1
|
Krishnan M, Kumaresan M, Ravi S, Martin LC, Duraisamy P, Manikandan B, Munusamy A, Ramar M. Therapeutic potential of monoterpene molecules acts against 7KCh-mediated oxidative stress and neuroinflammatory amyloidogenic signalling pathways. Prostaglandins Other Lipid Mediat 2024; 175:106910. [PMID: 39343044 DOI: 10.1016/j.prostaglandins.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Alzheimer's disease (AD) is a degenerative disorder characterised by amyloid-beta aggregates activated by the accumulation of lipid molecules and their derivatives, especially 7-ketocholesterol (7KCh), an oxidised lipid that plays a great part in the progression of AD. The current therapeutics need bio-potential molecules and their biomedical application preventing 7KCh-induced cytotoxicity. In this study, bornyl acetate (BA) and menthol (ME), the natural monoterpenes were investigated for their neuroprotective effects against 7KCh-induced SH-SY5Y cells and their effects were compared to the standard drug galantamine (GA). 7KCh-induced changes like lipid accumulation, amyloid generation, free radical generation, acetylcholinesterase levels, calcium accumulation and mitochondrial membrane integrity were analysed in SH-SY5Y cells with or without BA and ME treatment. Furthermore, various mediators involved in the amyloidogenic, inflammatory and apoptotic pathways were studied. In our results, the cells induced with 7KCh upon co-treatment with BA and ME significantly reduced lipid accumulation and amyloid generation through toll-like receptor (TLR) 4 suppression and enhanced ATP binding cassette (ABCA) 1-mediated clearance. Co-treatment with BA and ME concurrently regulated oxidative stress, acetylcholinesterase activity, mitochondrial membrane potential and intracellular calcification altered by 7KCh-induced SH-SY5Y cells. Moreover, 7KCh-induced cells showed elevated mRNA levels of misfolded protein markers and apoptotic mediators which were significantly downregulated by BA and ME co-treatment. In addition, the protein expression of amyloidogenic, proinflammatory as well as pro-apoptotic markers was decreased by BA and ME co-treatment in 7KCh-induced cells. Overall, BA and ME mediated inhibition of amyloidogenic activation and cell survival against 7KCh-induced inflammation, thereby preventing the onset and progression of AD in comparison to GA.
Collapse
Affiliation(s)
- Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Arumugam Munusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
2
|
Ravi S, Duraisamy P, Krishnan M, Martin LC, Manikandan B, Ramar M. Sitosterol-rich Digera muricata against 7-ketocholesterol and lipopolysaccharide-mediated atherogenic responses by modulating NF-ΚB/iNOS signalling pathway in macrophages. 3 Biotech 2023; 13:331. [PMID: 37670802 PMCID: PMC10475456 DOI: 10.1007/s13205-023-03741-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Digera muricata L., commonly known as Tartara, is an edible herb used as traditional medicine in many countries of Africa and Asia. This study aimed to elucidate the effect of a phytosterol-rich extract of D. muricata on 7-ketocholesterol-mediated atherosclerosis in macrophages. The extract was examined by phytochemical analyses, GC-MS, TLC, DPPH scavenging and hRBC membrane stabilization assays. Macrophage polarization was studied with experimental groups framed based on alamar blue cell viability and griess assays. Regulations of arginase enzyme activity, ROS generation, mitochondrial membrane potential, cell membrane integrity, pinocytosis, lipid uptake and peroxidation, as well as, intracellular calcium deposition were determined. In addition, expressions of atherogenic mediators were analysed using PCR, ELISA and immunocytochemistry techniques. Diverse phytochemicals with higher free radical scavenging activity and anti-inflammatory potential have been detected in the D. muricata. Co-treatment with D. muricata markedly reduced the atherogenic responses induced by 7KCh in the presence of LPS such as ROS, especially, NO and O2- along with lipid peroxidation. Furthermore, D. muricata significantly normalized mitochondrial membrane potential, cell membrane integrity, pinocytic activity, intracellular lipid accumulation and calcium deposition. These results provided us with the potentiality of D. muricata in ameliorating atherogenesis. Additionally, it decreased the expression of pro-atherogenic mediators (iNOS, COX-2, MMP9, IL-6, IL-1β, CD36, CD163 and TGFβ1) and increased anti-atherogenic mediators (MRC1 and PPARγ) with high cellular expressions of NF-κB and iNOS. Results showed the potential of sitosterol-rich D. muricata as a versatile biomedical therapeutic agent against abnormal macrophage polarization and its associated pathologies.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600 015 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| |
Collapse
|
3
|
Duraisamy P, Ravi S, Krishnan M, Livya CM, Manikandan B, Raman T, Munusamy A, Ramar M. Scoparia dulcis and Indigofera tinctoria as potential herbal remedies against 7-ketocholesterol-induced pro-inflammatory mediators of macrophage polarization. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Prevention of Metabolic Syndrome by Phytochemicals and Vitamin D. Int J Mol Sci 2023; 24:ijms24032627. [PMID: 36768946 PMCID: PMC9917154 DOI: 10.3390/ijms24032627] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, attention has focused on the roles of phytochemicals in fruits and vegetables in maintaining and improving the intestinal environment and preventing metabolic syndrome. A high-fat and high-sugar diet, lack of exercise, and excess energy accumulation in the body can cause metabolic syndrome and induce obesity, diabetes, and disorders of the circulatory system and liver. Therefore, the prevention of metabolic syndrome is important. The current review shows that the simultaneous intake of phytochemicals contained in citruses and grapes together with vitamin D improves the state of gut microbiota and immunity, preventing metabolic syndrome and related diseases. Phytochemicals contained in citruses include polyphenols such as hesperidin, rutin, and naringin; those in grapes include quercetin, procyanidin, and oleanolic acid. The intake of these phytochemicals and vitamin D, along with prebiotics and probiotics, nurture good gut microbiota. In general, Firmicutes are obese-prone gut microbiota and Bacteroidetes are lean-prone gut microbiota; good gut microbiota nurture regulatory T cells, which suppress inflammatory responses and upregulate immunity. Maintaining good gut microbiota suppresses TNF-α, an inflammatory cytokine that is also considered to be a pathogenic contributor adipokine, and prevents chronic inflammation, thereby helping to prevent metabolic syndrome. Maintaining good gut microbiota also enhances adiponectin, a protector adipokine that prevents metabolic syndrome. For the prevention of metabolic syndrome and the reduction of various disease risks, the intake of phytochemicals and vitamin D will be important for human health in the future.
Collapse
|
5
|
Lactobacillus gasseri RW2014 Ameliorates Hyperlipidemia by Modulating Bile Acid Metabolism and Gut Microbiota Composition in Rats. Nutrients 2022; 14:nu14234945. [PMID: 36500975 PMCID: PMC9737415 DOI: 10.3390/nu14234945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Hyperlipidemia is a leading risk of cardiovascular and cerebrovascular disease. Dietary supplementation with probiotics has been suggested as an alternative intervention to lower cholesterol. In the current study, we isolated a strain of Lactobacillus gasseri RW2014 (LGA) from the feces of a healthy infant fed with breast milk, and it displayed bile salt hydrolase (BSH) activity. Using this strain we determined its cholesterol-lowering and fatty liver-improving functions. SD rats were randomly divided into four groups. The control rats were fed a commercial chow diet and the other three groups were fed a high-fat diet (HFD) for a 7-week experiment period. After two weeks of feeding, the rats in PBS, simvastin, and LGA group were daily administered through oral gavage with 2 mL PBS, simvastin (1 mg/mL), and 2 × 109 CFU/mouse live LGA in PBS, respectively. After five weeks of such treatment, the rats were euthanized and tissue samples were collected. Blood lipid and inflammatory factors were measured by ELISA, gut microbiota was determined by 16S rRNA sequencing, and bile acids profiles were detected by metabolomics. We found that LGA group had lower levels of blood cholesterol and liver steatosis compared to the simvastin group. LGA also significantly reducedthe levels of inflammatory factors in the serum, including TNFα, IL-1β, MCP-1, IL-6, and exotoxin (ET), and increased the levels of short-chain fatty acids in feces, including isobutyric acid, butyric acid, isovaleric acid, valeric acid, and hexanoic acid. In addition, LGA altered the compositions of gut microbiota as manifested by the increased ratio of Firmicutes/Bacteroides and the relative abundance of Blautia genus. Targeted metabolomics results showed that bile acids, especially free bile acids and secondary bile acids in feces, were increased in LGA rats compared with the control rats. Accordingly, the rats administrated with LGA also had a higher abundance of serum bile acids, including 23-norcholic acid, 7-ketolithocholic acid, β-muricholic acid, cholic acid, and deoxycholic acid. Together, this study suggests that LGA may exert a cholesterol-lowering effect by modulating the metabolism of bile acids and the composition of gut microbiota.
Collapse
|
6
|
Xu X, Wang Y, Li Y, Zhang B, Song Q. The future Landscape of macrophage research in cardiovascular disease: a bibliometric analysis. Curr Probl Cardiol 2022; 47:101311. [PMID: 35810847 DOI: 10.1016/j.cpcardiol.2022.101311] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
Cardiovascular disease (CVD) refers to a group of diseases involving the heart or blood vessels and is currently the leading cause of morbidity and mortality in many countries around the world and poses a serious economic burden. Macrophages are key effectors of inflammatory and innate immune responses, and their aberrant expression contributes to the development of various types of CVD.This study retrieved articles published from 1990-2022 on macrophages in CVD from the Web of Science core collection, based on CiteSpace and VOSviewer on these literature The annual output, countries and regions, institutions, authors, core journals, keywords and co-cited literature were analyzed. A total of 7,197 articles and reviews were retrieved, with a general upward trend despite slight fluctuations in annual publications. Europe, the United States and Asia are the main countries and regions publishing articles, especially the United States, with the highest number of articles (2,581), citations (173,692) and H-index (197), which also has the world's largest number of elite institutions, professional The country also has the world's largest number of elite institutions, professional researchers and high-impact journals, and is the leading country in this field of research. Keywords "inflammation", "immunology", "autophagy", "lipid-peroxidation" are the main pathogenesis of CVD caused by macrophages. "NLRP3", "nf kappa b" and "TNF-α" are the most frequently studied signalling pathways. Atherosclerosis, myocarditis and myocardial injury are the most studied disease types in this field. In addition, the study of macrophage-related CVD induced by COVID-19 seems to be a recent hot topic, and the mechanisms involved are mainly macrophage polarization, inflammatory factor storm, ACE2 and so on. The present study reveals hot spots and new trends in research on macrophages in CVD, which can provide scholars with key information in this field of research and help further explore new research directions.
Collapse
Affiliation(s)
- Xia Xu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajiao Wang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Qian Y, Xia L, Wei L, Jiang W. Artesunate attenuates foam cell formation by enhancing cholesterol efflux. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1379. [PMID: 34733931 PMCID: PMC8506543 DOI: 10.21037/atm-21-3551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022]
Abstract
Background Atherosclerosis is the main cause of many cardiovascular diseases and the second leading cause of death in elderly people. The formation of intimal macrophage-derived foam cells is a major feature of early atherosclerotic lesions. Little is known about the effects of artesunate (ART) on macrophage-derived foam cell formation. Methods Oil red O staining was employed to detect foam cell formation; colorimetric analysis was employed for cholesterol measurement; quantitative real time polymerase chain reaction (qRT-PCR) and western blot analysis were employed to assess messenger RNA (mRNA) and protein expression, respectively; enzyme-linked immunosorbent assay (ELISA) analyses were used to observe interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) release; and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were used to examine cell viability. Results It was revealed that ART attenuated oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation from THP-1-derived macrophages by decreasing cholesterol accumulation, and the effect might have occurred via enhanced cholesterol efflux. Additionally, ART decreased toll-like receptor 4 (TLR4) expression, increased adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) expression, and reduced the secretion of IL-6 and TNF-α. Conclusions This study showed that ART attenuated the ox-LDL-induced formation of foam cells from THP-1-derived macrophages by increasing ABCA1 and ABCG1 expression via inhibiting TLR4 expression and reducing TNF-α and IL-6 secretion from macrophages induced by ox-LDL, which ultimately decreased the accumulation of cholesterol. It is worthwhile further investigate ART as a potential drug for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Xia
- Department of Liver Disease, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Lai Wei
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weiwei Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|