1
|
Gaber Y, TumAllah HM, AbdelAllah NH, Al-Zereini WA, Abu-Lubad MA, Aqel AA, Elkhatib WF, Goering RV, Soliman AM. Emergence and Genomic Characterization of a spa Type t4407 ST6-SCC mec Type IVa Methicillin-Resistant Staphylococcus aureus Strain Isolated from Al-Karak Hospital, Jordan. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:295. [PMID: 38399582 PMCID: PMC10890080 DOI: 10.3390/medicina60020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is a major concern in Jordanian hospitals in terms of infection control. The purpose of this study was to identify the resistance patterns of Staphylococcus aureus strains isolated from surfaces of critical locations within the Al-Karak Governmental Hospital in 2019. Additionally, the study aimed to conduct whole-genome sequencing on the isolates. Materials and Methods: In February 2019, fourteen S. aureus strains were isolated from surfaces in critical sites in the Al-Karak Governmental Hospital. These isolates underwent antibiogram testing to determine their resistance profile. Genome sequencing using the Illumina MiSeq platform was applied to the extracted DNA from these isolates. The genomic data, including coding sequences, were analyzed to identify lineage, resistance genes, and plasmids. Results: The antibiogram results revealed that 11 of the 14 isolates were resistant to oxacillin, 6 to linezolid, and 1 to rifampicin, while none showed resistance to chloramphenicol. Eleven isolates were identified as MRSA, with a novel spa type (t4407) not previously reported in Jordan. High-quality sequencing data were obtained for only one isolate, i.e., A29, the genome showed 2,789,641 bp with a 32.7% GC content and contained 2650 coding sequences. Genomic analysis indicated the ST6 lineage, mecA gene (SCCmec type IVa(2B)), and a hybrid plasmid (pJOR_blaZ) carrying the blaZ gene for β-lactam resistance. Genomic data were deposited in NCBI (CP104989). The A29 genome closely resembled an MRSA genome isolated from a Danish hospital in 2011. The SNP analysis revealed identical antimicrobial resistance genes in these two genomes. Conclusions: This study unveils the first genomic sequence of an MRSA isolate from Jordan, marked by distinctive genotypic traits. The findings enhance our understanding of the MRSA types circulating in Jordan and the region and substantiate the phenomenon of intercontinental MRSA transmission.
Collapse
Affiliation(s)
- Yasser Gaber
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Heba M TumAllah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan
| | - Nourhan H AbdelAllah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
- Clinical Trials Department, Central Administrative of Biological, Innovative Products and Clinical Trials, Egyptian Drug Authority, Giza 12654, Egypt
| | - Wael A Al-Zereini
- Department of Biological Sciences, Faculty of Sciences, Mutah University, Al-Karak 61710, Jordan
| | - Mohammad A Abu-Lubad
- Department of Microbiology and Pathology, Faculty of Medicine, Mutah University, Al-Karak 61710, Jordan
| | - Amin A Aqel
- Department of Microbiology and Pathology, Faculty of Medicine, Mutah University, Al-Karak 61710, Jordan
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo 11566, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43713, Egypt
| | - Richard V Goering
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Ahmed M Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafr-Elsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
2
|
Bochart RM, Armantrout K, Crank H, Tonelli R, Shriver-Munsch C, Swanson T, Fischer M, Wu H, Axthelm M, Sacha J, Smedley JV. Identification of Vancomycin Resistance in Methicillin-resistant Staphylococcus aureus in two macaque species and decolonization and long-term prevention of recolonization in Cynomolgus Macaques ( Macaca fascicularis). Front Immunol 2023; 14:1244637. [PMID: 37675101 PMCID: PMC10477669 DOI: 10.3389/fimmu.2023.1244637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a S. aureus strain with resistance to beta-lactam antibiotics, making it a global human and veterinary health concern. Specifically, immunosuppressed patients have a remarkably higher risk of clinical MRSA infections with significantly increased rates of prolonged clinical recovery, morbidity, and mortality. The current treatment of choice for MRSA is vancomycin. Importantly, we report the first known vancomycin-resistant S. aureus (VRSA) carriers in a cohort of Mauritian cynomolgus macaques (CM) imported to the Oregon National Primate Research Center (ONPRC), with a MRSA carrier rate of 76.9% (10/13 animals). All MRSA isolates also demonstrated resistance to vancomycin with prevalence of vancomycin-intermediate Staphylococcus aureus (VISA) at 30% (3/10 MRSA-positive CMs) and VRSA at 70% (7/10 MRSA-positive CMs). Additionally, we identified VRSA in a rhesus macaque (RM) housed within the same room as the VRSA-positive CMs and identified a MRSA/VISA carrier rate of 18.8% in RMs (3/16 positive for both MRSA and VISA) in unexposed recently assigned animals directly from the ONPRC RM breeding colony. Considering that the MRSA and VRSA/VISA-positive CMs future study aims included significant immunosuppression, MRSA/VRSA/VISA decolonization treatment and expanded "MRSA-free" practices were employed to maintain this status. We report the first controlled study using in-depth analyses with appropriate diagnostic serial testing to definitively show an MRSA decolonization therapy (90% success rate) and expanded barrier practice techniques to successfully prevent recolonization (100%) of a cohort of CMs MRSA-free (up to 529 days with a total of 4,806 MRSA-free NHP days).
Collapse
Affiliation(s)
- Rachele M. Bochart
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Kimberly Armantrout
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Hugh Crank
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Rachael Tonelli
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Christine Shriver-Munsch
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Tonya Swanson
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Miranda Fischer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Helen Wu
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Michael Axthelm
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Jonah Sacha
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|