1
|
Cooper SM, White AJP, Eykyn TR, Ma MT, Miller PW, Long NJ. N-Centered Tripodal Phosphine Re(V) and Tc(V) Oxo Complexes: Revisiting a [3 + 2] Mixed-Ligand Approach. Inorg Chem 2022; 61:8000-8014. [PMID: 35544683 PMCID: PMC9131457 DOI: 10.1021/acs.inorgchem.2c00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
N-Triphos derivatives
(NP3R, R = alkyl, aryl)
and asymmetric variants (NP2RXR′, R′ = alkyl, aryl, X = OH, NR2, NRR′) are
an underexplored class of tuneable, tripodal ligands in relation to
the coordination chemistry of Re and Tc for biomedical applications.
Mixed-ligand approaches are a flexible synthetic route to obtain Tc
complexes of differing core structures and physicochemical properties.
Reaction of the NP3Ph ligand with the Re(V)
oxo precursor [ReOCl3(PPh3)2] generated
the bidentate complex [ReOCl3(κ2-NP2PhOHAr)], which possesses an unusual
AA’BB’XX’ spin system with a characteristic second-order
NMR lineshape that is sensitive to the bi- or tridentate nature of
the coordinating diphosphine unit. The use of the asymmetric NP2PhOHAr ligand resulted in the formation
of both bidentate and tridentate products depending on the presence
of base. The tridentate Re(V) complex [ReOCl2(κ3-NP2PhOAr)] has provided
the basis of a new reactive “metal-fragment” for further
functionalization in [3 + 2] mixed-ligand complexes. The synthesis
of [3 + 2] complexes with catechol-based π-donors could also
be achieved under one-pot, single-step conditions from Re(V) oxo precursors.
Analogous complexes can also be synthesized from suitable 99Tc(V) precursors, and these complexes have been shown to exhibit
highly similar structural properties through spectroscopic and chromatographic
analysis. However, a tendency for the {MVO}3+ core to undergo hydrolysis to the {MVO2}+ core has been observed both in the case of M = Re and markedly
for M = 99Tc complexes. It is likely that controlling this
pathway will be critical to the generation of further stable Tc(V)
derivatives. An N-centered tripodal heterofunctionalized
phosphine ligand
was used to generate a reactive “metal-fragment” based
on the {MVO}3+ (M = Re, 99Tc) core
for the formation of mixed-ligand [3 + 2] complexes. Characteristic
lineshapes arising from an AA’BB’XX’ spin system
are diagnostic of bidentate vs tridentate coordination modes of the
ligand.
Collapse
Affiliation(s)
- Saul M Cooper
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK.,School of Biomedical Engineering & Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK
| | - Thomas R Eykyn
- School of Biomedical Engineering & Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Michelle T Ma
- School of Biomedical Engineering & Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK
| |
Collapse
|
2
|
Melis DR, Burgoyne AR, Ooms M, Gasser G. Bifunctional chelators for radiorhenium: past, present and future outlook. RSC Med Chem 2022; 13:217-245. [PMID: 35434629 PMCID: PMC8942221 DOI: 10.1039/d1md00364j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 01/16/2023] Open
Abstract
Targeted radionuclide therapy (TRNT) is an ever-expanding field of nuclear medicine that provides a personalised approach to cancer treatment while limiting toxicity to normal tissues. It involves the radiolabelling of a biological targeting vector with an appropriate therapeutic radionuclide, often facilitated by the use of a bifunctional chelator (BFC) to stably link the two entities. The radioisotopes of rhenium, 186Re (t 1/2 = 90 h, 1.07 MeV β-, 137 keV γ (9%)) and 188Re (t 1/2 = 16.9 h, 2.12 MeV β-, 155 keV γ (15%)), are particularly attractive for radiotherapy because of their convenient and high-abundance β--particle emissions as well as their imageable γ-emissions and chemical similarity to technetium. As a transition metal element with multiple oxidation states and coordination numbers accessible for complexation, there is great opportunity available when it comes to developing novel BFCs for rhenium. The purpose of this review is to provide a recap on some of the past successes and failings, as well as show some more current efforts in the design of BFCs for 186/188Re. Future use of these radionuclides for radiotherapy depends on their cost-effective availability and this will also be discussed. Finally, bioconjugation strategies for radiolabelling biomolecules with 186/188Re will be touched upon.
Collapse
Affiliation(s)
- Diana R Melis
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| | - Andrew R Burgoyne
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Maarten Ooms
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Gilles Gasser
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| |
Collapse
|
3
|
White JM, Escorcia FE, Viola NT. Perspectives on metals-based radioimmunotherapy (RIT): moving forward. Theranostics 2021; 11:6293-6314. [PMID: 33995659 PMCID: PMC8120204 DOI: 10.7150/thno.57177] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Radioimmunotherapy (RIT) is FDA-approved for the clinical management of liquid malignancies, however, its use for solid malignancies remains a challenge. The putative benefit of RIT lies in selective targeting of antigens expressed on the tumor surface using monoclonal antibodies, to systemically deliver cytotoxic radionuclides. The past several decades yielded dramatic improvements in the quality, quantity, recent commercial availability of alpha-, beta- and Auger Electron-emitting therapeutic radiometals. Investigators have created new or improved existing bifunctional chelators. These bifunctional chelators bind radiometals and can be coupled to antigen-specific antibodies. In this review, we discuss approaches to develop radiometal-based RITs, including the selection of radiometals, chelators and antibody platforms (i.e. full-length, F(ab')2, Fab, minibodies, diabodies, scFv-Fc and nanobodies). We cite examples of the performance of RIT in the clinic, describe challenges to its implementation, and offer insights to address gaps toward translation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Chelating Agents/administration & dosage
- Chelating Agents/metabolism
- Click Chemistry
- Clinical Trials as Topic
- Dose Fractionation, Radiation
- Drug Delivery Systems
- Forecasting
- Humans
- Immunoglobulin Fab Fragments/administration & dosage
- Immunoglobulin Fab Fragments/therapeutic use
- Lymphoma, Non-Hodgkin/radiotherapy
- Mice
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasms, Experimental/diagnostic imaging
- Neoplasms, Experimental/radiotherapy
- Organ Specificity
- Precision Medicine
- Radiation Tolerance
- Radioimmunotherapy/methods
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/therapeutic use
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Single-Chain Antibodies/administration & dosage
- Single-Chain Antibodies/therapeutic use
- Single-Domain Antibodies/administration & dosage
- Single-Domain Antibodies/therapeutic use
- Yttrium Radioisotopes/administration & dosage
- Yttrium Radioisotopes/therapeutic use
Collapse
Affiliation(s)
- Jordan M. White
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20814
| | - Nerissa T. Viola
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
4
|
Borges AP, Possato B, Hagenbach A, Machado AE, Deflon VM, Abram U, Maia PI. Re(V) complexes containing the phenylimido (NPh2−) core and SNS-thiosemicarbazide ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Akbari-Karadeh S, Aghamiri SMR, Tajer-Mohammad-Ghazvini P, Ghorbanzadeh-Mashkani S. Radiolabeling of Biogenic Magnetic Nanoparticles with Rhenium-188 as a Novel Agent for Targeted Radiotherapy. Appl Biochem Biotechnol 2019; 190:540-550. [DOI: 10.1007/s12010-019-03079-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022]
|
6
|
Okoye NC, Baumeister JE, Najafi Khosroshahi F, Hennkens HM, Jurisson SS. Chelators and metal complex stability for radiopharmaceutical applications. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Diagnostic and therapeutic nuclear medicine relies heavily on radiometal nuclides. The most widely used and well-known radionuclide is technetium-99m (99mTc), which has dominated diagnostic nuclear medicine since the advent of the 99Mo/99mTc generator in the 1960s. Since that time, many more radiometals have been developed and incorporated into potential radiopharmaceuticals. One critical aspect of radiometal-containing radiopharmaceuticals is their stability under in vivo conditions. The chelator that is coordinated to the radiometal is a key factor in determining radiometal complex stability. The chelators that have shown the most promise and are under investigation in the development of diagnostic and therapeutic radiopharmaceuticals over the last 5 years are discussed in this review.
Collapse
Affiliation(s)
| | | | | | - Heather M. Hennkens
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
- University of Missouri Research Reactor Center , Columbia, MO 65211 , USA
| | - Silvia S. Jurisson
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| |
Collapse
|
7
|
Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Chérel M, Noiret N, Garin E, Knapp FFR. Rhenium-188 Labeled Radiopharmaceuticals: Current Clinical Applications in Oncology and Promising Perspectives. Front Med (Lausanne) 2019; 6:132. [PMID: 31259173 PMCID: PMC6587137 DOI: 10.3389/fmed.2019.00132] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Rhenium-188 (188Re) is a high energy beta-emitting radioisotope with a short 16.9 h physical half-life, which has been shown to be a very attractive candidate for use in therapeutic nuclear medicine. The high beta emission has an average energy of 784 keV and a maximum energy of 2.12 MeV, sufficient to penetrate and destroy targeted abnormal tissues. In addition, the low-abundant gamma emission of 155 keV (15%) is efficient for imaging and for dosimetric calculations. These key characteristics identify 188Re as an important therapeutic radioisotope for routine clinical use. Moreover, the highly reproducible on-demand availability of 188Re from the 188W/188Re generator system is an important feature and permits installation in hospital-based or central radiopharmacies for cost-effective availability of no-carrier-added (NCA) 188Re. Rhenium-188 and technetium-99 m exhibit similar chemical properties and represent a “theranostic pair.” Thus, preparation and targeting of 188Re agents for therapy is similar to imaging agents prepared with 99mTc, the most commonly used diagnostic radionuclide. Over the last three decades, radiopharmaceuticals based on 188Re-labeled small molecules, including peptides, antibodies, Lipiodol and particulates have been reported. The successful application of these 188Re-labeled therapeutic radiopharmaceuticals has been reported in multiple early phase clinical trials for the management of various primary tumors, bone metastasis, rheumatoid arthritis, and endocoronary interventions. This article reviews the use of 188Re-radiopharmaceuticals which have been investigated in patients for cancer treatment, demonstrating that 188Re represents a cost effective alternative for routine clinical use in comparison to more expensive and/or less readily available therapeutic radioisotopes.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis Rennes, France.,Univ Rennes Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR_A 1341, UMR_S 1241, Rennes, France
| | - Franck Lacœuille
- Angers University Hospital Angers, France.,Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France
| | - Christelle Bouvry
- Comprehensive Cancer Center Eugène Marquis Rennes, France.,Univ Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, France
| | - François Hindré
- Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France.,Univ Angers PRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Emmanuel Garcion
- Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France.,Univ Angers PRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Michel Chérel
- Univ Angers Univ Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes-Angers)-UMR 1232, ERL 6001, Nantes, France.,ICO (Institut de Cancérologie de l'Ouest) Comprehensive Cancer Center René Gauducheau, Saint-Herblain, France
| | - Nicolas Noiret
- Univ Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, France.,ENSCR (Ecole Nationale Supérieure de Chimie de Rennes) Rennes, France
| | - Etienne Garin
- Comprehensive Cancer Center Eugène Marquis Rennes, France.,Univ Rennes Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR_A 1341, UMR_S 1241, Rennes, France
| | - F F Russ Knapp
- Emeritus Medical Radioisotopes Program, ORNL (Oak Ridge National Laboratory), Oak Ridge, TN, United States
| |
Collapse
|
8
|
Marzook FA, Ramadan HE, Talaat HM. Preparation of 188Re-Labetalol as a β1-Adrenoceptor for Use in Nuclear Medicine. RADIOCHEMISTRY 2019. [DOI: 10.1134/s1066362219020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Clinical aspects of radiolabeled aptamers in diagnostic nuclear medicine: A new class of targeted radiopharmaceuticals. Bioorg Med Chem 2018; 27:2282-2291. [PMID: 30502114 DOI: 10.1016/j.bmc.2018.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022]
Abstract
Targeted radiopharmaceuticals offer the possibility of improved imaging with reduced side effects. Up to now, a variety of biological receptors such as aptamers have been successfully radiolabeled and applied to diagnostic imaging of cancers. The concept of using radio-labeled aptamers for binding to their targets has stimulated an immense body of research in diagnostic nuclear medicine. These biological recognition elements are single-stranded oligonucleotides that interact with their target molecules with high affinity and specificity in unique three-dimensional structures. Because of their high affinity and specificity, the receptor-binding aptamers labeled with gamma emitters such as 99mTc, 64Cu, 111In, 18F and 67Ga can facilitate the visualization of receptor-expressing tissues noninvasively. Compared to the antibody-based radiopharmaceuticals, the radiolabeled aptamers provide a number of advantages for clinical diagnostics including high stability, low cost, and ease of production and modification, low immunogenicity and, especially, superior tissue penetration because of their smaller size. In this review, we present recent progresses and challenges in aptamer-based diagnostic radiopharmaceuticals and highlight some representative applications of aptamers in nuclear medicine.
Collapse
|
10
|
Design and Synthesis of 99mTcN-Labeled Dextran-Mannose Derivatives for Sentinel Lymph Node Detection. Pharmaceuticals (Basel) 2018; 11:ph11030070. [PMID: 30012952 PMCID: PMC6160989 DOI: 10.3390/ph11030070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/02/2022] Open
Abstract
Background: New approaches based on the receptor-targeted molecular interaction have been recently developed with the aim to investigate specific probes for sentinel lymph nodes. In particular, the mannose receptors expressed by lymph node macrophages became an attractive target and different multifunctional mannose derivate ligands for the labeling with 99mTc have been developed. In this study, we report the synthesis of a specific class of dextran-based, macromolecular, multifunctional ligands specially designed for labeling with the highly stable [99mTc≡N]2+ core. Methods: The ligands have been obtained by appending to a macromolecular dextran scaffold pendant arms bearing a chelating moiety for the metallic group and a mannosyl residue for allowing the interaction of the resulting macromolecular 99mTc conjugate with specific receptors on the external membrane of macrophages. Two different chelating systems have been selected, S-methyl dithiocarbazate [H2N‒NH‒C(=S)SCH3=HDTCZ] and a sequence of two cysteine residues, that in combination with a monophosphine coligand, are able to bind the [99mTc≡N]2+ core. Conclusions: High-specific-activity labeling has been obtained by simple mixing and heating of the [99mTc≡N]2+ group with the new mannose-dextran derivatives.
Collapse
|
11
|
Monoclonal Antibodies Radiolabeling with Rhenium-188 for Radioimmunotherapy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5923609. [PMID: 28951872 PMCID: PMC5603324 DOI: 10.1155/2017/5923609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
Rhenium-188, obtained from an alumina-based tungsten-188/rhenium-188 generator, is actually considered a useful candidate for labeling biomolecules such as antibodies, antibody fragments, peptides, and DNAs for radiotherapy. There is a widespread interest in the availability of labeling procedures that allow obtaining 188Re-labeled radiopharmaceuticals for various therapeutic applications, in particular for the rhenium attachment to tumor-specific monoclonal antibodies (Mo)Abs for immunotherapy. Different approaches have been developed in order to obtain 188Re-radioimmunoconjugates in high radiochemical purity starting from the generator eluted [188Re]ReO4−. The aim of this paper is to provide a short overview on 188Re-labeled (Mo)Abs, focusing in particular on the radiolabeling methods, quality control of radioimmunoconjugates, and their in vitro stability for radioimmunotherapy (RIT), with particular reference to the most important contributions published in literature in this topic.
Collapse
|
12
|
Boschi A, Martini P, Uccelli L. 188Re(V) Nitrido Radiopharmaceuticals for Radionuclide Therapy. Pharmaceuticals (Basel) 2017; 10:ph10010012. [PMID: 28106830 PMCID: PMC5374416 DOI: 10.3390/ph10010012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 11/27/2022] Open
Abstract
The favorable nuclear properties of rhenium-188 for therapeutic application are described, together with new methods for the preparation of high yield and stable 188Re radiopharmaceuticals characterized by the presence of the nitride rhenium core in their final chemical structure. 188Re is readily available from an 188W/188Re generator system and a parallelism between the general synthetic procedures applied for the preparation of nitride technetium-99m and rhenium-188 theranostics radiopharmaceuticals is reported. Although some differences between the chemical characteristics of the two metallic nitrido fragments are highlighted, it is apparent that the same general procedures developed for the labelling of biologically active molecules with technetium-99m can be applied to rhenium-188 with minor modification. The availability of these chemical strategies, that allow the obtainment, in very high yield and in physiological condition, of 188Re radiopharmaceuticals, gives a new attractive prospective to employ this radionuclide for therapeutic applications.
Collapse
Affiliation(s)
- Alessandra Boschi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy.
| | - Petra Martini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy.
- Italy and Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Legnaro (PD) 35020, Italy.
| | - Licia Uccelli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy.
| |
Collapse
|
13
|
Gomez JDC, Hagenbach A, Gerling-Driessen UIM, Koksch B, Beindorff N, Brenner W, Abram U. Thiourea derivatives as chelating agents for bioconjugation of rhenium and technetium. Dalton Trans 2017; 46:14602-14611. [DOI: 10.1039/c7dt01834g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A99mTc complex with a tetradentate thiocarbamoylbenzamidine group was used for the conjugation of angiotensin-II. The resulting bioconjugate is stablein vivoandin vitro.
Collapse
Affiliation(s)
- J. D. Castillo Gomez
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- D-14195 Berlin
- Germany
| | - A. Hagenbach
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- D-14195 Berlin
- Germany
| | | | - B. Koksch
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- D-14195 Berlin
- Germany
| | - N. Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC)
- D-13353 Berlin
- Germany
| | - W. Brenner
- Department of Nuclear Medicine
- Charité
- Campus Virchow Klinikum
- D-13353 Berlin
- Germany
| | - U. Abram
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- D-14195 Berlin
- Germany
| |
Collapse
|
14
|
Demoin DW, Dame AN, Minard WD, Gallazzi F, Seickman GL, Rold TL, Bernskoetter N, Fassbender ME, Hoffman TJ, Deakyne CA, Jurisson SS. Monooxorhenium(V) complexes with 222-N 2S 2 MAMA ligands for bifunctional chelator agents: Syntheses and preliminary in vivo evaluation. Nucl Med Biol 2016; 43:802-811. [PMID: 27694058 PMCID: PMC5118109 DOI: 10.1016/j.nucmedbio.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Targeted radiotherapy using the bifunctional chelate approach with 186/188Re(V) is challenging because of the susceptibility of monooxorhenium(V)-based complexes to oxidize in vivo at high dilution. A monoamine-monoamide dithiol (MAMA)-based bifunctional chelating agent was evaluated with both rhenium and technetium to determine its utility for in vivo applications. METHODS A 222-MAMA chelator, 222-MAMA(N-6-Ahx-OEt) bifunctional chelator, and 222-MAMA(N-6-Ahx-BBN(7-14)NH2) were synthesized, complexed with rhenium, radiolabeled with 99mTc and 186Re (carrier added and no carrier added), and evaluated in initial biological distribution studies. RESULTS An IC50 value of 2.0±0.7nM for natReO-222-MAMA(N-6-Ahx-BBN(7-14)NH2) compared to [125I]-Tyr4-BBN(NH2) was determined through competitive cell binding assays with PC-3 tumor cells. In vivo evaluation of the no-carrier added 99mTc-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex showed little gastric uptake and blockable pancreatic uptake in normal mice. CONCLUSIONS The 186ReO-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex showed stability in biological media, which indicates that the 222-N2S2 chelator is appropriate for chelating 186/188Re in radiopharmaceuticals involving peptides. Additionally, the in vitro cell studies showed that the ReO-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex (macroscopically) bound to PC3-tumor cell surface receptors with high affinity. The 99mTc analog was stable in vivo and exhibited pancreatic uptake in mice that was blockable, indicating BB2r targeting.
Collapse
Affiliation(s)
- Dustin Wayne Demoin
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA; Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - Ashley N Dame
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA; Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - William D Minard
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Fabio Gallazzi
- Department of Structural Biology Core, University of Missouri, Columbia, MO 65211, USA
| | - Gary L Seickman
- Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - Tammy L Rold
- Department of Medicine, University of Missouri, Columbia, MO 65211, USA; Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - Nicole Bernskoetter
- Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - Michael E Fassbender
- Chemistry Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
| | - Timothy J Hoffman
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA; Department of Medicine, University of Missouri, Columbia, MO 65211, USA; Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - Carol A Deakyne
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Silvia S Jurisson
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
15
|
Azadbakht B, Afarideh H, Ghannadi-Maragheh M, Bahrami-Samani A, Asgari M. Preparation and evaluation of APTES-PEG coated iron oxide nanoparticles conjugated to rhenium-188 labeled rituximab. Nucl Med Biol 2016; 48:26-30. [PMID: 28189044 DOI: 10.1016/j.nucmedbio.2016.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/13/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Radioimmuno-conjugated (Rhenium-188 labeled Rituximab), 3-aminopropyltriethoxysilane (APTES)-polyethylene glycol (PEG) coated iron oxide nanoparticles were synthesized and then characterized. Therapeutic effect and targeting efficacy of complex were evaluated in CD20 express B cell lines and tumor bearing Balb/c mice respectively. To reach these purposes, superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized using coprecipitation method and then their surface was treated with APTES for increasing retention time of SPIONs in blood circulation and amine group creation. In the next step, N-hydroxysuccinimide (NHS) ester of polyethylene glycol maleimide (NHS-PEG-Mal) was conjugated to the APTES-treated SPIONs. After radiolabeling of Rituximab antibody with Rhenium-188 (T1/2=16.9h) using synthesized N2S4 chelator, it was attached to the APTES-PEG-MAL-SPIONs surface through thiol-maleimide coupling reaction. In vitro evaluation of the 188ReN2S4-Rituximab-SPION-complex thus obtained revealed that at 24 and 48h post-treatment effective cancer cell killing had been achieved. Bio-distribution study in tumor bearing mice showed capability of this complex for targeted cancer therapy. Active and passive tumor targeting strategies were applied through incorporated anti-CD20 (Rituximab) antibody and also enhanced permeability and retention (EPR) effect of solid tumors for nanoparticles respectively.
Collapse
Affiliation(s)
- Bakhtiar Azadbakht
- Department of Energy Engineering and Physics, Amirkabir University of Technology, 15875-4413 Tehran, Iran
| | - Hossein Afarideh
- Department of Energy Engineering and Physics, Amirkabir University of Technology, 15875-4413 Tehran, Iran.
| | | | - Ali Bahrami-Samani
- Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran, 14395-836
| | - Mehdi Asgari
- Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran, 14395-836
| |
Collapse
|
16
|
Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design. Sci Rep 2016; 6:25424. [PMID: 27147293 PMCID: PMC4857130 DOI: 10.1038/srep25424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared – non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.
Collapse
|
17
|
Li Y, Ma L, Gaddam V, Gallazzi F, Hennkens HM, Harmata M, Lewis MR, Deakyne CA, Jurisson SS. Synthesis, Characterization, and In Vitro Evaluation of New (99m)Tc/Re(V)-Cyclized Octreotide Analogues: An Experimental and Computational Approach. Inorg Chem 2016; 55:1124-33. [PMID: 26789775 DOI: 10.1021/acs.inorgchem.5b02306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Radiolabeled proteolytic degradation-resistant somatostatin analogues have been of long-standing interest as cancer imaging and radiotherapy agents for targeting somatostatin receptor-positive tumors. Our interest in developing (186)Re- and (188)Re-based therapeutic radiopharmaceuticals led to investigation of a new Re(V)-cyclized octreotide analogue, Re(V)-cyclized, thiolated-DPhe(1)-Cys(2)-Tyr(3)-DTrp(4)-Lys(5)-Thr(6)-Cys(7)-Thr(OH)(8) (Re-SDPhe-TATE) using both experimental and quantum chemical methods. The metal is directly coordinated to SDPhe-TATE through cyclization of the peptide around the [ReO](3+) core. Upon complexation, four isomers were observed; the isolated/semi-isolated isomers exhibited different somatostatin receptor (sstr) binding affinities, 0.13 to 1.5 μM, in rat pancreatic tumor cells. Two-dimensional NMR experiments and electronic structure calculations were employed to elucidate the structural differences among the different isomers. According to NMR studies, the metal is coordinated to three thiolates and the backbone amide of Cys(2) in isomers 1 and 4, whereas the metal is coordinated to three thiolates and the backbone amide of Tyr(3) in isomer 2. Quantum chemical methods clarified the stereochemistry of Re-SDPhe-TATE and the possible peptide arrangements around the [ReO](3+) core. The re-cyclization reaction was translated to the (99m)Tc radiotracer level with four isomers observed on complexation with comparable HPLC retention times as the Re-SDPhe-TATE isomers. About 85% total (99m)Tc labeling yield was achieved by ligand exchange from (99m)Tc-glucoheptonate at 60 °C for an hour. About 100% and 51% of (99m)Tc(V)-cyclized SDPhe-TATE remained intact in phosphate buffered saline and 1 mM cysteine solution under physiological conditions at 6 h, respectively.
Collapse
Affiliation(s)
| | - Lixin Ma
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201, United States
| | | | | | - Heather M Hennkens
- University of Missouri Research Reactor Center , Columbia, Missouri 65211, United States
| | | | - Michael R Lewis
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201, United States
| | | | | |
Collapse
|
18
|
El-Kawy OA, Talaat HM. Preparation, characterization and evaluation of (186) Re-idarubicin: a novel agent for diagnosis and treatment of hepatocellular carcinoma. J Labelled Comp Radiopharm 2016; 59:72-7. [PMID: 26725469 DOI: 10.1002/jlcr.3368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma is a widely prevalent cancer, and hence, the development of radiopharmaceuticals for its management is an important issue. In the current investigation, the complexation of idarubicin with (186) Re was studied. Optimum labelling conditions were found to be 4 mg idarubicin, 1.5 mg stannous chloride dihydrate and ~70 MBq Re-186 at pH 7. The complex showed ~97.6% RCY value at 20 min and remained stable up to 24 h in the presence of 2.5 mg ascorbic acid. Molecular docking was performed to evaluate the complex binding to its target DNA-human topoisomerase II complex. Result of the in vivo evaluation showed that the complex tends to preferentially localize in cancerous tissues. The in vitro cell growth inhibition assay showed that the effect of the (186) Re-idarubicin was stronger than the effect of cold idarubicin, which strongly suggested that its cytotoxicity was mainly because of radiotoxicity rather than chemotherapeutic activity.
Collapse
|
19
|
Aslan TN, Aşık E, Volkan M. Preparation and labeling of surface-modified magnetoferritin protein cages with a rhenium(i) carbonyl complex for magnetically targeted radiotherapy. RSC Adv 2016. [DOI: 10.1039/c5ra19696e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Labeling of magnetoferritin samples with rhenium in the form of low oxidation state rhenium(i)–tricarbonyl complex, [Re(CO)3(H2O)3]+.
Collapse
Affiliation(s)
- Tuğba Nur Aslan
- Department of Chemistry
- Middle East Technical University
- Ankara 06800
- Turkey
| | - Elif Aşık
- Department of Biotechnology
- Middle East Technical University
- Ankara 06800
- Turkey
| | - Mürvet Volkan
- Department of Chemistry
- Middle East Technical University
- Ankara 06800
- Turkey
| |
Collapse
|
20
|
Hayes TR, Powell AS, Barnes CL, Benny PD. Synthesis and stability of 2+1 complexes of N,N-diethylbenzoylthiourea with [MI(CO)3]+ (M = Re, 99mTc). J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1071801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Thomas R. Hayes
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - Ashton S. Powell
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | | | - Paul D. Benny
- Department of Chemistry, Washington State University, Pullman, WA, USA
| |
Collapse
|
21
|
Hayes TR, Lyon PA, Barnes CL, Trabue S, Benny PD. Influence of functionalized pyridine ligands on the radio/chemical behavior of [M(I)(CO)3](+) (M = Re and (99m)Tc) 2 + 1 complexes. Inorg Chem 2015; 54:1528-34. [PMID: 25590985 DOI: 10.1021/ic502520x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
While a number of chelate strategies have been developed for the organometallic precursor fac-[M(I)(OH2)3(CO)3](+) (M = Re, (99m)Tc), a unique challenge has been to improve the overall function and performance of these complexes for in vivo and in vitro applications. Since its discovery, fac-[M(I)(OH2)3(CO)3](+) has served as an essential scaffold for the development of new targeted (99m)Tc based radiopharmaceuticals due to its labile aquo ligands. However, the lipophilic nature of the fac-[M(I)(CO)3](+) core can influence the in vivo pharmacokinetics and biodistribution of the complexes. In an effort to understand and improve this behavior, monosubstituted pyridine ligands were used to assess the impact of donor nitrogen basicity on binding strength and stability of fac-[M(I)(CO)3](+) in a 2 + 1 labeling strategy. A series of Re and (99m)Tc complexes were synthesized with picolinic acid as a bidentate ligand and 4-substituted pyridine ligands. These complexes were designed to probe the effect of pKa from the monodentate pyridine ligand both at the macro scale and radiochemical concentrations. Comparison of X-ray structural data and radiochemical solution experiments clearly indicate an increase in overall yield and stability as pyridine basicity increased.
Collapse
Affiliation(s)
- Thomas R Hayes
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | | | | | | | | |
Collapse
|
22
|
Dilworth JR, Pascu SI, Waghorn PA, Vullo D, Bayly SR, Christlieb M, Sun X, Supuran CT. Synthesis of sulfonamide conjugates of Cu(ii), Ga(iii), In(iii), Re(v) and Zn(ii) complexes: carbonic anhydrase inhibition studies and cellular imaging investigations. Dalton Trans 2015; 44:4859-73. [DOI: 10.1039/c4dt03206c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
New sulfonamides and their metal complexes are reported, with a focus on porphyrin derivatives for simultaneous cellular optical imaging, radiolabelling and Carbonic Anhydrase inhibition capabilities.
Collapse
Affiliation(s)
- Jonathan R. Dilworth
- Siemens Oxford Molecular Imaging Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | | | - Philip A. Waghorn
- Siemens Oxford Molecular Imaging Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Daniela Vullo
- University of Florence
- NEUROFARBA Department
- Pharmaceutical Sciences Section
- 5019 Sesto Fiorentino
- Italy
| | - Simon R. Bayly
- Siemens Oxford Molecular Imaging Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Martin Christlieb
- CRUK/MRC Gray Institute for Radiation Oncology and Biology
- University of Oxford
- Oxford
- UK
| | - Xin Sun
- Siemens Oxford Molecular Imaging Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Claudiu T. Supuran
- University of Florence
- NEUROFARBA Department
- Pharmaceutical Sciences Section
- 5019 Sesto Fiorentino
- Italy
| |
Collapse
|
23
|
Altai M, Honarvar H, Wållberg H, Strand J, Varasteh Z, Rosestedt M, Orlova A, Dunås F, Sandström M, Löfblom J, Tolmachev V, Ståhl S. Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with (188)Re. Eur J Med Chem 2014; 87:519-28. [PMID: 25282673 DOI: 10.1016/j.ejmech.2014.09.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022]
Abstract
Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of (188)Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all (188)Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The (188)Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of (188)Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental (188)Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of (188)Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.
Collapse
Affiliation(s)
- Mohamed Altai
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Hadis Honarvar
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helena Wållberg
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, Stockholm, Sweden; Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Strand
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Zohreh Varasteh
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Maria Rosestedt
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | | | - John Löfblom
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, Stockholm, Sweden
| | - Vladimir Tolmachev
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | - Stefan Ståhl
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, Stockholm, Sweden
| |
Collapse
|
24
|
Barandov A, Grünstein D, Apostolova I, Buchert R, Roger M, Brenner W, Abram U, Seeberger PH. A new bifunctional chelator enables facile biocoupling and radiolabeling as the basis for a bioconjugation kit. Chembiochem 2014; 15:986-94. [PMID: 24723504 DOI: 10.1002/cbic.201400001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 12/24/2022]
Abstract
A new tridentate bifunctional chelator, N-(-2-picolyl)(-4-hydroxy)(-3-amino)benzoic acid (PHAB), was designed to efficiently coordinate the [(99m)Tc(CO)3](+) core and facilitate coupling reactions to biomolecules. The chelator can be procured in the form of the corresponding benzotriazole ester (PHAB-OBT), which can be stored and used as a bioconjugation kit. PHAB-OBT reacts with modified carbohydrates with high selectivity and efficiency in a single step in both aqueous and organic media. As is desirable for a kit, no complicated chemical bench work is required. Glycoconjugate postlabeling resulted in neutral radiolabeled glycans with high radiochemical yields. Prelabeling approaches were assessed by successive reaction of PHAB-OBT with the [(99m)Tc(CO)3](+) core and a modified galactose model. The radiolabeled galactose was obtained in 84% yield as defined by HPLC analysis. Biodistribution of the radioactive (99m)Tc-labeled chelator, as well as the glycoconjugates, were examined in mice. Noticeably different biodistribution patterns were observed that reflect trends in the uptake of carbohydrate analogues by various organs.
Collapse
Affiliation(s)
- Ali Barandov
- Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany); Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sugiura G, Kühn H, Sauter M, Haberkorn U, Mier W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules 2014; 19:2135-65. [PMID: 24552984 PMCID: PMC6271853 DOI: 10.3390/molecules19022135] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/16/2014] [Accepted: 02/01/2014] [Indexed: 12/15/2022] Open
Abstract
Owing to their large size proteinaceous drugs offer higher operative information content compared to the small molecules that correspond to the traditional understanding of druglikeness. As a consequence these drugs allow developing patient-specific therapies that provide the means to go beyond the possibilities of current drug therapy. However, the efficacy of these strategies, in particular "personalized medicine", depends on precise information about individual target expression rates. Molecular imaging combines non-invasive imaging methods with tools of molecular and cellular biology and thus bridges current knowledge to the clinical use. Moreover, nuclear medicine techniques provide therapeutic applications with tracers that behave like the diagnostic tracer. The advantages of radioiodination, still the most versatile radiolabeling strategy, and other labeled compounds comprising covalently attached radioisotopes are compared to the use of chelator-protein conjugates that are complexed with metallic radioisotopes. With the techniques using radioactive isotopes as a reporting unit or even the therapeutic principle, care has to be taken to avoid cleavage of the radionuclide from the protein it is linked to. The tracers used in molecular imaging require labeling techniques that provide site specific conjugation and metabolic stability. Appropriate choice of the radionuclide allows tailoring the properties of the labeled protein to the application required. Until the event of positron emission tomography the spectrum of nuclides used to visualize cellular and biochemical processes was largely restricted to iodine isotopes and 99m-technetium. Today, several nuclides such as 18-fluorine, 68-gallium and 86-yttrium have fundamentally extended the possibilities of tracer design and in turn caused the need for the development of chemical methods for their conjugation.
Collapse
Affiliation(s)
- Grant Sugiura
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
| | - Helen Kühn
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
| | - Max Sauter
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg D-69120, Germany
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg D-69120, Germany.
| |
Collapse
|
26
|
Jürgens S, Herrmann WA, Kühn FE. Rhenium and technetium based radiopharmaceuticals: Development and recent advances. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.07.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
|
28
|
Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS. Radiometals for Combined Imaging and Therapy. Chem Rev 2012. [DOI: 10.1021/cr3003104] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cathy S. Cutler
- University of Missouri Research Reactor Center, Columbia, Missouri 65211, United
States
| | - Heather M. Hennkens
- University of Missouri Research Reactor Center, Columbia, Missouri 65211, United
States
| | - Nebiat Sisay
- University of Missouri Research Reactor Center, Columbia, Missouri 65211, United
States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United
States
| | - Sandrine Huclier-Markai
- Laboratoire Subatech,
UMR 6457, Ecole des Mines de Nantes/Université de Nantes/CNRS-IN2P3, 4 Rue A. Kastler, BP 20722, F-44307
Nantes Cedex 3, France
| | - Silvia S. Jurisson
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United
States
| |
Collapse
|
29
|
Ingargiola M, Dittfeld C, Runge R, Zenker M, Heldt JM, Steinbach J, Cordes N, Baumann M, Kotzerke J, Kunz-Schughart LA. Flow cytometric cell-based assay to preselect antibody constructs for radionuclide conjugation. Cytometry A 2012; 81:865-73. [DOI: 10.1002/cyto.a.22110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 01/14/2023]
|
30
|
Carroll V, Demoin DW, Hoffman TJ, Jurisson SS. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions. RADIOCHIM ACTA 2012; 100:653-667. [PMID: 25382874 PMCID: PMC4221859 DOI: 10.1524/ract.2012.1964] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiometals play an important role in diagnostic and therapeutic radiopharmaceuticals. This field of radiochemistry is multidisciplinary, involving radiometal production, separation of the radiometal from its target, chelate design for complexing the radiometal in a biologically stable environment, specific targeting of the radiometal to its in vivo site, and nuclear imaging and/or radiotherapy applications of the resultant radiopharmaceutical. The critical importance of inorganic chemistry in the design and application of radiometal-containing imaging and therapy agents is described from a historical perspective to future directions.
Collapse
Affiliation(s)
| | | | - Timothy J Hoffman
- Chemistry, University of Missouri, Columbia, MO 65211, USA
- Internal Medicine, University of Missouri, Columbia, MO 65211, USA
- Harry S Truman Memorial Veterans Hospital, Columbia, MO 65211, USA
| | | |
Collapse
|
31
|
Pirmettis I, Arano Y, Tsotakos T, Okada K, Yamaguchi A, Uehara T, Morais M, Correia JDG, Santos I, Martins M, Pereira S, Triantis C, Kyprianidou P, Pelecanou M, Papadopoulos M. New (99m)Tc(CO)(3) mannosylated dextran bearing S-derivatized cysteine chelator for sentinel lymph node detection. Mol Pharm 2012; 9:1681-92. [PMID: 22519912 DOI: 10.1021/mp300015s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the present study is to synthesize new mannosylated dextran derivative that can be labeled with Tc-99m for potential use in sentinel lymph node detection (SLND). The compound was designed to have a dextran with molecular weight of 10 kDa as a backbone, mannose for binding to mannose receptors of the lymph node and S-derivatized cysteine as a suitable chelator for labeling with [(99m)Tc(H(2)O)(3)(CO)(3)](+) precursor. Reaction of allyl bromide with dextran (MW 11800) yielded the intermediate allyl-dextran (1) with about 40% coupling. Addition of cysteine to allyl-dextran resulted in the S-derivatized cysteine, compound DC15 (2). The final product DCM20 (3) was obtained in good yield after in situ hydrolysis and activation of cyanomethyl tetraacetyl-1-thio-d-mannopyranoside and coupling to DC15. All derivatives were purified by ultrafiltration and characterized by NMR. DC15 and DCM20 were quantitatively labeled with (99m)Tc (>95% radiochemical purity) using the fac-[(99m)Tc(OH(2))(3)(CO)(3)](+) precursor and ligand concentration of 1.5 × 10(-6) M at neutral pH. Both (99m)Tc-labeled compounds (99m)Tc(CO)(3)-DC15 (6) and (99m)Tc(CO)(3)-DCM20 (7) remained stable after 6 h incubation at 37 °C in the presence of excess histidine or cysteine, as well as even after 20-fold dilution and incubation for 24 h at room temperature. The characterization of the compounds 6 and 7 was performed by comparing their HPLC radiochromatograms with those of their rhenium surrogates Re(CO)(3)-DC15 (4) and Re(CO)(3)-DCM20 (5) respectively that were prepared using the precursor [NEt(4)](2)fac-[ReBr(3)(CO)(3)] and characterized by IR and NMR spectroscopy. When injected subcutaneously from the foot pad of mice, (99m)Tc-labeled mannosylated dextran (7) showed accumulation in the popliteal lymph node (SLN in this model) higher than that of non-mannosylated analogue (6) and the (99m)Tc-phytate serving as standard. Compound 7 also exhibited lower radioactivity levels at the injection site compared to (99m)Tc-phytate. The SPECT/CT studies in mice confirmed that 7 accumulated in the popliteal lymph node allowing its clear visualization. The present findings demonstrate that compound 7 ((99m)Tc(CO)(3)-DCM20) is promising and merits further evaluation as a radiopharmaceutical for sentinel lymph node detection.
Collapse
Affiliation(s)
- I Pirmettis
- Institute of Radioisotopes and Radiodiagnostic Products, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Boschi A, Cazzola E, Uccelli L, Pasquali M, Ferretti V, Bertolasi V, Duatti A. Rhenium(V) and Technetium(V) Nitrido Complexes with Mixed Tridentate π-Donor and Monodentate π-Acceptor Ligands. Inorg Chem 2012; 51:3130-7. [DOI: 10.1021/ic202605z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alessandra Boschi
- Laboratory
of Nuclear Medicine, Department of Radiological Sciences and ‡Department of
Chemistry and Centre for Structural Diffractometry,University of Ferrara, 44121 Ferrara, Italy
| | - Emiliano Cazzola
- Laboratory
of Nuclear Medicine, Department of Radiological Sciences and ‡Department of
Chemistry and Centre for Structural Diffractometry,University of Ferrara, 44121 Ferrara, Italy
| | - Licia Uccelli
- Laboratory
of Nuclear Medicine, Department of Radiological Sciences and ‡Department of
Chemistry and Centre for Structural Diffractometry,University of Ferrara, 44121 Ferrara, Italy
| | - Micol Pasquali
- Laboratory
of Nuclear Medicine, Department of Radiological Sciences and ‡Department of
Chemistry and Centre for Structural Diffractometry,University of Ferrara, 44121 Ferrara, Italy
| | - Valeria Ferretti
- Laboratory
of Nuclear Medicine, Department of Radiological Sciences and ‡Department of
Chemistry and Centre for Structural Diffractometry,University of Ferrara, 44121 Ferrara, Italy
| | - Valerio Bertolasi
- Laboratory
of Nuclear Medicine, Department of Radiological Sciences and ‡Department of
Chemistry and Centre for Structural Diffractometry,University of Ferrara, 44121 Ferrara, Italy
| | - Adriano Duatti
- Laboratory
of Nuclear Medicine, Department of Radiological Sciences and ‡Department of
Chemistry and Centre for Structural Diffractometry,University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
33
|
Faintuch BL, Oliveira EA, Nunez EGF, Moro AM, Nanda PK, Smith CJ. Comparison of two peptide radiotracers for prostate carcinoma targeting. Clinics (Sao Paulo) 2012; 67:163-70. [PMID: 22358242 PMCID: PMC3275116 DOI: 10.6061/clinics/2012(02)12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 09/05/2011] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Scintigraphy is generally not the first choice treatment for prostate cancer, although successful studies using bombesin analog radiopeptides have been performed. Recently, a novel peptide obtained using a phage display library demonstrated an affinity for prostate tumor cells. The aim of this study was to compare the use of a bombesin analog to that of a phage display library peptide (DUP-1) radiolabeled with technetium-99m for the treatment of prostate carcinoma. The peptides were first conjugated to S-acetyl-MAG3 with a 6-carbon spacer, namely aminohexanoic acid. METHODS The technetium-99m labeling required a sodium tartrate buffer. Radiochemical evaluation was performed using ITLC and was confirmed by high-performance liquid chromatography. The coefficient partition was determined, and in vitro studies were performed using human prostate tumor cells. Biodistribution was evaluated in healthy animals at various time points and also in mice bearing tumors. RESULTS The radiochemical purity of both radiotracers was greater than 95%. The DUP-1 tracer was more hydrophilic (log P = -2.41) than the bombesin tracer (log P = -0.39). The biodistribution evaluation confirmed this hydrophilicity by revealing the greater kidney uptake of DUP-1. The bombesin concentration in the pancreas was greater than that of DUP-1 due to specific gastrin-releasing peptide receptors. Bombesin internalization occurred for 78.32% of the total binding in tumor cells. The DUP-1 tracer showed very low binding to tumor cells during the in vitro evaluation, although tumor uptake for both tracers was similar. The tumors were primarily blocked by DUP1 and the bombesin radiotracer primarily targeted the pancreas. CONCLUSION Further studies with the radiolabeled DUP-1 peptide are recommended. With further structural changes, this molecule could become an efficient alternative tracer for prostate tumor diagnosis.
Collapse
|
34
|
Fonge H, Huang H, Scollard D, Reilly RM, Allen C. Influence of formulation variables on the biodistribution of multifunctional block copolymer micelles. J Control Release 2011; 157:366-74. [PMID: 21982897 DOI: 10.1016/j.jconrel.2011.09.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/26/2011] [Accepted: 09/22/2011] [Indexed: 11/30/2022]
Abstract
The physico-chemical characteristics and composition of block copolymer micelles (BCMs) may influence the pharmacokinetics and consequently, the desired delivery characteristics. In this study the influence of formulation variables such as size, density of targeting ligand [i.e. epidermal growth factor (hEGF)] and the bifunctional chelator (BFC) used for labelling the BCMs with (111)In, on the pharmacokinetics and biodistribution in mice were evaluated. BCMs were prepared from Me-PEG(x)-b-PCL(y) (x=2.5 k, y=1.2 k for 15 nm BCMs and x=5 k, y=5 k for 60 nm BCMs) with (targeted, 1 or 5 mol% hEGF) or without (non-targeted) hEGF-PEG(x)-b-PCL(y). To investigate the effect of the BFC on the pharmacokinetics, the BCMs were labelled with (111)In using p-SCN-Bn-DOTA (Bn-DOTA-PEG(x)-b-PCL(y)), H(2)N-DOTA (DOTA-PEG(x)-b-PCL(y)), DTPA anhydride (DTPA-PEG(x)-b-PCL(y)) or p-SCN-Bn-DTPA (Bn-DTPA-PEG(x)-b-PCL(y)). The resulting 15 nm or 60 nm non-targeted or targeted (1 or 5 mol% hEGF) were injected via a tail vein to mice bearing MDA-MB-468 human breast cancer xenograft that overexpress EGFR, followed by pharmacokinetics and biodistribution studies. Pharmacokinetic parameters were determined by fitting the blood concentration vs time data using a two compartment model with i.v. bolus input. Pharmacokinetic parameters were found to depend on BCM size, the BFC used as well as the density of hEGF on the surface of the BCMs. BCMs labelled with p-SCN-Bn-DTPA ((111)In-Bn-BCMs) showed improved pharmacokinetics (i.e. extended circulation lifetime) and tumor uptake compared to those labelled with DOTA-PEG(x)-b-PCL(y), p-SCN-Bn-DOTA or DTPA dianhydride. Formulations with a high density of hEGF (5 mol% hEGF) had short circulation half-lives. BCMs labelled with (111)In via p-SCN-Bn-DTPA showed highest accumulation in the liver and spleen and slower whole body elimination. Smaller sized BCMs were rapidly cleared from the circulation. Increasing the density of hEGF on the surface did not improve tumor uptake due to faster clearance from the circulation. To achieve improved pharmacokinetics and in turn effective exploitation of the EPR effect, p-SCN-Bn-DTPA emerged as the optimal BFC for radiolabelling BCMs while a lower density of hEGF gave more favourable organ distribution.
Collapse
Affiliation(s)
- Humphrey Fonge
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
35
|
Synthesis, characterization and biological evaluation of [188Re(N)(cys∼)(PNP)]+/0 mixed-ligand complexes as prototypes for the development of 188Re(N)-based target-specific radiopharmaceuticals. Nucl Med Biol 2011; 38:399-415. [DOI: 10.1016/j.nucmedbio.2010.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/24/2010] [Accepted: 09/29/2010] [Indexed: 11/21/2022]
|
36
|
Morais M, Subramanian S, Pandey U, Samuel G, Venkatesh M, Martins M, Pereira S, Correia JDG, Santos I. Mannosylated Dextran Derivatives Labeled with fac-[M(CO)3]+ (M = 99mTc, Re) for Specific Targeting of Sentinel Lymph Node. Mol Pharm 2011; 8:609-20. [DOI: 10.1021/mp100425p] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maurício Morais
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India 400 085
| | - Usha Pandey
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India 400 085
| | - Grace Samuel
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India 400 085
| | - Meera Venkatesh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India 400 085
| | | | | | - João D. G. Correia
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| | - Isabel Santos
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| |
Collapse
|
37
|
Abstract
The chemical modification of oligomers such as DNA, PNA, MORF, LNA to attach radionuclides for nuclear imaging and radiotherapy applications has become a field rich in innovation as older methods are improved and new methods are introduced. This review intends to provide a brief overview of several chelators currently in use for the labeling of oligomers with metallic radionuclides such as 99mTc, 111In and 188Re. While DNA and its analogs have been radiolabeled with important radionuclides of nonmetals such as 32P, 35S, 14C, 18F and 125I, the labeling methods for these isotopes involve covalent chemistry that is quite distinct from the coordinate-covalent chelation chemistry described herein. In this review, we provide a summary of the several chelators that have been covalently conjugated to oligomers for the purpose of radiolabeling with metallic radionuclides by chelation and including details on the conjugation, the choice of radionuclides and labeling methods.
Collapse
Affiliation(s)
| | - Guozheng Liu
- Author to whom correspondence should be addressed; E-Mail: ; Tel: +1-508-856-1958; Fax: +1-508-856-6363
| | | |
Collapse
|
38
|
Orlova A, Tran TA, Ekblad T, Karlström AE, Tolmachev V. 186Re-maSGS-ZHER2:342, a potential Affibody conjugate for systemic therapy of HER2-expressing tumours. Eur J Nucl Med Mol Imaging 2009; 37:260-9. [DOI: 10.1007/s00259-009-1268-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 08/17/2009] [Indexed: 12/23/2022]
|