1
|
Ferreira LAD, Rambo C, Gomes MJK, Ribeiro KDP, Nishimoto GDA, Tisatto LGDR, Fritzen LD, da Cruz YB, Kambara AL, Rodrigues MJVB, Nogueira GA, Salvador HD, Oliveira-Toré CDF, Reason IJDM, Telles JEQ, Tomiotto-Pellissier F. Nanoparticles and phototherapy combination as therapeutic alternative in prostate cancer: A scoping review. Eur J Pharmacol 2023; 939:175421. [PMID: 36435234 DOI: 10.1016/j.ejphar.2022.175421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Prostate cancer (CaP) is one of the most common types of cancers worldwide. Despite the existing surgical techniques, prostatectomy patients may experience tumor recurrence. In addition, castration-resistant cancers pose a challenge, especially given their lack of response to standard care. Thus, the development of more efficient therapies has become a field of great interest, and photothermal therapy (PTT) and photodynamic therapy (PDT) are promising alternatives, given their high capacity to cause cell injury and consequent tumor ablation. Phototherapy, along with chemotherapy, has also been shown to be more effective than pharmacotherapy alone. Free molecules used as photosensitizers are rapidly cleared from the body, do not accumulate in the tumor, and are primarily hydrophobic and require toxic solvents. Thus, the use of nanoparticles can be an effective strategy, given their ability to carry or bind to different molecules, protecting them from degradation and allowing their association with other surface ligands, which favors permeation and retention at the tumor site. Despite this, there is still a gap in the literature regarding the use of phototherapy in association with nanotechnology for the treatment of CaP. In this scoping review, it was found that most of the particles studied could act synergistically through PDT and PTT. In addition, fluorescent quenchers can act as diagnostic and therapeutic tools. However, future clinical studies should be performed to confirm the benefits and safety of the combination of nanoparticles and phototherapy for CaP.
Collapse
Affiliation(s)
| | - Camila Rambo
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | - Lucas Diego Fritzen
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Aline Lika Kambara
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | | - Fernanda Tomiotto-Pellissier
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil; Laboratory of Immunopathology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
2
|
Hashemi B, Akram FA, Amirazad H, Dadashpour M, Sheervalilou M, Nasrabadi D, Ahmadi M, Sheervalilou R, Ameri Shah Reza M, Ghazi F, Roshangar L. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol 2022; 67:102967. [PMID: 34777586 PMCID: PMC8576597 DOI: 10.1016/j.jddst.2021.102967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.
Collapse
Affiliation(s)
- Behnam Hashemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firouzi-Amandi Akram
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Milad Sheervalilou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Nasrabadi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Enhancement of Radio-Thermo-Sensitivity of 5-Iodo-2-Deoxyuridine-Loaded Polymeric-Coated Magnetic Nanoparticles Triggers Apoptosis in U87MG Human Glioblastoma Cancer Cell Line. Cell Mol Bioeng 2021; 14:365-377. [PMID: 34295445 DOI: 10.1007/s12195-021-00675-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/05/2021] [Indexed: 01/22/2023] Open
Abstract
Introduction With an emphasis on the radioresistant nature of glioblastoma cells, the aim of the present study was to evaluate the radio-thermo-sensitizing effects of PCL-PEG-coated Superparamagnetic iron oxide nanoparticles (SPIONs) as a carrier of 5-iodo-2-deoxyuridine (IUdR) in monolayer culture of U87MG human glioma cell line. Methods Following monolayer culture of U87MG cells, nanoparticle uptake was assessed using Prussian blue staining and ICP-OES method. The U87MG cells were treated with an appropriate concentration of free IUdR and PCL-PEG-coated SPIONs (MNPs) loaded with IUdR (IUdR/MNPs) for 24 h, subjected to hyperthermia (water bath and alternating magnetic field (AMF)) at 43 °C, and exposed to X-ray (2 Gy, 6 MV). The combined effects of hyperthermia with or without magnetic nanoparticles on radiosensitivity of the U87MG cells were evaluated using colony formation assay (CFA) and Flowcytometry. Results Prussian blue staining and ICP-OES showed that the nanoparticles were able to enter the cells. The results also indicated that IUdR/MNPs combined with X-ray radiation and hyperthermia significantly decreased the colony formation ability of monolayer cells (1.11, 1.41 fold) and increased the percentage of apoptotic (2.47, 4.1 fold) and necrotic cells (12.28, 29.34 fold), when compared to IUdR combined with X-ray and hyperthermia or IUdR/MNPs + X-ray. MTT results revealed that the presence of IUdR/MNPs significantly increased the toxicity of AMF hyperthermia compared to the water bath method. Conclusions Our study showed that SPIONs/PCL-PEG, as a carrier of IUdR, can enhance the cytotoxic effects of radiotherapy and hyperthermia and act as a radio-thermo-sensitizing agent. Graphic Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00675-y.
Collapse
|