1
|
Ye Y, Cao Z. Glucose Metabolism and Glucose Transporters in Head and Neck Squamous Cell Carcinoma. Cancer Invest 2024; 42:827-844. [PMID: 39324504 DOI: 10.1080/07357907.2024.2407424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Head and neck squamous cell carcinoma ranks seventh globally in malignancy prevalence, with persistent high mortality rates despite treatment advancements. Glucose, pivotal in cancer metabolism via the Warburg effect, enters cells via glucose transporters, notably GLUT proteins. Glycolysis, aerobic oxidation, and the pentose phosphate pathway in glucose metabolism significantly impact HNSCC progression. HNSCC exhibits elevated expression of glucose metabolism enzymes and GLUT proteins, correlating with prognosis. Heterogeneity in HNSCC yields varied metabolic profiles, influenced by factors like HPV status and disease stage. This review highlights glucose metabolism's role and potential as therapeutic targets and cancer imaging tracers in HNSCC.
Collapse
Affiliation(s)
- Yanyan Ye
- Department of Otolaryngology, Shulan (Hangzhou) Hospital, affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zaizai Cao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Mohtasham N, Zarepoor M, Shooshtari Z, Hesari KK, Mohajertehran F. Genes involved in metastasis in oral squamous cell carcinoma: A systematic review. Health Sci Rep 2024; 7:e1977. [PMID: 38665153 PMCID: PMC11043498 DOI: 10.1002/hsr2.1977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024] Open
Abstract
Background and Aims Oral squamous cell carcinoma is the most prevalent malignancy in the oral cavity, with a significant mortality rate. In oral squamous cell carcinoma patients, the survival rate could decrease because of delayed diagnosis. Thus, prevention, early diagnosis, and appropriate treatment can effectively increase the survival rate in patients. In this systematic review, we discussed the role of different genes in oral squamous cell carcinoma metastasis. Herein, we aimed to summarize clinical results, regarding the potential genes that promote oral squamous cell carcinoma metastasis. Methods This systematic review was carried out under the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. An electronic search for all relevant articles published in English between January 2018 and April 2022 was performed using Scopus, PubMed, and Google Scholar search engines. All original studies published in English were included, and we excluded studies that were in a non-English language. Results A total of 4682 articles were found, of which 14 were relevant and detected significant genes in oral squamous cell carcinoma progression. These findings investigated the overexpression of interferon-induced proteins with tetratricopeptide repeats 1 and 3 (IFIT1, IFT3), high-mobility group A2 (HMGA2), transformed growth factor-beta-induced, lectin galactoside-binding soluble 3 binding protein (LGALS3BP), bromodomain containing 4, COP9 signaling complex 6, heterogeneous nuclear ribonucleoproteins A2B1 (HNRNPA2B1), 5'-3' exoribonuclease 2 (XRN2), cystatin-A (CSTA), fibroblast growth factors 8 (FGF8), forkhead box P3, cadherin-3, also known as P-cadherin and Wnt family member 5A, ubiquitin-specific-processing protease 7, and retinoic acid receptor responder protein 2 genes lead to promote metastasis in oral squamous cell carcinoma. Overexpression of some genes (IFIT1, 3, LGALS3BP, HMGA2, HNRNPA2B1, XRN2, CSTA, and FGF8) was proven to be correlated with poor survival rates in oral squamous cell carcinoma patients. Conclusion Studies suggest that metastatic genes indicate a poor prognosis for oral squamous cell carcinoma patients. Detecting these metastatic genes in oral squamous cell carcinoma patients may be of predictive value and can also facilitate assessing oral squamous cell carcinoma development and its response to treatment.
Collapse
Affiliation(s)
- Nooshin Mohtasham
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial PathologySchool of Dentistry, Mashhad University of Medical SciencesMashhadIran
- Oral and Maxillofacial Diseases Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Marzieh Zarepoor
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Zahra Shooshtari
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Kiana Kamyab Hesari
- Doctor of Veterinary Medicine StudentSciences and Research UniversityTehranIran
| | - Farnaz Mohajertehran
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial PathologySchool of Dentistry, Mashhad University of Medical SciencesMashhadIran
- Oral and Maxillofacial Diseases Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
3
|
Soltaninezhad P, Arab F, Mohtasham N, FakherBaheri M, Kavishahi NN, Aghaee-Bakhtiari SH, Zare-Mahmoodabadi R, Pakfetrat A, Taban KI, Mohajertehran F. Unveiling the Potential of Serum MiR-483-5p: A Promising Diagnostic and Prognostic Biomarker in OLP and OSCC Patients by In silico Analysis of Differential Gene Expression. Curr Pharm Des 2024; 30:310-322. [PMID: 38310566 DOI: 10.2174/0113816128276149240108163407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) and oral lichen planus (OLP) are two separate conditions affecting the mouth and result in varying clinical outcomes and levels of malignancy. Achieving early diagnosis and effective therapy planning requires the identification of reliable diagnostic biomarkers for these disorders. MicroRNAs (miRNAs) have recently received attention as powerful biomarkers for various illnesses, including cancer. In particular, miR-483-5p is a promising diagnostic and prognostic biomarker in various cancers. Therefore, this study aimed to investigate the role of serum miR-483-5p in the diagnosis and prognosis of OLP and OSCC patients by in silico analysis of differential gene expression. METHODS GSE23558 and GSE52130 data sets were selected, and differential gene expression analysis was performed using microarray data from GSE52130 and GSE23558. The analysis focused on comparing OLP and OSCC samples with normal samples. The genes intersected through the differential gene expression analysis were then extracted to determine the overlapping genes among the upregulated or downregulated DEGs. The downregulated genes among the DEGs were subsequently imported into the miRWalk database to search for potential target genes of miRNA 483-5p that lacked validation. To gain insight into the biological pathways associated with the DEGs, we conducted pathway analysis utilizing tools, such as Enrichr. Additionally, the cellular components associated with these DEGs were investigated by analyzing the String database. On the other hand, blood serum samples were collected from 35 OSCC patients, 34 OLP patients, and 34 healthy volunteers. The expression level of miR-483-5p was determined using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The Kruskal-Wallis test was utilized to investigate the considerable correlation. Moreover, this study explored the prognostic value of miR-483-5p through its association with clinicopathological parameters in OSCC patients. RESULTS The results showed that serum expression of miR-483-5p was considerably higher in OSCC patients compared to OLP patients and healthy controls (p 0.0001) and that this difference was statistically significant. Furthermore, elevated miR-483-5p expression was associated with tumor size, lymph node metastasis, and stage of tumor nodal metastasis in OSCC patients (p 0.001, p 0.038, and p 0.0001, respectively). In silico analysis found 71 upregulated genes at the intersection of upregulated DEGs and 44 downregulated genes at the intersection of downregulated DEGs, offering insight into the potential underlying mechanisms of miR-483-5p's engagement in OSCC and OLP. The majority of these DEGs were found to be involved in autophagy pathways, but DEGs involved in the histidine metabolism pathway showed significant results. Most of these DEGs were located in the extracellular region. After screening for downregulated genes that were invalidated, miRNA 483-5p had 7 target genes. CONCLUSION This study demonstrates the potential of serum miR-483-5p as a promising diagnostic and prognostic biomarker in OSCC and OLP patients. Its upregulation in OSCC patients and its association with advanced tumor stage and potential metastasis suggest the involvement of miR-483-5p in critical signaling pathways involved in cell proliferation, apoptosis, and cell cycle regulation, making it a reliable indicator of disease progression. Nevertheless, additional experimental studies are essential to validate these findings and establish a foundation for the advancement of targeted therapies and personalized treatment approaches.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/pathology
- Computer Simulation
- Gene Expression Regulation, Neoplastic
- Lichen Planus, Oral/genetics
- Lichen Planus, Oral/blood
- Lichen Planus, Oral/diagnosis
- MicroRNAs/blood
- MicroRNAs/genetics
- Mouth Neoplasms/genetics
- Mouth Neoplasms/blood
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/pathology
- Prognosis
Collapse
Affiliation(s)
| | - Fatemeh Arab
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadhossein FakherBaheri
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nima Nikbin Kavishahi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Reza Zare-Mahmoodabadi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Izadi Taban
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mohajertehran
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Liu Y, Huang N, Qiao X, Gu Z, Wu Y, Li J, Wu C, Li B, Li L. Knockdown of PGC1α suppresses dysplastic oral keratinocytes proliferation through reprogramming energy metabolism. Int J Oral Sci 2023; 15:37. [PMID: 37661238 PMCID: PMC10475463 DOI: 10.1038/s41368-023-00242-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Oral potentially malignant disorders (OPMDs) are precursors of oral squamous cell carcinoma (OSCC). Deregulated cellular energy metabolism is a critical hallmark of cancer cells. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α) plays vital role in mitochondrial energy metabolism. However, the molecular mechanism of PGC1α on OPMDs progression is less unclear. Therefore, we investigated the effects of knockdown PGC1α on human dysplastic oral keratinocytes (DOKs) comprehensively, including cell proliferation, cell cycle, apoptosis, xenograft tumor, mitochondrial DNA (mtDNA), mitochondrial electron transport chain complexes (ETC), reactive oxygen species (ROS), oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and glucose uptake. We found that knockdown PGC1α significantly inhibited the proliferation of DOKs in vitro and tumor growth in vivo, induced S-phase arrest, and suppressed PI3K/Akt signaling pathway without affecting cell apoptosis. Mechanistically, downregulated of PGC1α decreased mtDNA, ETC, and OCR, while enhancing ROS, glucose uptake, ECAR, and glycolysis by regulating lactate dehydrogenase A (LDHA). Moreover, SR18292 (an inhibitor of PGC1α) induced oxidative phosphorylation dysfunction of DOKs and declined DOK xenograft tumor progression. Thus, our work suggests that PGC1α plays a crucial role in cell proliferation by reprograming energy metabolism and interfering with energy metabolism, acting as a potential therapeutic target for OPMDs.
Collapse
Affiliation(s)
- Yunkun Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nengwen Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianghe Qiao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiyu Gu
- Department of Preventive and Pediatric Dentistry, Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinjin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengzhou Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Yuan Z, Huang J, Teh BM, Hu S, Hu Y, Shen Y. Exploration of a predictive model based on genes associated with fatty acid metabolism and clinical treatment for head and neck squamous cell carcinoma. J Clin Lab Anal 2022; 36:e24722. [PMID: 36181275 DOI: 10.1002/jcla.24722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent malignant tumors of the head and neck and presents high risks of recurrence and poor prognosis postoperatively. The aim of this study was to establish a predictive model based on fatty acid metabolism (FAM) genes to forecast the prognosis of HNSCC patients and the subsequent treatment strategies. METHODS We accessed the TCGA and GEO databases for HNSCC genes and clinical data. The FAM risk score model was created and validated using a combination of univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Combining risk scores and clinical characteristics, a nomogram was established and assessed. Subsequently, the function, gene mutation, immune difference, and chemotherapeutic drug sensitivity of the groups with high- and low-risk scores were analyzed. Consequently, the mode's validity was evaluated comprehensively by combining single gene analysis. RESULTS The FAM risk score model for predicting HNSCC prognosis had certain validity. Patients in the high- and low-risk groups had genetic mutations, and the prognosis was the poorest for the high-risk groups with high genetic mutations. The patients with low-risk scores were suitable for immunotherapy since they had increased infiltration of immune cells. In contrast, the patients in the other groups were more suitable for chemotherapy. CONCLUSION The results of this study demonstrated that the FAM risk score model may predict the prognosis of HSNCC and has a certain therapeutic guidance value.
Collapse
Affiliation(s)
- Zhechen Yuan
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.,School of Medicine, Ningbo University, Ningbo, China
| | - Juntao Huang
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.,School of Medicine, Ningbo University, Ningbo, China
| | - Bing Mei Teh
- Department of Ear Nose and Throat, Head and Neck Surgery, Eastern Health, Box Hill, Victoria, Australia.,Department of Otolaryngology, Head and Neck Surgery, Monash Health, Clayton, Victoria, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Shiyu Hu
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.,School of Medicine, Ningbo University, Ningbo, China
| | - Yi Hu
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.,School of Medicine, Ningbo University, Ningbo, China
| | - Yi Shen
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.,School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Cytokeratins (CK7 and CK20) Genes Expression Association with Clinicopathological Indices in Oral Squamous Cell Carcinoma and Dysplastic Oral Epithelium. Rep Biochem Mol Biol 2021; 10:126-134. [PMID: 34277876 DOI: 10.52547/rbmb.10.1.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 01/12/2023]
Abstract
Background High prevalence of oral squamous cell carcinoma (OSCC) demands the additional novel biological markers. Due to the established roles of cytokeratin in the prognosis of metastasis evaluation the relation of expression of both CK7 and CK20 in OSCC compared to the dysplastic oral epithelium biopsies with clinicopathological factors were investigated. Methods We examined the coordinate mRNA expression of cytokeratin 7 (CK7) and cytokeratin 20 (CK20) using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 110 biopsies of oral squamous epithelium samples including 72 tumoral and 38 dysplastic biopsies. We also collected demographic and pathological data including tumor stage and grade from our patients. Results There was a significant difference in CK7 and CK20 gene expression between OSCC and dysplastic samples (p< 0.001). Further, their mean expression in OSCC samples was significantly higher compared to dysplastic samples. Relative mRNA levels of CK7 and CK20 showed that their mean expression in OSCC grade I was significantly lower than other grades (p< 0.01). The relationship between CK7 and CK20 mRNA expression and age or gender was not significant (p> 0.05). Samples in the advanced stage of disease had significantly higher CK7 and CK20 expression compared to early-stage samples of OSCC specimens (p= 0.001). Conclusion We found an increase in CK7 and CK20 mRNA levels in grade III OSCC samples compared to other grades. This finding suggests a potential role for CK7 and CK20 in oral mucosal carcinogenesis and OSCC prognosis.
Collapse
|
7
|
LAMP3 (CD208) Expression in Squamous Cell Carcinoma and Epithelial Dysplasia of the Oral Cavity and Clinicopathological Characteristics of Unfavorable Prognosis. Rep Biochem Mol Biol 2021; 9:379-384. [PMID: 33969129 DOI: 10.52547/rbmb.9.4.373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background This study aimed to evaluate LAMP3 (CD208) gene expression in oral squamous cell carcinoma (OSCC) and dysplastic oral epithelium by quantitative real-time polymerase chain reaction (qPCR) and compare LAMP3 expression in different disease grades and stages. Methods In this study, 60 OSCC and dysplastic oral epithelium samples were obtained from the Mashhad University of Medical Sciences together with their demographic and clinicopathological documents. LAMP3 expression was measured by qPCR. Results LAMP3 expression was significantly greater in OSCC than in dysplasia samples (P=0.001), in grade III OSCC than in grades I and II, and also greater in advanced than in early OSCC disease stage (P=0.001). Conclusion The significantly greater LAMP3 expression in OSCC than in dysplastic epithelium indicates a role for LAMP3 in carcinogenesis in oral mucosa. Our results suggest LAMP3 may be useful as an anticancer target and/or to predict disease pathogenesis in OSCC patient's cells.
Collapse
|
8
|
Mohanty V, Subbannayya Y, Patil S, Abdulla R, Ganesh MS, Pal A, Ray JG, Sidransky D, Gowda H, Prasad TSK, Chatterjee A. Molecular alterations in oral cancer between tobacco chewers and smokers using serum proteomics. Cancer Biomark 2021; 31:361-373. [PMID: 34024816 DOI: 10.3233/cbm-203077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tobacco exposure (through smoking or chewing) is one of the predominant risk factors associated with the development of oral squamous cell carcinoma (OSCC). Despite the growing number of patients diagnosed with OSCC, there are few circulating biomarkers for identifying individuals at a higher risk of developing the disease. Successful identification of candidate molecular markers for risk assessment could aid in the early detection of oral lesions and potentially be used for community screening of high-risk populations. OBJECTIVE Identification of differentially expressed proteins in the serum of oral cancer patients which can serve as biomarkers for the diagnosis of the onset of oral cancer among tobacco users. METHODS We employed a tandem mass tag (TMT)-based quantitative proteomics approach to study alterations in the serum proteomes of OSCC patients based on their tobacco exposure habits (chewing and smoking) compared to healthy individuals with no history of using any form of tobacco or any symptoms of the disease. RESULTS Mass spectrometry-based analysis resulted in the identification of distinct signatures in the serum of OSCC patients who either chewed or smoked tobacco. Pathway analysis revealed opposing effects of dysregulated proteins enriched in the complement-coagulation signaling cascades with a high expression of the Serpin family of proteins observed in OSCC patients who chewed tobacco compared to healthy individuals whereas these proteins showed decreased levels in OSCC patients who smoked. ELISA-based validation further confirmed our findings revealing higher expression of SERPINA6 and SERPINF1 across serum of OSCC patients who chewed tobacco compared to healthy individuals. CONCLUSIONS This study serves as a benchmark for the identification of serum-based protein markers that may aid in the identification of high-risk patients who either chew tobacco or smoke tobacco.
Collapse
Affiliation(s)
- Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Shankargouda Patil
- Division of Oral Pathology, College of Dentistry, Department of Maxillofacial Surgery and Diagnostic Sciences, Jazan University, Jazan, Saudi Arabia
| | - Riaz Abdulla
- Department of Oral Pathology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Mandakulutur S Ganesh
- Department of Surgical Oncology, Vydehi Institute of Oncology, Bangalore, Karnataka, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R Ahmed Dental College and Hospital, Kolkata, West Bengal, India
- Department of Pathology, Burdwan Dental College and Hospital, Burdwan, West Bengal, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- Institute of Bioinformatics, International Tech Park, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- Institute of Bioinformatics, International Tech Park, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
9
|
Ghazi N, Aali N, Shahrokhi VR, Mohajertehran F, Saghravanian N. Relative Expression of SOX2 and OCT4 in Oral Squamous Cell Carcinoma and Oral Epithelial Dysplasia. Rep Biochem Mol Biol 2020; 9:171-179. [PMID: 33178866 DOI: 10.29252/rbmb.9.2.171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Over 90% of oral cancers including oral squamous cell carcinoma (OSCC), originate from the oral cavity epithelium. Early detection for this lesion is as important. Evaluating cancer stem cell markers can improve the accuracy of early diagnosis, and be used as an OSCC prognostic indicator. We aimed to evaluate SOX2 and OCT4 gene expression among different grades of OSCC and oral epithelial dysplasia (OED) lesions. Methods Sixty samples that contains 45 OSCC and 15 OED samples were retrieved from the pathology department archives at the dental school of Mashhad. Demographic and pathological patient data including the tumor stage and tumor grade were assessed. Finally, SOX2 and OCT4 expression was examined using qRT-PCR. Results There was a significant difference in SOX2 and OCT4 expression between OSCC and OED samples (p< 0.001). The mean expression of SOX2 and OCT4 in OSCC samples were significantly higher than in the OED group (p< 0.001). The mean expression of SOX2 and OCT4 was higher in grade II and grade III OSCC compared to grade I. There was no significant relationship between the gene expression of SOX2 or OCT4 to the demographic, site and stage of tumors. The correlation between SOX2 and OCT4 expression (p= 0.001) was significant in grade III OSCC specimens compared to other grades (p= 0.005, r= 0.68). Conclusion The increased expression of SOX2 and OCT4 in higher grades and the significant correlation of these genes with each other among OSCC specimens could suggest the role of SOX2 or OCT4 in oral mucosal carcinogenesis.
Collapse
Affiliation(s)
- Narges Ghazi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Aali
- Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid-Reza Shahrokhi
- Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mohajertehran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrollah Saghravanian
- Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|