities in gene expression profiling and variations in genetic mutation at the transcriptome level. Instead, based on the differentially expressed genes and variable shear event analyses, we found those genes were mainly involved in DNA synthesis-, protein metabolism-, and cell vitality-associated biological processes and signaling pathways (e.g., P53, KRAS, PI3K-Akt-mTOR). Conclusions Collectively, our data revealed the multifaceted cellular and molecular properties of hAMSCs under SC and SF conditions, which suggested the feasibility of serum-free culture for the preferable preparation of standardized cell products for hAMSC drug development and clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03179-2.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.,Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, 650118, China
| | - Ti-Er Wang
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China
| | - Qianwen Hu
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China
| | - Wenxia Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yun Zeng
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, 650118, China.
| | - Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, 230031, Anhui, China. .,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
| | - Mingxia Shi
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032, China.
| |
Collapse
|
3
|
Wang L, Tao Q, Wang Z, Shi J, Yan W, Zhang L, Sun Y, Yao X. Tea Ingredients Have Anti-coronavirus Disease 2019 (COVID-19) Targets Based on Bioinformatics Analyses and Pharmacological Effects on LPS-Stimulated Macrophages. Front Nutr 2022; 9:875765. [PMID: 35669076 PMCID: PMC9163550 DOI: 10.3389/fnut.2022.875765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused millions of deaths and lacks treatment. Although several studies have focused on the major component of green tea, epigallocatechin 3-gallate (EGCG), which is efficient in preventing COVID-19, systemic analyses of the anti-COVID-19 potential of green tea remain insufficient. Here, we co-analyzed the target genes of tea ingredients and COVID-19 signature genes and found that epigallocatechin 3-acetalbehyde was capable of reversing the major molecular processes of COVID-19 (MAPK and NF-κB activation). These findings were further supported by Western blotting (WB), immunofluorescence, and quantitative polymerase chain reaction (qPCR) in LPS-stimulated macrophages. Moreover, using molecular docking analysis, we identified three tea ingredients ((-)-catechin gallate, D-(+)-cellobiose, and EGCG) that may interact with the vital SARS-CoV-2 protein, 5R84, compared with the qualified 5R84 ligand WGS. Thus, our results indicated that tea ingredients have the potential to treat COVID-19 by suppressing the COVID-19 signature genes and interacting with the vital SARS-CoV-2 protein.
Collapse
Affiliation(s)
- Lei Wang
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Department of Basic Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhiguo Wang
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jianfeng Shi
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Wei Yan
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Li Zhang
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Xiaoming Yao
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Chen H, Zhang L, Zhang W, Liu L, Dai Z, Chen M, Zhang D. Blood Purification in Severe and Critical COVID-19 Patients: A Case Series of 5 Patients. Front Public Health 2021; 9:741125. [PMID: 34869156 PMCID: PMC8635486 DOI: 10.3389/fpubh.2021.741125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: The ongoing coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide pandemic. Currently, supportive care measures remain the standard of care for severe and critical COVID-19 patients, such as ventilation oxygenation, fluid management and blood purification. In this study, we aimed to evaluate the effects of early blood purification therapy upon severe and/or critical COVID-19 patients. Patients and Methods: From January 31, 2020 to March 1, 2020, a total 5 patients with COVID-19 (3 critical type cases and 2 severe type cases) received early blood purification treatment in the intensive care unit (ICU) of Affiliated Hospital of Zunyi Medical University. Clinical indexes, including oxygen concentration, blood gas analysis, oxygenation index, and laboratory test as well as disease scores were recorded and analyzed before and after the treatment with blood purification. Results: Among the 5 patients, 4 were males ranging from 35 to 80 year old (Mean age = 63 ± 17.87). All cases with characteristics of OI <300 mm Hg, decline in lymphocyte (LYMPH)%, boost in lactate dehydrogenase (LDH), troponin T (TNT), B-type brain natriuretic peptide (BNP), interleukin-6 (IL-6) and interferon-alpha (IFN-a), three with high flow nasal cannula (HFNC), two with non-invasive ventilation (NIV) and acute kidney injury (AKI), and one with shock and IV. Blood purification therapy significantly decreased the serum levels of inflammatory cytokine, ameliorated the concomitant symptoms and complications. Finally, one case was discharged from the hospital, 4 cases were transferred to the general ward, and all the 5 cases survived. Conclusion: Continuous blood purification therapy held promising prospects for alleviating the deteriorative progression of severe and critical types of COVID-19 in the early stage, together with ameliorating the accumulation of inflammatory cytokine and the concomitant symptoms and complications by efficacious immunoadsorption. Trial Registration:www.chictr.org.cn, Identifier (ChiCTR2000031930).
Collapse
Affiliation(s)
- Hongjun Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Leisheng Zhang
- Stem Cell Bank, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, China.,Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, China.,Department of Neurosurgery, The First Affiliated Hospital, Shandong First Medical University, Jinan, China.,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, China
| | - Wei Zhang
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lili Liu
- Department of Cerebrovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhihua Dai
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, China
| | - Miao Chen
- Department of Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|