1
|
Hussein AM, Abouelnaga AF, Obydah W, Saad S, Abass M, Yehia A, Ibrahim EM, Ahmed AT, Abulseoud OA. Lateral hypothalamic area high-frequency deep brain stimulation rescues memory decline in aged rat: behavioral, molecular, and electrophysiological study. Pflugers Arch 2025:10.1007/s00424-024-03059-z. [PMID: 39836224 DOI: 10.1007/s00424-024-03059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
To examine the effect of DBS of the lateral hypothalamic area (LHA) on age-related memory changes, neuronal firing from CA1, oxidative stress, and the expression of Hsp70, BDNF, and synaptophysin. 72 male rats were randomly allocated into 6 equal groups: a) normal young group (8 W), b) sham young group, c) DBS young group, d) normal old group (24 months), e) sham old group and f) DBS old group. Memory tests (passive avoidance and Y maze), oxidative stress markers (MDA, catalase, and GSH) and expression of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin were measured by the end of the experiment. Also, in vivo recording of the neuronal firing of the CA1 region in the hippocampus was done. Old rats show significant decline in memories, antioxidant genes (Nrf2 and HO-1), antioxidants (GSH and catalase), Hsp70, BDNF, and synaptophysin with significant increase in MDA in hippocampus (p < 0.05) and DBS for LHA caused a significant improvement in memories in old rats, with significant rise in fast gamma and theta waves in CA1 region in old rats (p < 0.05). This was associated with a significant increase in antioxidants (GSH and CAT), antioxidant genes (Nrf2, HO-1), Hsp70, BDNF, and synaptophysin with significant reduction in MDA in hippocampus (p < 0.05). DBS for LHA ameliorates the age-induced memory decline. This might be due to increase in fast gamma in CA1, attenuation of oxidative stress, upregulation of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin in the hippocampus.
Collapse
Affiliation(s)
- Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt.
| | - Ahmed F Abouelnaga
- Department of Animal Behavior and Management, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Walaa Obydah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
| | - Somaya Saad
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa Yehia
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, USA
| | - Eman M Ibrahim
- Department of Anatomic Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed T Ahmed
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
2
|
Clausen L, Okarmus J, Voutsinos V, Meyer M, Lindorff-Larsen K, Hartmann-Petersen R. PRKN-linked familial Parkinson's disease: cellular and molecular mechanisms of disease-linked variants. Cell Mol Life Sci 2024; 81:223. [PMID: 38767677 PMCID: PMC11106057 DOI: 10.1007/s00018-024-05262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is a common and incurable neurodegenerative disorder that arises from the loss of dopaminergic neurons in the substantia nigra and is mainly characterized by progressive loss of motor function. Monogenic familial PD is associated with highly penetrant variants in specific genes, notably the PRKN gene, where homozygous or compound heterozygous loss-of-function variants predominate. PRKN encodes Parkin, an E3 ubiquitin-protein ligase important for protein ubiquitination and mitophagy of damaged mitochondria. Accordingly, Parkin plays a central role in mitochondrial quality control but is itself also subject to a strict protein quality control system that rapidly eliminates certain disease-linked Parkin variants. Here, we summarize the cellular and molecular functions of Parkin, highlighting the various mechanisms by which PRKN gene variants result in loss-of-function. We emphasize the importance of high-throughput assays and computational tools for the clinical classification of PRKN gene variants and how detailed insights into the pathogenic mechanisms of PRKN gene variants may impact the development of personalized therapeutics.
Collapse
Affiliation(s)
- Lene Clausen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
| | - Vasileios Voutsinos
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000, Odense, Denmark
- Department of Clinical Research, BRIDGE, Brain Research Inter Disciplinary Guided Excellence, University of Southern Denmark, 5230, Odense, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
3
|
Pekel AÖ, Suveren C, Arslan Y, Yavaşoğlu B, Beykumül A, Ayyıldız Durhan T, Ceylan L. Effect of 6-week karate (kihon) and basic movement exercise on balance performance in visually impaired individuals. Front Physiol 2023; 14:1332393. [PMID: 38164197 PMCID: PMC10757916 DOI: 10.3389/fphys.2023.1332393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Today, the participation of visually impaired individuals in sports activities is essential. Because the ability to move independently starts to develop with a delay in visually impaired individuals, physical activity is necessary to compensate for developmental delay, eliminate the problem of independent movement in social life by reducing obstacle perception problems, develop self-confidence, and provide regular muscle activation and motivation to move. The study investigated the effect of 6 weeks of karate (kihon) and basic movement training on balance performance in individuals with congenital visual impairment. Fifteen visually impaired individuals aged between 10 and 14 participated in the study, and three groups were formed: experiment 1, experiment 2, and the control group. After the pre-tests were taken, the experimental groups received karate and basic movement training in addition to physical education classes for 6 weeks, while the control group received only physical education classes. When the study results were examined, there were highly significant differences between the pre- and post-test values of the groups receiving karate and basic movement training. At the same time, no progress was observed in the control group. In the post-test comparison of the karate and control groups, positive significance was found in the values of the karate group. In the same way, in the post-test comparison of the basic movement training group and the control group, positive progress was made in the basic movement training group. The post-test comparison of the basic movement training and karate groups was the same. As a result, it was concluded that basic movement training and karate exercises applied for 6 weeks positively affected the balance development in visually impaired individuals aged 10-14 years. No difference was found between the exercise protocols regarding effectiveness, and no improvement was observed in individuals who did not participate in any exercise.
Collapse
Affiliation(s)
| | - Ceren Suveren
- Faculty of Sports Sciences, Gazi University, Ankara, Türkiye
| | - Yasin Arslan
- Faculty of Sports Sciences, Gazi University, Ankara, Türkiye
| | - Belma Yavaşoğlu
- Health Sciences Institute, Kırşehir Ahi Evran University, Kırşehir, Türkiye
| | | | | | - Levent Ceylan
- Faculty of Sports Sciences, Sivas Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
4
|
Fanalli SL, da Silva BPM, Gomes JD, de Almeida VV, Freitas FAO, Moreira GCM, Silva-Vignato B, Afonso J, Reecy J, Koltes J, Koltes D, de Almeida Regitano LC, Garrick DJ, de Carvalho Balieiro JC, Meira AN, Freitas L, Coutinho LL, Fukumasu H, Mourão GB, de Alencar SM, Luchiari Filho A, Cesar ASM. Differential Gene Expression Associated with Soybean Oil Level in the Diet of Pigs. Animals (Basel) 2022; 12:1632. [PMID: 35804531 PMCID: PMC9265114 DOI: 10.3390/ani12131632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to identify the differentially expressed genes (DEG) from the skeletal muscle and liver samples of animal models for metabolic diseases in humans. To perform the study, the fatty acid (FA) profile and RNA sequencing (RNA-Seq) data of 35 samples of liver tissue (SOY1.5, n = 17 and SOY3.0, n = 18) and 36 samples of skeletal muscle (SOY1.5, n = 18 and SOY3.0, n = 18) of Large White pigs were analyzed. The FA profile of the tissues was modified by the diet, mainly those related to monounsaturated (MUFA) and polyunsaturated (PUFA) FA. The skeletal muscle transcriptome analysis revealed 45 DEG (FDR 10%), and the functional enrichment analysis identified network maps related to inflammation, immune processes, and pathways associated with oxidative stress, type 2 diabetes, and metabolic dysfunction. For the liver tissue, the transcriptome profile analysis revealed 281 DEG, which participate in network maps related to neurodegenerative diseases. With this nutrigenomics study, we verified that different levels of soybean oil in the pig diet, an animal model for metabolic diseases in humans, affected the transcriptome profile of skeletal muscle and liver tissue. These findings may help to better understand the biological mechanisms that can be modulated by the diet.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (S.L.F.); (B.P.M.d.S.); (H.F.)
| | - Bruna Pereira Martins da Silva
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (S.L.F.); (B.P.M.d.S.); (H.F.)
| | - Julia Dezen Gomes
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Vivian Vezzoni de Almeida
- College of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia 74690-900, GO, Brazil;
| | - Felipe André Oliveira Freitas
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | | | - Bárbara Silva-Vignato
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Juliana Afonso
- Embrapa Pecuária Sudeste, São Carlos 70770-901, SP, Brazil; (J.A.); (L.C.d.A.R.)
| | - James Reecy
- College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA; (J.R.); (J.K.); (D.K.)
| | - James Koltes
- College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA; (J.R.); (J.K.); (D.K.)
| | - Dawn Koltes
- College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA; (J.R.); (J.K.); (D.K.)
| | | | - Dorian John Garrick
- AL Rae Centre for Genetics and Breeding, Massey University, Hamilton 3214, New Zealand;
| | | | - Ariana Nascimento Meira
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Luciana Freitas
- DB Genética de Suínos, Patos de Minas 38706-000, MG, Brazil;
| | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (S.L.F.); (B.P.M.d.S.); (H.F.)
| | - Gerson Barreto Mourão
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Severino Matias de Alencar
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Albino Luchiari Filho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (S.L.F.); (B.P.M.d.S.); (H.F.)
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil; (J.D.G.); (F.A.O.F.); (B.S.-V.); (A.N.M.); (L.L.C.); (G.B.M.); (S.M.d.A.); (A.L.F.)
| |
Collapse
|
5
|
Makhoba XH, Makumire S. The capture of host cell’s resources: The role of heat shock proteins and polyamines in SARS-COV-2 (COVID-19) pathway to viral infection. Biomol Concepts 2022; 13:220-229. [DOI: 10.1515/bmc-2022-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
The exposure of organisms and cells to unfavorable conditions such as increased temperature, antibiotics, reactive oxygen species, and viruses could lead to protein misfolding and cell death. The increased production of proteins such as heat shock proteins (HSPs) and polyamines has been linked to protein misfolding sequestration, thus maintaining, enhancing, and regulating the cellular system. For example, heat shock protein 40 (Hsp40) works hand in hand with Hsp70 and Hsp90 to successfully assist the newly synthesized proteins in folding properly. On the other hand, polyamines such as putrescine, spermidine, and spermine have been widely studied and reported to keep cells viable under harsh conditions, which are also involved in cell proliferation, differentiation, and growth. Polyamines are found in all living organisms, including humans and viruses. Some organisms have developed a mechanism to hijack mammalian host cell machinery for their benefit like viruses need polyamines for infection. Therefore, the role of HSPs and polyamines in SARS-CoV-2 (COVID-19) viral infection, how these molecules could delay the effectiveness of the current treatment in the market, and how COVID-19 relies on the host molecules for its successful infection are reviewed.
Collapse
Affiliation(s)
- Xolani Henry Makhoba
- Department of Biochemistry and Microbiology, University of Fort Hare , Alice Campus , Alice , South Africa
| | - Stanley Makumire
- Department of Integrative Biomedical Sciences, Structural Biology Research Unit, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Observatory 7925 , South Africa
| |
Collapse
|
6
|
Koszła O, Sołek P, Kędzierska E, Listos P, Castro M, Kaczor AA. In vitro and in vivo evaluation of antioxidant and neuroprotective properties of antipsychotic D2AAK1. Neurochem Res 2022; 47:1778-1789. [PMID: 35380398 DOI: 10.1007/s11064-022-03570-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/30/2022]
Abstract
The susceptibility of neurons to free radical toxicity partially underlies the pathomechanism of neurodegenerative diseases. On the other hand, excitotoxicity also contributes to neurodegeneration. Our previous studies demonstrated the unique properties of D2AAK1 as a potent multi-target ligand of aminergic G protein-coupled receptors (GPCRs) which dose-dependently stimulates growth, survival of neurons, and promotes their integrity. The aim of our study was to investigate the potential neuroprotective and antioxidant properties of D2AAK1. Here we show that D2AAK1 activates cellular and molecular neuroprotective mechanisms, prevents cells from excitotoxicity and free radicals. Furthermore, D2AAK1 induced no genotoxic events in neuronal cells in vitro. Most importantly, D2AAK1 protects neurons from the effects of high temperatures by molecular chaperones activation. The D2AAK1 effects on selected organs was further evaluated in mice and no pathological changes were observed after chronic administration. In the light of our experiments, D2AAK1 can be further developed into a potential treatment for neurodegenerative diseases, in particular related to memory impairment. In summary, D2AAK1 has promising properties for potential treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St, 20-093, Lublin, Poland.
| | - Przemysław Sołek
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 1 Pigonia St, 35-310, Rzeszow, Poland
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St, 20-093, Lublin, Poland
| | - Piotr Listos
- Department of Pathomorphology and Forensic Veterinary Medicine, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 30 Głęboka St, 20-033, Lublin, Poland
| | - Marián Castro
- Department of Pharmacology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Avda de Barcelona, E-15782, Santiago de Compostela, Spain
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St, 20-093, Lublin, Poland. .,School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
7
|
Štorkánová H, Oreská S, Špiritović M, Heřmánková B, Bubová K, Kryštůfková O, Mann H, Komarc M, Slabý K, Pavelka K, Šenolt L, Zámečník J, Vencovský J, Tomčík M. Hsp90 Levels in Idiopathic Inflammatory Myopathies and Their Association With Muscle Involvement and Disease Activity: A Cross-Sectional and Longitudinal Study. Front Immunol 2022; 13:811045. [PMID: 35154129 PMCID: PMC8832010 DOI: 10.3389/fimmu.2022.811045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Heat shock proteins (Hsp) are chaperones playing essential roles in skeletal muscle physiology, adaptation to exercise or stress, and activation of inflammatory cells. We aimed to assess Hsp90 in patients with idiopathic inflammatory myopathies (IIM) and its association with IIM-related features. Methods Hsp90 plasma levels were analyzed in a cross-sectional cohort (277 IIM patients and 157 healthy controls [HC]) and two longitudinal cohorts to assess the effect of standard-of-care pharmacotherapy (n=39 in early disease and n=23 in established disease). Hsp90 and selected cytokines/chemokines were measured by commercially available ELISA and human Cytokine 27-plex Assay. Results Hsp90 plasma levels were increased in IIM patients compared to HC (median [IQR]: 20.2 [14.3–40.1] vs 9.8 [7.5–13.8] ng/mL, p<0.0001). Elevated Hsp90 was found in IIM patients with pulmonary, cardiac, esophageal, and skeletal muscle involvement, with higher disease activity or damage, and with elevated muscle enzymes and crucial cytokines/chemokines involved in the pathogenesis of myositis (p<0.05 for all). Plasma Hsp90 decreased upon pharmacological treatment in both patients with early and established disease. Notably, Hsp90 plasma levels were slightly superior to traditional biomarkers, such as C-reactive protein and creatine kinase, in differentiating IIM from HC, and IIM patients with cardiac involvement and interstitial lung disease from those without these manifestations. Conclusions Hsp90 is increased systemically in patients with IIM. Plasma Hsp90 could become an attractive soluble biomarker of disease activity and damage and a potential predictor of treatment response in IIM.
Collapse
Affiliation(s)
- Hana Štorkánová
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Sabína Oreská
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Maja Špiritović
- Institute of Rheumatology, Prague, Czechia
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Barbora Heřmánková
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Kristýna Bubová
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Olga Kryštůfková
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Heřman Mann
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Komarc
- Department of Methodology, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Kryštof Slabý
- Department of Rehabilitation and Sports Medicine, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Karel Pavelka
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Ladislav Šenolt
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, 2 Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jiří Vencovský
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Tomčík
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, 1 Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Michal Tomčík,
| |
Collapse
|
8
|
Bhatia TN, Clark RN, Needham PG, Miner KM, Jamenis AS, Eckhoff EA, Abraham N, Hu X, Wipf P, Luk KC, Brodsky JL, Leak RK. Heat Shock Protein 70 as a Sex-Skewed Regulator of α-Synucleinopathy. Neurotherapeutics 2021; 18:2541-2564. [PMID: 34528172 PMCID: PMC8804008 DOI: 10.1007/s13311-021-01114-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 01/01/2023] Open
Abstract
The role of molecular chaperones, such as heat shock protein 70 (Hsp70), is not typically studied as a function of biological sex, but by addressing this gap we might improve our understanding of proteinopathic disorders that predominate in one sex. Therefore, we exposed male or female primary hippocampal cultures to preformed α-synuclein fibrils in a model of early-stage Lewy pathology. We first discovered that two mechanistically distinct inhibitors of Hsp70 function increased phospho-α-synuclein+ inclusions more robustly in male-derived neurons. Because Hsp70 is released into extracellular compartments and may restrict cell-to-cell transmission/amplification of α-synucleinopathy, we then tested the effects of low-endotoxin, exogenous Hsp70 (eHsp70) in primary hippocampal cultures. eHsp70 was taken up by and reduced α-synuclein+ inclusions in cells of both sexes, but pharmacological suppression of Hsp70 function attenuated the inhibitory effect of eHsp70 on perinuclear inclusions only in male neurons. In 20-month-old male mice infused with α-synuclein fibrils in the olfactory bulb, daily intranasal eHsp70 delivery also reduced inclusion numbers and the time to locate buried food. eHsp70 penetrated the limbic system and spinal cord of male mice within 3 h but was cleared within 72 h. Unexpectedly, no evidence of eHsp70 uptake from nose into brain was observed in females. A trend towards higher expression of inducible Hsp70-but not constitutive Hsp70 or Hsp40-was observed in amygdala tissues from male subjects with Lewy body disorders compared to unaffected male controls, supporting the importance of this chaperone in human disease. Women expressed higher amygdalar Hsp70 levels compared to men, regardless of disease status. Together, these data provide a new link between biological sex and a key chaperone that orchestrates proteostasis.
Collapse
Affiliation(s)
- Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Patrick G Needham
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Elizabeth A Eckhoff
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Dept. of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Dept. of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey L Brodsky
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Rai SN, Singh P, Varshney R, Chaturvedi VK, Vamanu E, Singh MP, Singh BK. Promising drug targets and associated therapeutic interventions in Parkinson's disease. Neural Regen Res 2021; 16:1730-1739. [PMID: 33510062 PMCID: PMC8328771 DOI: 10.4103/1673-5374.306066] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is one of the most debilitating brain diseases. Despite the availability of symptomatic treatments, response towards the health of PD patients remains scarce. To fulfil the medical needs of the PD patients, an efficacious and etiological treatment is required. In this review, we have compiled the information covering limitations of current therapeutic options in PD, novel drug targets for PD, and finally, the role of some critical beneficial natural products to control the progression of PD.
Collapse
Affiliation(s)
| | - Payal Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ritu Varshney
- Department of Bioengineering and Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | | | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, Bucharest, Romania
| | - M. P. Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
10
|
Marzullo L, Turco MC, Uversky VN. What's in the BAGs? Intrinsic disorder angle of the multifunctionality of the members of a family of chaperone regulators. J Cell Biochem 2021; 123:22-42. [PMID: 34339540 DOI: 10.1002/jcb.30123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
In humans, the family of Bcl-2 associated athanogene (BAG) proteins includes six members characterized by exceptional multifunctionality and engagement in the pathogenesis of various diseases. All of them are capable of interacting with a multitude of often unrelated binding partners. Such binding promiscuity and related functional and pathological multifacetedness cannot be explained or understood within the frames of the classical "one protein-one structure-one function" model, which also fails to explain the presence of multiple isoforms generated for BAG proteins by alternative splicing or alternative translation initiation and their extensive posttranslational modifications. However, all these mysteries can be solved by taking into account the intrinsic disorder phenomenon. In fact, high binding promiscuity and potential to participate in a broad spectrum of interactions with multiple binding partners, as well as a capability to be multifunctional and multipathogenic, are some of the characteristic features of intrinsically disordered proteins and intrinsically disordered protein regions. Such functional proteins or protein regions lacking unique tertiary structures constitute a cornerstone of the protein structure-function continuum concept. The aim of this paper is to provide an overview of the functional roles of human BAG proteins from the perspective of protein intrinsic disorder which will provide a means for understanding their binding promiscuity, multifunctionality, and relation to the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Liberato Marzullo
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Maria C Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
11
|
Štorkánová H, Štorkánová L, Navrátilová A, Bečvář V, Hulejová H, Oreská S, Heřmánková B, Špiritović M, Bečvář R, Pavelka K, Vencovský J, Distler JHW, Šenolt L, Tomčík M. Inhibition of Hsp90 Counteracts the Established Experimental Dermal Fibrosis Induced by Bleomycin. Biomedicines 2021; 9:650. [PMID: 34200311 PMCID: PMC8226767 DOI: 10.3390/biomedicines9060650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Our previous study demonstrated that heat shock protein 90 (Hsp90) is overexpressed in the involved skin of patients with systemic sclerosis (SSc) and in experimental dermal fibrosis. Pharmacological inhibition of Hsp90 prevented the stimulatory effects of transforming growth factor-beta on collagen synthesis and the development of dermal fibrosis in three preclinical models of SSc. In the next step of the preclinical analysis, herein, we aimed to evaluate the efficacy of an Hsp90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), in the treatment of established experimental dermal fibrosis induced by bleomycin. Treatment with 17-DMAG demonstrated potent antifibrotic and anti-inflammatory properties: it decreased dermal thickening, collagen content, myofibroblast count, expression of transforming growth factor beta receptors, and pSmad3-positive cell counts, as well as leukocyte infiltration and systemic levels of crucial cytokines/chemokines involved in the pathogenesis of SSc, compared to vehicle-treated mice. 17-DMAG effectively prevented further progression and may induce regression of established bleomycin-induced dermal fibrosis to an extent comparable to nintedanib. These findings provide further evidence of the vital role of Hsp90 in the pathophysiology of SSc and characterize it as a potential target for the treatment of fibrosis with translational implications due to the availability of several Hsp90 inhibitors in clinical trials for other indications.
Collapse
Affiliation(s)
- Hana Štorkánová
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Lenka Štorkánová
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
| | - Adéla Navrátilová
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Viktor Bečvář
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
| | - Hana Hulejová
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
| | - Sabína Oreská
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Barbora Heřmánková
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, 16252 Prague, Czech Republic;
| | - Maja Špiritović
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, 16252 Prague, Czech Republic;
| | - Radim Bečvář
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Karel Pavelka
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Jiří Vencovský
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Jörg H. W. Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Ladislav Šenolt
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Michal Tomčík
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| |
Collapse
|
12
|
Kapadia M, De Snoo ML, Kalia LV, Kalia SK. Regulation of Parkin-dependent mitophagy by Bcl-2-associated athanogene (BAG) family members. Neural Regen Res 2021; 16:684-685. [PMID: 33063725 PMCID: PMC8067924 DOI: 10.4103/1673-5374.295330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Minesh Kapadia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | | | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network; Faculty of Medicine; Department of Laboratory Medicine and Pathobiology, University of Toronto; Tanz Centre for Research in Neurodegenerative Diseases, Division of Neurology, Department of Medicine, University of Toronto, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network; Faculty of Medicine; Department of Laboratory Medicine and Pathobiology, University of Toronto; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
13
|
Fini ME, Jeong S, Wilson MR. Therapeutic Potential of the Molecular Chaperone and Matrix Metalloproteinase Inhibitor Clusterin for Dry Eye. Int J Mol Sci 2020; 22:E116. [PMID: 33374364 PMCID: PMC7794831 DOI: 10.3390/ijms22010116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Evidence is presented herein supporting the potential of the natural homeostatic glycoprotein CLU (clusterin) as a novel therapeutic for the treatment of dry eye. This idea began with the demonstration that matrix metalloproteinase MMP9 is required for damage to the ocular surface in mouse dry eye. Damage was characterized by degradation of OCLN (occludin), a known substrate of MMP9 and a key component of the paracellular barrier. Following up on this finding, a yeast two-hybrid screen was conducted using MMP9 as the bait to identify other proteins involved. CLU emerged as a strong interacting protein that inhibits the enzymatic activity of MMP9. Previously characterized as a molecular chaperone, CLU is expressed prominently by epithelia at fluid-tissue interfaces and secreted into bodily fluids, where it protects cells and tissues against damaging stress. It was demonstrated that CLU also protects the ocular surface in mouse dry eye when applied topically to replace the natural protein depleted from the dysfunctional tears. CLU is similarly depleted from tears in human dry eye. The most novel and interesting finding was that CLU binds selectively to the damaged ocular surface. In this position, CLU protects against epithelial cell death and barrier proteolysis, and dampens the autoimmune response, while the apical epithelial cell layer is renewed. When present at high enough concentration, CLU also blocks staining by vital dyes used clinically to diagnose dry eye. None of the current therapeutics have this combination of properties to "protect, seal, and heal". Future work will be directed towards human clinical trials to investigate the therapeutic promise of CLU.
Collapse
Affiliation(s)
- M. Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences Tufts University, Boston, MA 02111, USA
| | - Shinwu Jeong
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA;
| | - Mark R. Wilson
- The Illawarra Health and Medical Research Institute, Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
14
|
Kreiser RP, Wright AK, Block NR, Hollows JE, Nguyen LT, LeForte K, Mannini B, Vendruscolo M, Limbocker R. Therapeutic Strategies to Reduce the Toxicity of Misfolded Protein Oligomers. Int J Mol Sci 2020; 21:ijms21228651. [PMID: 33212787 PMCID: PMC7696907 DOI: 10.3390/ijms21228651] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The aberrant aggregation of proteins is implicated in the onset and pathogenesis of a wide range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Mounting evidence indicates that misfolded protein oligomers produced as intermediates in the aggregation process are potent neurotoxic agents in these diseases. Because of the transient and heterogeneous nature of these elusive aggregates, however, it has proven challenging to develop therapeutics that can effectively target them. Here, we review approaches aimed at reducing oligomer toxicity, including (1) modulating the oligomer populations (e.g., by altering the kinetics of aggregation by inhibiting, enhancing, or redirecting the process), (2) modulating the oligomer properties (e.g., through the size–hydrophobicity–toxicity relationship), (3) modulating the oligomer interactions (e.g., by protecting cell membranes by displacing oligomers), and (4) reducing oligomer toxicity by potentiating the protein homeostasis system. We analyze examples of these complementary approaches, which may lead to the development of compounds capable of preventing or treating neurodegenerative disorders associated with protein aggregation.
Collapse
Affiliation(s)
- Ryan P. Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Aidan K. Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Natalie R. Block
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Jared E. Hollows
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Lam T. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Kathleen LeForte
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
- Correspondence: (M.V.); (R.L.)
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
- Correspondence: (M.V.); (R.L.)
| |
Collapse
|
15
|
Friesen EL, Zhang YT, Earnshaw R, De Snoo ML, O'Hara DM, Agapova V, Chau H, Ngana S, Chen KS, Kalia LV, Kalia SK. BAG5 Promotes Alpha-Synuclein Oligomer Formation and Functionally Interacts With the Autophagy Adaptor Protein p62. Front Cell Dev Biol 2020; 8:716. [PMID: 32850835 PMCID: PMC7417480 DOI: 10.3389/fcell.2020.00716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones are critical to maintaining intracellular proteostasis and have been shown to have a protective role against alpha-synuclein-mediated toxicity. Co-chaperone proteins regulate the activity of molecular chaperones and connect the chaperone network to protein degradation and cell death pathways. Bcl-2 associated athanogene 5 (BAG5) is a co-chaperone that modulates proteostasis by inhibiting the activity of Heat shock protein 70 (Hsp70) and several E3 ubiquitin ligases, resulting in enhanced neurodegeneration in models of Parkinson's disease (PD). Here we identify a novel interaction between BAG5 and p62/sequestosome-1 (SQSTM1), suggesting that BAG5 may bridge the chaperone network to autophagy-mediated protein degradation. We found that BAG5 enhanced the formation of pathogenic alpha-synuclein oligomers and regulated the levels and subcellular distribution of p62. These results extend the role of BAG5 in alpha-synuclein processing and intracellular proteostasis.
Collapse
Affiliation(s)
- Erik L Friesen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Yu Tong Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Rebecca Earnshaw
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Mitch L De Snoo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Darren M O'Hara
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Victoria Agapova
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Hien Chau
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Sophie Ngana
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Kevin S Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Lorraine V Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Askar MH, Hussein AM, Al-Basiony SF, Meseha RK, Metias EF, Salama MM, Antar A, El-Sayed A. Effects of Exercise and Ferulic Acid on Alpha Synuclein and Neuroprotective Heat Shock Protein 70 in An Experimental Model of Parkinsonism Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:156-169. [PMID: 30113007 DOI: 10.2174/1871527317666180816095707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & OBJECTIVE This study investigated the effects of ferulic acid (FR), muscle exercise (Ex) and combination of them on rotenone (Rot)-induced Parkinson disease (PD) in mice as well as their underlying mechanisms. METHOD 56 male C57BL/6 mice were allocated into 8 equal groups, 1) Normal control (CTL), 2) FR (mice received FR at 20 mg/kg/day), 3) Ex (mice received swimming Ex) and 4) Ex + FR (mice received FR and Ex), 5) Rot (mice received Rot 3 mg/Kg i.p. for 70 days), 6) ROT+ FR (mice received Rot + FR at 20 mg/kg/day), 7) ROT+ Ex (mice received Rot + swimming Ex) and 8) ROT+ Ex + FR (mice received Rot + FR and Ex). ROT group showed significant impairment in motor performance and significant reduction in tyrosine hydroxylase (TH) density and Hsp70 expression (p< 0.05) with Lewy bodies (alpha synuclein) aggregates in corpus striatum. Also, ROT+FR, ROT+EX and ROT + Ex+ FR groups showed significant improvement in behavioral and biochemical changes, however the effect of FR alone was more potent than Ex alone (p< 0.05) and addition of Ex to FR caused no more significant improvement than FR alone. CONCLUSION We concluded that, FR and Ex improved the motor performance in rotenone-induced PD rodent model which might be due to increased Hsp70 expression and TH density in corpus striatum and combination of both did not offer more protection than FR alone.
Collapse
Affiliation(s)
- Mona H Askar
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Abdelaziz M Hussein
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Soheir F Al-Basiony
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Refka K Meseha
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Emile F Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Mohamed M Salama
- Department of Clinical Toxicology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Ashraf Antar
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Aya El-Sayed
- MERC, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| |
Collapse
|
17
|
Elmatboly AM, Sherif AM, Deeb DA, Benmelouka A, Bin-Jumah MN, Aleya L, Abdel-Daim MM. The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11461-11483. [PMID: 32072427 DOI: 10.1007/s11356-020-07914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Aggregation of particular proteins in the form of inclusion bodies or plaques followed by neuronal death is a hallmark of neurodegenerative proteopathies such as primary Parkinsonism, Alzheimer's disease, Lou Gehrig's disease, and Huntington's chorea. Complex polygenic and environmental factors implicated in these proteopathies. Accumulation of proteins in these disorders indicates a substantial disruption in protein homeostasis (proteostasis). Proteostasis or cellular proteome homeostasis is attained by the synchronization of a group of cellular mechanisms called the proteostasis network (PN), which is responsible for the stability of the proteome and achieves the equilibrium between synthesis, folding, and degradation of proteins. In this review, we will discuss the different types of PN and the impact of PN component dysfunction on the four major neurodegenerative diseases mentioned earlier. Graphical abstract.
Collapse
Affiliation(s)
| | - Ahmed M Sherif
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Dalia A Deeb
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Amira Benmelouka
- Faculty of Medicine, University of Algiers, Sidi M'Hamed, Algeria
| | - May N Bin-Jumah
- Biology Department, College Of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
18
|
Chung HJ, Islam MS, Rahman MM, Hong ST. Neuroprotective function of Omi to α-synuclein-induced neurotoxicity. Neurobiol Dis 2020; 136:104706. [DOI: 10.1016/j.nbd.2019.104706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 01/19/2023] Open
|
19
|
Xi J, Li QQ, Li BQ, Li N. miR‑155 inhibition represents a potential valuable regulator in mitigating myocardial hypoxia/reoxygenation injury through targeting BAG5 and MAPK/JNK signaling. Mol Med Rep 2020; 21:1011-1020. [PMID: 31922242 PMCID: PMC7003039 DOI: 10.3892/mmr.2020.10924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence has indicated that miR-155 is closely associated with apoptosis, which may protect the myocardium and diminish the infarct area in myocardial ischemia reperfusion injury (IRI). In addition, studies have revealed that miR-155 serves a leading role in promoting fibroblast inflammation, cardiac dysfunction and other aspects of myocardial injury. The present study aimed to uncover the function and potential biological mechanism of miR-155 in myocardial IRI. The rat H9c2 myocardial cells was treated with hypoxia/reoxygenation (H/R) to simulate IRI in vitro. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of miR-155 mRNA. Cell Counting Kit-8 and flow cytometry assays and western blot analysis were applied to determine the biological behaviors of the H/R-treated cells. The association between miR-155 and BAG family molecular chaperone regulator 5 (BAG5) was predicted by bioinformatics software and was confirmed by dual luciferase assay. RT-qPCR and western blot analysis were used to analyze the expression of BAG5. The key proteins involved in mitogen-activated protein kinase (MAPK)/JNK signaling pathway were detected by western blot analysis. The data from the RT-qPCR assay indicated that the expression of miR-155 was markedly upregulated in the H/R model, and that downregulation of miR-155 may promote cell proliferation and inhibit cell apoptosis, and vice versa. BAG5, which was downregulated in the H/R model, was confirmed as a target of miR-155 and negatively modulated by miR-155. The key proteins involved in MAPK/JNK signaling, which were highly expressed in the H/R model, were suppressed by treatment with the miR-155 inhibitor, and overexpression of BAG5 promoted the protective effect of miR-155 inhibition on cell injury caused by H/R. In addition, the expression patterns of hypoxia-inducible factor 1-α and von Hippel-Lindau were altered following different treatments. Taken together, the data from the present study indicated that miR-155 inhibition represented a potential treatment strategy to improve myocardial H/R injury, which may be associated with targeting BAG5 and inhibition of the MAPK/JNK pathway.
Collapse
Affiliation(s)
- Jing Xi
- Department of Cardiology, Anqiu People's Hospital, Weifang, Shandong 262100, P.R. China
| | - Qiang-Qiang Li
- Department of Cardiology in Integrated Traditional Chinese and Western Medicine, Anqiu People's Hospital, Weifang, Shandong 262100, P.R. China
| | - Bing-Qiang Li
- Department of Cardiology, Anqiu People's Hospital, Weifang, Shandong 262100, P.R. China
| | - Ning Li
- Department of Cardiology, Anqiu People's Hospital, Weifang, Shandong 262100, P.R. China
| |
Collapse
|
20
|
Lindstedt P, Aprile FA, Matos MJ, Perni M, Bertoldo JB, Bernardim B, Peter Q, Jiménez-Osés G, Knowles TPJ, Dobson CM, Corzana F, Vendruscolo M, Bernardes GJL. Enhancement of the Anti-Aggregation Activity of a Molecular Chaperone Using a Rationally Designed Post-Translational Modification. ACS CENTRAL SCIENCE 2019; 5:1417-1424. [PMID: 31482124 PMCID: PMC6716132 DOI: 10.1021/acscentsci.9b00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Protein behavior is closely regulated by a plethora of post-translational modifications (PTMs). It is therefore desirable to develop approaches to design rational PTMs to modulate specific protein functions. Here, we report one such method, and we illustrate its successful implementation by potentiating the anti-aggregation activity of a molecular chaperone. Molecular chaperones are a multifaceted class of proteins essential to protein homeostasis, and one of their major functions is to combat protein misfolding and aggregation, a phenomenon linked to a number of human disorders. In this work, we conjugated a small-molecule inhibitor of the aggregation of α-synuclein, a process associated with Parkinson's disease (PD), to a specific cysteine residue on human Hsp70, a molecular chaperone with five free cysteines. We show that this regioselective conjugation augments in vitro the anti-aggregation activity of Hsp70 in a synergistic manner. This Hsp70 variant also displays in vivo an enhanced suppression of α-synuclein aggregation and its associated toxicity in a Caenorhabditis elegans model of PD.
Collapse
Affiliation(s)
- Philip
R. Lindstedt
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Francesco A. Aprile
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Maria J. Matos
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Michele Perni
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jean B. Bertoldo
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Barbara Bernardim
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Quentin Peter
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonzalo Jiménez-Osés
- Departamento
de Química, Universidad de La Rioja, Centro de Investigación en Síntesis
Química, 26006 Logroño, Spain
- CIC
bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christopher M. Dobson
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Francisco Corzana
- Departamento
de Química, Universidad de La Rioja, Centro de Investigación en Síntesis
Química, 26006 Logroño, Spain
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
21
|
Sun Y, Yao X, March ME, Meng X, Li J, Wei Z, Sleiman PMA, Hakonarson H, Xia Q, Li J. Target Genes of Autism Risk Loci in Brain Frontal Cortex. Front Genet 2019; 10:707. [PMID: 31447881 PMCID: PMC6696877 DOI: 10.3389/fgene.2019.00707] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neuropsychiatric disorder. A number of genetic risk loci have been identified for ASD from genome-wide association studies (GWAS); however, their target genes in relevant tissues and cell types remain to be investigated. The frontal cortex is a key region in the human brain for communication and cognitive function. To identify risk genes contributing to potential dysfunction in the frontal cortex of ASD patients, we took an in silico approach integrating multi-omics data. We first found genes with expression in frontal cortex tissue that correlates with ASD risk loci by leveraging expression quantitative trait loci (eQTLs) information. Among these genes, we then identified 76 genes showing significant differential expression in the frontal cortex between ASD cases and controls in microarray datasets and further replicated four genes with RNA-seq data. Among the ASD GWAS single nucleotide polymorphisms (SNPs) correlating with the 76 genes, 20 overlap with histone marks and 40 are associated with gene methylation level. Thus, through multi-omics data analyses, we identified genes that may work as target genes of ASD risk loci in the brain frontal cortex.
Collapse
Affiliation(s)
- Yan Sun
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xueming Yao
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Xinyi Meng
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Junyi Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhi Wei
- College of Computing Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| | - Patrick M A Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Qianghua Xia
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jin Li
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
22
|
Kaur J, Bhardwaj A, Melancon BJ, Blagg BSJ. The succinct synthesis of AT13387, a clinically relevant Hsp90 inhibitor. SYNTHETIC COMMUN 2019; 49:1436-1443. [PMID: 33093687 DOI: 10.1080/00397911.2019.1602654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AT13387 is an orally bioavailable clinical candidate developed to inhibit theheat shock protein 90 (Hsp90). This article describes a modified synthetic route for the multi-gram production of AT13387 in 46% overall yield. The modified synthetic route is short, avoids stringent reaction conditions and difficult purifications, which led to increase in an overall yield.
Collapse
Affiliation(s)
- Jatinder Kaur
- Warren Family Research Center for Drug Discovery and Development, Department of Chemistry and Biochemistry,University of Notre Dame, Notre Dame, Indiana, USA
| | - Atul Bhardwaj
- Warren Family Research Center for Drug Discovery and Development, Department of Chemistry and Biochemistry,University of Notre Dame, Notre Dame, Indiana, USA
| | - Bruce J Melancon
- Warren Family Research Center for Drug Discovery and Development, Department of Chemistry and Biochemistry,University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian S J Blagg
- Warren Family Research Center for Drug Discovery and Development, Department of Chemistry and Biochemistry,University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
23
|
Kishinevsky S, Wang T, Rodina A, Chung SY, Xu C, Philip J, Taldone T, Joshi S, Alpaugh ML, Bolaender A, Gutbier S, Sandhu D, Fattahi F, Zimmer B, Shah SK, Chang E, Inda C, Koren J, Saurat NG, Leist M, Gross SS, Seshan VE, Klein C, Tomishima MJ, Erdjument-Bromage H, Neubert TA, Henrickson RC, Chiosis G, Studer L. HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons. Nat Commun 2018; 9:4345. [PMID: 30341316 PMCID: PMC6195591 DOI: 10.1038/s41467-018-06486-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Environmental and genetic risk factors contribute to Parkinson’s Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases. The early molecular events that ultimately lead to neuronal cell death in pathologies such as Parkinson’s disease are poorly understood. Here the authors use pluripotent stem-cell-derived human midbrain neurons and chemical biology tools to gain molecular level insight into the events induced by toxic and genetic stresses that mimic those occurring during neurodegeneration.
Collapse
Affiliation(s)
- Sarah Kishinevsky
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Neuroscience Graduate Program of Weill Cornell Graduate School of Biomedical Sciences, Weill Cornell Medical College, 1300 York Avenue, Box 65, New York, NY, 10065, USA
| | - Tai Wang
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Anna Rodina
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sun Young Chung
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Chao Xu
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - John Philip
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Tony Taldone
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Suhasini Joshi
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Mary L Alpaugh
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Molecular and Cellular Biosciences, Rowan University, 1275 York Avenue, Glassboro, NJ, 08028, USA
| | - Alexander Bolaender
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, 78464, Germany
| | - Davinder Sandhu
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Faranak Fattahi
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Bastian Zimmer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Smit K Shah
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Elizabeth Chang
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Carmen Inda
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Hostos Community College, City University of New York, Bronx, NY, 10453, USA
| | - John Koren
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nathalie G Saurat
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, 78464, Germany
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10017, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, 23538, Germany
| | - Mark J Tomishima
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,SKI Stem Cell Research Facility, 1275 York Avenue, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Ronald C Henrickson
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| |
Collapse
|
24
|
Hutt DM, Mishra SK, Roth DM, Larsen MB, Angles F, Frizzell RA, Balch WE. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. J Biol Chem 2018; 293:13682-13695. [PMID: 29986884 DOI: 10.1074/jbc.ra118.002607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/05/2018] [Indexed: 01/11/2023] Open
Abstract
The protein chaperones heat shock protein 70 (Hsp70) and Hsp90 are required for de novo folding of proteins and protect against misfolding-related cellular stresses by directing misfolded or slowly folding proteins to the ubiquitin/proteasome system (UPS) or autophagy/lysosomal degradation pathways. Here, we examined the role of the Bcl2-associated athanogene (BAG) family of Hsp70-specific nucleotide-exchange factors in the biogenesis and functional correction of genetic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) whose mutations cause cystic fibrosis (CF). We show that siRNA-mediated silencing of BAG1 and -3, two BAG members linked to the clearance of misfolded proteins via the UPS and autophagy pathways, respectively, leads to functional correction of F508del-CFTR and other disease-associated CFTR variants. BAG3 silencing was the most effective, leading to improved F508del-CFTR stability, trafficking, and restoration of cell-surface function, both alone and in combination with the FDA-approved CFTR corrector, VX-809. We also found that the BAG3 silencing-mediated correction of F508del-CFTR restores the autophagy pathway, which is defective in F508del-CFTR-expressing cells, likely because of the maladaptive stress response in CF pathophysiology. These results highlight the potential therapeutic benefits of targeting the cellular chaperone system to improve the functional folding of CFTR variants contributing to CF and possibly other protein-misfolding-associated diseases.
Collapse
Affiliation(s)
- Darren M Hutt
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Sanjay Kumar Mishra
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Daniela Martino Roth
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Mads Breum Larsen
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Frédéric Angles
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Raymond A Frizzell
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - William E Balch
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| |
Collapse
|
25
|
Exosomal secretion of α-synuclein as protective mechanism after upstream blockage of macroautophagy. Cell Death Dis 2018; 9:757. [PMID: 29988147 PMCID: PMC6037700 DOI: 10.1038/s41419-018-0816-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 01/16/2023]
Abstract
Accumulation of pathological α-synuclein aggregates plays a major role in Parkinson’s disease. Macroautophagy is a mechanism to degrade intracellular protein aggregates by wrapping them into autophagosomes, followed by fusion with lysosomes. We had previously shown that pharmacological activation of macroautophagy protects against α-synuclein-induced toxicity in human neurons. Here, we hypothesized that inhibition of macroautophagy would aggravate α-synuclein-induced cell death. Unexpectedly, inhibition of autophagosome formation by silencing of ATG5 protected from α-synuclein-induced toxicity. Therefore, we studied alternative cellular mechanisms to compensate for the loss of macroautophagy. ATG5 silencing did not affect the ubiquitin–proteasome system, chaperone systems, chaperone-mediated autophagy, or the unfolded protein response. However, ATG5 silencing increased the secretion of α-synuclein via exosomes. Blocking exosomal secretion exacerbated α-synuclein-induced cell death. We conclude that exosomal secretion of α-synuclein is increased after impaired formation of autophagosomes to reduce the intracellular α-synuclein burden. This compensatory mechanism prevents α-synuclein-induced neuronal cell death.
Collapse
|
26
|
Kaushik AC, Bharadwaj S, Kumar S, Wei DQ. Nano-particle mediated inhibition of Parkinson's disease using computational biology approach. Sci Rep 2018; 8:9169. [PMID: 29907754 PMCID: PMC6003935 DOI: 10.1038/s41598-018-27580-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) arises as neurodegenerative disorder and characterized by progressive deterioration of motor functions due to forfeiture of dopamine-releasing neurons. During PD, neurons at stake loss their functionality that results into cognition impairment and forgetfulness, commonly called as dementia. Recently, nanoparticles (NPs) have been reported for easy drug delivery through blood-brain barrier (BBB) into the central nervous system (CNS) against the conventional drug delivery systems. However, present study attempted to elucidate the α-synuclein activity, a major factor casing PD, in presence of its inhibitor cerium oxide (CeO2) nanoparticle via computational biology approach. A computational analysis was also conducted for the α-synuclein activity with biocompatible metal NPs such as GOLD NPs and SPIONs to scrutinize the efficacy and degree of inhibition induced by the CeO2 NP. The obtained results concluded that CeO2 NP fit best in the active site of α-synuclein with good contacts and interaction, and potentially inhibited the PD against L-DOPA drug selected as positive control in the designed PD biochemical pathway. Hence, CeO2 NP has been purposed as potential inhibitor of α-synuclein and can be employed as nano-drug against the PD.
Collapse
Affiliation(s)
- Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism and School of life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiv Bharadwaj
- Sabanci University Nanotechnology Research and Application Center, Orta Mah. Tuzla, 34956, Istanbul, Turkey
| | - Sanjay Kumar
- Bioinformatics Centre, Biotech Park, Lucknow, 226018, India
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and School of life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
27
|
A Rationally Designed Hsp70 Variant Rescues the Aggregation-Associated Toxicity of Human IAPP in Cultured Pancreatic Islet β-Cells. Int J Mol Sci 2018; 19:ijms19051443. [PMID: 29757200 PMCID: PMC5983706 DOI: 10.3390/ijms19051443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 11/30/2022] Open
Abstract
Molecular chaperones are key components of the protein homeostasis system against protein misfolding and aggregation. It has been recently shown that these molecules can be rationally modified to have an enhanced activity against specific amyloidogenic substrates. The resulting molecular chaperone variants can be effective inhibitors of protein aggregation in vitro, thus suggesting that they may provide novel opportunities in biomedical and biotechnological applications. Before such opportunities can be exploited, however, their effects on cell viability should be better characterised. Here, we employ a rational design method to specifically enhance the activity of the 70-kDa heat shock protein (Hsp70) against the aggregation of the human islet amyloid polypeptide (hIAPP, also known as amylin). We then show that the Hsp70 variant that we designed (grafted heat shock protein 70 kDa-human islet amyloid polypeptide, GHsp70-hIAPP) is significantly more effective than the wild type in recovering the viability of cultured pancreatic islet β-cells RIN-m5F upon hIAPP aggregation. These results indicate that a full recovery of the toxic effects of hIAPP aggregates on cultured pancreatic cells can be achieved by increasing the specificity and activity of Hsp70 towards hIAPP, thus providing evidence that the strategy presented here provides a possible route for rationally tailoring molecular chaperones for enhancing their effects in a target-dependent manner.
Collapse
|
28
|
Goenka A, Parihar R, Ganesh S. Heat Shock-Induced Transcriptional and Translational Arrest in Mammalian Cells. HEAT SHOCK PROTEINS AND STRESS 2018. [DOI: 10.1007/978-3-319-90725-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Bengoa-Vergniory N, Roberts RF, Wade-Martins R, Alegre-Abarrategui J. Alpha-synuclein oligomers: a new hope. Acta Neuropathol 2017; 134:819-838. [PMID: 28803412 PMCID: PMC5663814 DOI: 10.1007/s00401-017-1755-1] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 01/22/2023]
Abstract
Alpha-synuclein is a protein implicated in Parkinson’s disease and thought to be one of the main pathological drivers in the disease, although it remains unclear how this protein elicits its neurotoxic effects. Recent findings indicate that the assembly of toxic oligomeric species of alpha-synuclein may be one of the key processes for the pathology and spread of the disease. The absence of a sensitive in situ detection method has hindered the study of these oligomeric species and the role they play in the human brain until recently. In this review, we assess the evidence for the toxicity and prion-like activity of oligomeric forms of alpha-synuclein and discuss the advances in our understanding of the role of alpha-synuclein in Parkinson’s disease that may be brought about by the specific and sensitive detection of distinct oligomeric species in post-mortem patient brain. Finally, we discuss current approaches being taken to therapeutically target alpha-synuclein oligomers and their implications.
Collapse
Affiliation(s)
- Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Rosalind F Roberts
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, H3A 2B4, Canada
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK.
| | - Javier Alegre-Abarrategui
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
30
|
Gleixner AM, Hutchison DF, Sannino S, Bhatia TN, Leak LC, Flaherty PT, Wipf P, Brodsky JL, Leak RK. N-Acetyl-l-Cysteine Protects Astrocytes against Proteotoxicity without Recourse to Glutathione. Mol Pharmacol 2017; 92:564-575. [PMID: 28830914 DOI: 10.1124/mol.117.109926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
N-acetyl-l-cysteine (NAC) exhibits protective properties in brain injury models and has undergone a number of clinical trials. Most studies of NAC have focused on neurons. However, neuroprotection may be complemented by the protection of astrocytes because healthier astrocytes can better support the viability of neurons. Here, we show that NAC can protect astrocytes against protein misfolding stress (proteotoxicity), the hallmark of neurodegenerative disorders. Although NAC is thought to be a glutathione precursor, NAC protected primary astrocytes from the toxicity of the proteasome inhibitor MG132 without eliciting any increase in glutathione. Furthermore, glutathione depletion failed to attenuate the protective effects of NAC. MG132 elicited a robust increase in the folding chaperone heat shock protein 70 (Hsp70), and NAC mitigated this effect. Nevertheless, three independent inhibitors of Hsp70 function ablated the protective effects of NAC, suggesting that NAC may help preserve Hsp70 chaperone activity and improve protein quality control without need for Hsp70 induction. Consistent with this view, NAC abolished an increase in ubiquitinated proteins in MG132-treated astrocytes. However, NAC did not affect the loss of proteasome activity in response to MG132, demonstrating that it boosted protein homeostasis and cell viability without directly interfering with the efficacy of this proteasome inhibitor. The thiol-containing molecules l-cysteine and d-cysteine both mimicked the protective effects of NAC, whereas the thiol-lacking molecule N-acetyl-S-methyl-l-cysteine failed to exert protection or blunt the rise in ubiquitinated proteins. Collectively, these findings suggest that the thiol group in NAC is required for its effects on glial viability and protein quality control.
Collapse
Affiliation(s)
- Amanda M Gleixner
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Daniel F Hutchison
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Sara Sannino
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Tarun N Bhatia
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Lillian C Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Patrick T Flaherty
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Peter Wipf
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Jeffrey L Brodsky
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| |
Collapse
|
31
|
Friesen EL, De Snoo ML, Rajendran L, Kalia LV, Kalia SK. Chaperone-Based Therapies for Disease Modification in Parkinson's Disease. PARKINSON'S DISEASE 2017; 2017:5015307. [PMID: 28913005 PMCID: PMC5585656 DOI: 10.1155/2017/5015307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by the presence of pathological intracellular aggregates primarily composed of misfolded α-synuclein. This pathology implicates the molecular machinery responsible for maintaining protein homeostasis (proteostasis), including molecular chaperones, in the pathobiology of the disease. There is mounting evidence from preclinical and clinical studies that various molecular chaperones are downregulated, sequestered, depleted, or dysfunctional in PD. Current therapeutic interventions for PD are inadequate as they fail to modify disease progression by ameliorating the underlying pathology. Modulating the activity of molecular chaperones, cochaperones, and their associated pathways offers a new approach for disease modifying intervention. This review will summarize the potential of chaperone-based therapies that aim to enhance the neuroprotective activity of molecular chaperones or utilize small molecule chaperones to promote proteostasis.
Collapse
Affiliation(s)
- Erik L. Friesen
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Mitch L. De Snoo
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Luckshi Rajendran
- Faculty of Medicine, University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC, Canada
| | - Lorraine V. Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
- Morton and Gloria Shulman Movement Disorders Clinic and The Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada
- Division of Neurology, Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 190 Elizabeth Street, Toronto, ON, Canada
| | - Suneil K. Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, Canada
| |
Collapse
|
32
|
Bose S, Cho J. Targeting chaperones, heat shock factor-1, and unfolded protein response: Promising therapeutic approaches for neurodegenerative disorders. Ageing Res Rev 2017; 35:155-175. [PMID: 27702699 DOI: 10.1016/j.arr.2016.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Protein misfolding, which is known to cause several serious diseases, is an emerging field that addresses multiple therapeutic areas. Misfolding of a disease-specific protein in the central nervous system ultimately results in the formation of toxic aggregates that may accumulate in the brain, leading to neuronal cell death and dysfunction, and associated clinical manifestations. A large number of neurodegenerative diseases in humans, including Alzheimer's, Parkinson's, Huntington's, and prion diseases, are primarily caused by protein misfolding and aggregation. Notably, the cellular system is equipped with a protein quality control system encompassing chaperones, ubiquitin proteasome system, and autophagy, as a defense mechanism that monitors protein folding and eliminates inappropriately folded proteins. As the intrinsic molecular mechanisms of protein misfolding become more clearly understood, the novel therapeutic approaches in this arena are gaining considerable interest. The present review will describe the chaperones network and different approaches as the therapeutic targets for neurodegenerative diseases. Current and emerging therapeutic approaches to combat neurodegenerative diseases, addressing the roles of molecular, chemical, and pharmacological chaperones, as well as heat shock factor-1 and the unfolded protein response, are also discussed in detail.
Collapse
Affiliation(s)
- Shambhunath Bose
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
33
|
BAG5 Interacts with DJ-1 and Inhibits the Neuroprotective Effects of DJ-1 to Combat Mitochondrial Oxidative Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5094934. [PMID: 28348719 PMCID: PMC5352890 DOI: 10.1155/2017/5094934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 01/18/2023]
Abstract
Loss-of-function mutations in gene encoding DJ-1 contribute to the pathogenesis of autosomal recessive early-onset familial forms of Parkinson's disease (PD). DJ-1 is a multifunctional protein and plays a protective role against oxidative stress-induced mitochondrial damage and cell death, but the exact mechanism underlying this is not yet clearly understood. Here, using coimmunoprecipitation (Co-IP) and immunofluorescence methods, we prove that Bcl-2-associated athanogene 5 (BAG5), a BAG family member, interacts with DJ-1 in mammalian cells. Moreover, we show that BAG5 could decrease stability of DJ-1 and weaken its role in mitochondrial protection probably by influencing dimerization in stress condition. Our study reveals the relationship of BAG5 and DJ-1 suggesting a potential role for BAG5 in the pathogenesis of PD through its functional interactions with DJ-1.
Collapse
|
34
|
Sinha AK, Singh P, Prakash A, Pal D, Dube A, Kumar A. Putative Drug and Vaccine Target Identification in Leishmania donovani Membrane Proteins Using Naïve Bayes Probabilistic Classifier. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:204-211. [PMID: 28182549 DOI: 10.1109/tcbb.2016.2570217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Predicting the role of protein is one of the most challenging problems. There are few approaches available for the prediction of role of unknown protein in terms of drug target or vaccine candidate. We propose here Naïve Bayes probabilistic classifier, a promising method for reliable predictions. This method is tested on the proteins identified in our mass spectrometry based membrane protemics study of Leishmania donovani parasite that causes a fatal disease (Visceral Leishmaniasis) in humans all around the world. Most of the vaccine/drug targets belonging to membrane proteins are represented as key players in the pathogenesis of Leishmania infection. Analyses of our previous results, using Naïve Bayes probabilistic classifier, indicate that this method predicts the role of unknown/hypothetical protein (as drug target/vaccine candidate) significantly with higher precision. We have employed this method in order to provide probabilistic predictions of unknown/hypothetical proteins as targets. This study reports the unknown/hypothetical proteins of Leishmania membrane fraction as a potential drug targets and vaccine candidate which is vital information for this parasite. Future molecular studies and characterization of these potent targets may produce a recombinant therapeutic/prophylactic tool against Visceral Leishmaniasis. These unknown/hypothetical proteins may open a vast research field to be exploited for novel treatment strategies.
Collapse
|
35
|
Xie H, Hu H, Chang M, Huang D, Gu X, Xiong X, Xiong R, Hu L, Li G. Identification of chaperones in a MPP +-induced and ATRA/TPA-differentiated SH-SY5Y cell PD model. Am J Transl Res 2016; 8:5659-5671. [PMID: 28078037 PMCID: PMC5209517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Parkinson's disease (PD) is characterized by the pathological accumulation of misfolded proteins. Molecular chaperones assist in the proper folding of proteins and removal of irreversibly misfolded proteins. This study aims to identify potential chaperones associated with protein misfolding and accumulation in PD. ATRA/TPA-differentiated SH-SY5Y cells were treated with 1 mM of MPP+ for 48 hours. Proteins were analyzed by 2D-DIGE followed by MALDI-ToF MS. The treatment of differentiated SH-SY5Y cells by MPP+ led to the unambiguous identification of 10 protein spots, which corresponds to six proteins. Among these six proteins, four were chaperone proteins including nucleophosmin (NPM1), chaperonin-containing TCP-1 subunit 2 (CCT2 or CCTβ), heat shock 90 kDa protein 1 beta (HSP90AB1 or HSP90-β), and tyrosin3/tryptopha5-monoxygenase activation protein, zeta polypeptide (14-3-3ζ, gene symbol: Ywhaz). To our knowledge, this is the first report that linked the upregulation of chaperones after MPP+ treatment with SH-SY5Y cells. However, the NPM1 protein was identified for the first time in the PD model. The upregulation of four chaperone proteins provided evidence that these chaperones have a complementary effect on protein misfolding in the pathogenesis of PD, and hold promise as a good therapeutic target for PD treatment.
Collapse
Affiliation(s)
- Hongrong Xie
- Department of Neurology, Shanghai East Hospital, Tongji UniversityShanghai 200120, P. R. China
| | - Hui Hu
- Department of Neurology, Shanghai East Hospital, Tongji UniversityShanghai 200120, P. R. China
| | - Ming Chang
- Department of Neurology, The First Hospital of Jilin UniversityShanghai 130021, P. R. China
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji UniversityShanghai 200120, P. R. China
| | - Xiaobo Gu
- Department of Neurology, Shanghai East Hospital, Tongji UniversityShanghai 200120, P. R. China
| | - Xinli Xiong
- Department of Neurology, Shanghai East Hospital, Tongji UniversityShanghai 200120, P. R. China
| | - Ran Xiong
- Department of Neurology, Shanghai East Hospital, Tongji UniversityShanghai 200120, P. R. China
| | - Linsen Hu
- Department of Neurology, The First Hospital of Jilin UniversityShanghai 130021, P. R. China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, Tongji UniversityShanghai 200120, P. R. China
| |
Collapse
|
36
|
Ingram T, Chakrabarti L. Proteomic profiling of mitochondria: what does it tell us about the ageing brain? Aging (Albany NY) 2016; 8:3161-3179. [PMID: 27992860 PMCID: PMC5270661 DOI: 10.18632/aging.101131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is evident in numerous neurodegenerative and age-related disorders. It has also been linked to cellular ageing, however our current understanding of the mitochondrial changes that occur are unclear. Functional studies have made some progress reporting reduced respiration, dynamic structural modifications and loss of membrane potential, though there are conflicts within these findings. Proteomic analyses, together with functional studies, are required in order to profile the mitochondrial changes that occur with age and can contribute to unravelling the complexity of the ageing phenotype. The emergence of improved protein separation techniques, combined with mass spectrometry analyses has allowed the identification of age and cell-type specific mitochondrial changes in energy metabolism, antioxidants, fusion and fission machinery, chaperones, membrane proteins and biosynthesis pathways. Here, we identify and review recent data from the analyses of mitochondria from rodent brains. It is expected that knowledge gained from understanding age-related mitochondrial changes of the brain should lead to improved biomarkers of normal ageing and also age-related disease progression.
Collapse
Affiliation(s)
- Thomas Ingram
- SVMS, Faculty of Medicine, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Lisa Chakrabarti
- SVMS, Faculty of Medicine, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
37
|
Török N, Majláth Z, Szalárdy L, Vécsei L. Investigational α-synuclein aggregation inhibitors: hope for Parkinson’s disease. Expert Opin Investig Drugs 2016; 25:1281-1294. [DOI: 10.1080/13543784.2016.1237501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nóra Török
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Zsófia Majláth
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
38
|
Maor G, Cabasso O, Krivoruk O, Rodriguez J, Steller H, Segal D, Horowitz M. The contribution of mutant GBA to the development of Parkinson disease in Drosophila. Hum Mol Genet 2016; 25:2712-2727. [PMID: 27162249 DOI: 10.1093/hmg/ddw129] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/27/2016] [Accepted: 04/19/2016] [Indexed: 11/15/2022] Open
Abstract
Gaucher disease (GD) results from mutations in the acid β-glucocerebrosidase (GCase) encoding gene, GBA, which leads to accumulation of glucosylceramides. GD patients and carriers of GD mutations have a significantly higher propensity to develop Parkinson disease (PD) in comparison to the non-GD population. In this study, we used the fruit fly Drosophila melanogaster to show that development of PD in carriers of GD mutations results from the presence of mutant GBA alleles. Drosophila has two GBA orthologs (CG31148 and CG31414), each of which has a minos insertion, which creates C-terminal deletion in the encoded GCase. Flies double heterozygous for the endogenous mutant GBA orthologs presented Unfolded Protein Response (UPR) and developed parkinsonian signs, manifested by death of dopaminergic cells, defective locomotion and a shorter life span. We also established transgenic flies carrying the mutant human N370S, L444P and the 84GG variants. UPR activation and development of parkinsonian signs could be recapitulated in flies expressing these three mutant variants.UPR and parkinsonian signs could be partially rescued by growing the double heterozygous flies, or flies expressing the N370S or the L444P human mutant GCase variants, in the presence of the pharmacological chaperone ambroxol, which binds and removes mutant GCase from the endoplasmic reticulum (ER). However flies expressing the 84GG mutant, that does not express mature GCase, did not exhibit rescue by ambroxol. Our results strongly suggest that the presence of a mutant GBA allele in dopaminergic cells leads to ER stress and to their death, and contributes to development of PD.
Collapse
Affiliation(s)
- Gali Maor
- Department of Cell Research and Immunology
| | - Or Cabasso
- Department of Cell Research and Immunology
| | | | - Joe Rodriguez
- Strang Laboratory of Cancer Research, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Hermann Steller
- Strang Laboratory of Cancer Research, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology.,Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
39
|
Behl C. Breaking BAG: The Co-Chaperone BAG3 in Health and Disease. Trends Pharmacol Sci 2016; 37:672-688. [PMID: 27162137 DOI: 10.1016/j.tips.2016.04.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Human BAG (Bcl-2-associated athanogene) proteins form a family of antiapoptotic proteins that currently consists of six members (BAG1-6) all sharing the BAG protein domain from which the name arises. Via this domain, BAG proteins bind to the heat shock protein 70 (Hsp70), thereby acting as a co-chaperone regulating the activity of Hsp70. In addition to their antiapoptotic activity, all human BAG proteins have distinct functions in health and disease, and BAG3 in particular is the focus of many investigations. BAG3 has a modular protein domain composition offering the possibility for manifold interactions with other proteins. Various BAG3 functions are implicated in disorders including cancer, myopathies, and neurodegeneration. The discovery of its role in selective autophagy and the description of BAG3-mediated selective macroautophagy as an adaptive mechanism to maintain cellular homeostasis, under stress as well as during aging, make BAG3 a highly interesting target for future pharmacological interventions.
Collapse
Affiliation(s)
- Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
40
|
Cunningham TJ, Greenstein JI, Loewenstern J, Degermentzidis E, Yao L. Anti-inflammatory peptide regulates the supply of heat shock protein 70 monomers: implications for aging and age-related disease. Rejuvenation Res 2016; 18:136-44. [PMID: 25485461 DOI: 10.1089/rej.2014.1620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reducing the levels of toxic protein aggregates has become a focus of therapy for disorders like Alzheimer's and Parkinson's diseases, as well as for the general deterioration of cells and tissues during aging. One approach has been an attempt to influence the production or activity of a class of reparative chaperones called heat shock proteins (HSPs), of which HSP70 is a promising candidate. Manipulation of HSP70 expression results in disposal of misfolded protein aggregates that accumulate in aging and disease models. Recently, HSP70 has been shown to bind specifically to an amino-terminal sequence of a human diffusible survival evasion peptide (DSEP), dermcidin. This sequence includes CHEC-9, an orally available anti-inflammatory and cell survival peptide. In the present study, we found that the CHEC-9 peptide also binds HSP70 in the cytosol of the cerebral cortex after oral delivery in normal rats. Western analysis of non-heat-denatured, unreduced samples suggested that peptide treatment increased the level of active HSP70 monomers from the pool of chaperone oligomers, a process that may be stimulated by potentiation of the chaperone's adenosine triphosphatase (ATPase). In these samples, a small but consistent gel shift was observed for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a multifunctional protein whose aggregation is influenced by HSP70. CHEC-9 treatment of an in vitro model of α-synuclein aggregation also results in HSP70-dependent dissolution of these aggregates. HSP70 oligomer-monomer equilibrium and its potential to control protein aggregate disease warrant increased experimental attention, especially if a peptide fragment of an endogenous human protein can influence the process.
Collapse
Affiliation(s)
- Timothy J Cunningham
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
41
|
Delenclos M, Trendafilova T, Jones DR, Moussaud S, Baine AM, Yue M, Hirst WD, McLean PJ. A Rapid, Semi-Quantitative Assay to Screen for Modulators of Alpha-Synuclein Oligomerization Ex vivo. Front Neurosci 2016; 9:511. [PMID: 26834539 PMCID: PMC4717311 DOI: 10.3389/fnins.2015.00511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/21/2015] [Indexed: 12/13/2022] Open
Abstract
Alpha synuclein (αsyn) aggregates are associated with the pathogenesis of Parkinson's disease and others related disorders. Although modulation of αsyn aggregation is an attractive therapeutic target, new powerful methodologies are desperately needed to facilitate in vivo screening of novel therapeutics. Here, we describe an in vivo rodent model with the unique ability to rapidly track αsyn-αsyn interactions and thus oligomerization using a bioluminescent protein complementation strategy that monitors spatial and temporal αsyn oligomerization ex vivo. We find that αsyn forms oligomers in vivo as early as 1 week after stereotactic AAV injection into rat substantia nigra. Strikingly, although abundant αsyn expression is also detected in striatum at 1 week, no αsyn oligomers are detected at this time point. By 4 weeks, oligomerization of αsyn is detected in both striatum and substantia nigra homogenates. Moreover, in a proof-of-principle experiment, the effect of a previously described Hsp90 inhibitor known to prevent αsyn oligomer formation, demonstrates the utility of this rapid and sensitive animal model to monitor αsyn oligomerization status in the rat brain.
Collapse
Affiliation(s)
| | | | - Daryl R Jones
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Simon Moussaud
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Ann-Marie Baine
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | | | - Pamela J McLean
- Department of Neuroscience, Mayo ClinicJacksonville, FL, USA; Mayo Graduate School, Mayo ClinicJacksonville, FL, USA
| |
Collapse
|
42
|
Guo JF, He S, Kang JF, Xu Q, Hu YC, Zhang HN, Wang CY, Yan XX, Tang BS. Involvement of Bcl-2-associated athanogene (BAG)-family proteins in the neuroprotection by rasagiline. Int J Clin Exp Med 2015; 8:18158-18164. [PMID: 26770414 PMCID: PMC4694314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
Rasagiline, a novel monoamine oxidase (MAO)-B inhibitor, has a mild to moderate effect in relieving Parkinson's disease (PD) symptoms as well as unique neuroprotective effects. Previous studies demonstrated rasagiline protect neurons by regulating Bcl-2 family proteins. Our study aimed to study whether Bcl-2-associated athanogene (BAG)-family proteins, which were reported closely associated with neurodegenerative disease, were involved in the neuroprotective effect of rasagiline. We found that after the administration of 1-methy1-4-phenvl-1,2,3,6-tetrahvdropvridine (MPTP), BAG2 and BAG5 proteins were up-regulated in the substantia nigra dopaminergic neurons of PD mouse model. A further increase of BAG2 and BAG5 was detected after intragastric administration of rasagiline to post-MPTP lesioned mice. Thus, the current study proved the association of BAG family proteins with PD, and suggested the involvement and a positive role of BAG2, BAG5 in the neuroprotection of rasagiline. These preliminary results implicate a novel pathway for further study on neuroprotection of rasagiline.
Collapse
Affiliation(s)
- Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- State Key Laboratory of Medical GeneticsChangsha 410008, Hunan, People’s Republic of China
- Key Laboratory of Human Province In Neurodegenerative Disorders, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
| | - Shuang He
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
| | - Ji-Feng Kang
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- Key Laboratory of Human Province In Neurodegenerative Disorders, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
| | - Ya-Cen Hu
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- Key Laboratory of Human Province In Neurodegenerative Disorders, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
| | - Hai-Nan Zhang
- Key Laboratory of Human Province In Neurodegenerative Disorders, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
| | - Chun-Yu Wang
- Key Laboratory of Human Province In Neurodegenerative Disorders, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- Key Laboratory of Human Province In Neurodegenerative Disorders, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- State Key Laboratory of Medical GeneticsChangsha 410008, Hunan, People’s Republic of China
- Key Laboratory of Human Province In Neurodegenerative Disorders, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
- Neurodegenerative Disorders Research Center, Central South UniversityChangsha 410008, Hunan, People’s Republic of China
| |
Collapse
|
43
|
Aprile FA, Sormanni P, Vendruscolo M. A Rational Design Strategy for the Selective Activity Enhancement of a Molecular Chaperone toward a Target Substrate. Biochemistry 2015; 54:5103-12. [PMID: 26192230 DOI: 10.1021/acs.biochem.5b00459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular chaperones facilitate the folding and assembly of proteins and inhibit their aberrant aggregation. They thus offer several opportunities for biomedical and biotechnological applications, as for example they can often prevent protein aggregation more effectively than other therapeutic molecules, including small molecules and antibodies. Here we present a method of designing molecular chaperones with enhanced activity against specific amyloidogenic substrates while leaving unaltered their functions toward other substrates. The method consists of grafting onto a molecular chaperone a peptide designed to bind specifically an epitope in the target substrate. We illustrate this strategy by describing Hsp70 variants with increased affinities for α-synuclein and Aβ42 but otherwise unaltered affinities for other substrates. These designed variants inhibit protein aggregation and disaggregate preformed fibrils significantly more effectively than wild-type Hsp70 indicating that the strategy presented here provides a possible route for tailoring rationally molecular chaperones for specific purposes.
Collapse
Affiliation(s)
- Francesco A Aprile
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | | |
Collapse
|
44
|
Crum TS, Gleixner AM, Posimo JM, Mason DM, Broeren MT, Heinemann SD, Wipf P, Brodsky JL, Leak RK. Heat shock protein responses to aging and proteotoxicity in the olfactory bulb. J Neurochem 2015; 133:780-794. [PMID: 25640060 DOI: 10.1111/jnc.13041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/22/2014] [Accepted: 01/12/2015] [Indexed: 12/13/2022]
Abstract
The olfactory bulb is one of the most vulnerable brain regions in age-related proteinopathies. Proteinopathic stress is mitigated by the heat shock protein (Hsp) family of chaperones. Here, we describe age-related decreases in Hsc70 in the olfactory bulb of the female rat and higher levels of Hsp70 and Hsp25 in middle and old age than at 2-4 months. To model proteotoxic and oxidative stress in the olfactory bulb, primary olfactory bulb cultures were treated with the proteasome inhibitors lactacystin and MG132 or the pro-oxidant paraquat. Toxin-induced increases were observed in Hsp70, Hsp25, and Hsp32. To determine the functional consequences of the increase in Hsp70, we attenuated Hsp70 activity with two mechanistically distinct inhibitors. The Hsp70 inhibitors greatly potentiated the toxicity of sublethal lactacystin or MG132 but not of paraquat. Although ubiquitinated protein levels were unchanged with aging in vivo or with sublethal MG132 in vitro, there was a large, synergistic increase in ubiquitinated proteins when proteasome and Hsp70 functions were simultaneously inhibited. Our study suggests that olfactory bulb cells rely heavily on Hsp70 chaperones to maintain homeostasis during mild proteotoxic, but not oxidative insults, and that Hsp70 prevents the accrual of ubiquitinated proteins in these cells. The olfactory bulb is affected in the early phases of many age-related neurodegenerative disorders. Here, we described the impact of aging on multiple heat shock proteins (Hsps), such as Hsp70, in the female rat olfactory bulb in vivo. Using multiple proteasome and Hsp70 inhibitors (see schematic), we found that proteotoxicity elicited a compensatory increase in Hsp70 in primary olfactory bulb cells in vitro. Hsp70 then reduced the proteotoxic buildup of ubiquitinated proteins and robustly protected against cell death according to three independent viability assays. Thus, olfactory bulb neurons can mount impressive natural adaptations to proteotoxic injury, perhaps explaining why neurodegenerative disorders are so delayed in onset and so slow to progress.
Collapse
Affiliation(s)
- Tyler S Crum
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Amanda M Gleixner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Jessica M Posimo
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Matthew T Broeren
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Scott D Heinemann
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| | - Peter Wipf
- Departments of Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh PA
| |
Collapse
|
45
|
Posimo JM, Weilnau JN, Gleixner AM, Broeren MT, Weiland NL, Brodsky JL, Wipf P, Leak RK. Heat shock protein defenses in the neocortex and allocortex of the telencephalon. Neurobiol Aging 2015; 36:1924-37. [PMID: 25771395 DOI: 10.1016/j.neurobiolaging.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 11/18/2022]
Abstract
The telencephalic allocortex develops protein inclusions before the neocortex in many age-related proteinopathies. One major defense mechanism against proteinopathic stress is the heat shock protein (Hsp) network. We therefore contrasted Hsp defenses in stressed primary neocortical and allocortical cells. Neocortical neurons were more resistant to the proteasome inhibitor MG132 than neurons from 3 allocortical subregions: entorhinal cortex, piriform cortex, and hippocampus. However, allocortical neurons exhibited higher MG132-induced increases in Hsp70 and heat shock cognate 70 (Hsc70). MG132-treated allocortical neurons also exhibited greater levels of protein ubiquitination. Inhibition of Hsp70/Hsc70 activity synergistically exacerbated MG132 toxicity in allocortical neurons more than neocortical neurons, suggesting that the allocortex is more reliant on these Hsp defenses. In contrast, astrocytes harvested from the neocortex or allocortex did not differ in their response to Hsp70/Hsc70 inhibition. Consistent with the idea that chaperones are maximally engaged in allocortical neurons, an increase in Hsp70/Hsc70 activity was protective only in neocortical neurons. Finally, the levels of select Hsps were altered in the neocortex and allocortex in vivo with aging.
Collapse
Affiliation(s)
- Jessica M Posimo
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Justin N Weilnau
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Amanda M Gleixner
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Matthew T Broeren
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Nicole L Weiland
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
46
|
Hyttinen JM, Amadio M, Viiri J, Pascale A, Salminen A, Kaarniranta K. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res Rev 2014; 18:16-28. [PMID: 25062811 DOI: 10.1016/j.arr.2014.07.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/02/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Processing of misfolded proteins is important in order for the cell to maintain its normal functioning and homeostasis. Three systems control the quality of proteins: chaperone-mediated refolding, proteasomal degradation of ubiquitinated proteins, and finally, when the two others fail, aggrephagy, as selective form of autophagy, degrades ubiquitin-labelled aggregated cargos. In this route misfolded proteins gradually form larger aggregates, aggresomes and they eventually become double membrane-wrapped organelles called autophagosomes, which become degraded when they fuse to lysosomes, for reuse by the cell. The stages, the main molecules participating in the process, and the regulation of aggrephagy are discussed here, as is the role of protein aggregation in protein accumulation diseases. In particular, we emphasize that both Alzheimer's disease and age-related macular degeneration, two of the most common pathologies in the aged, are characterized by altered protein clearance and deposits. Based on the hypothesis that manipulations of autophagy may be potentially useful in these and other aggregation-related diseases, we will discuss some promising therapeutic strategies to counteract protein aggregates-induced cellular toxicity.
Collapse
|
47
|
Silencing of Hsp90 chaperone expression protects against 6-hydroxydopamine toxicity in PC12 cells. J Mol Neurosci 2014; 52:392-402. [PMID: 24234033 DOI: 10.1007/s12031-013-0163-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/23/2013] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder that has been shown to be associated with oxidative stress. This phenomenon occurs primarily via generation of 6-hydroxydopamine(6-OHDA) in catecholaminergic neurons leading to activation of apoptosis. The 90-kDa heat shock protein (Hsp90) functions as a chaperone in maintaining the functional stability and viability of cells under a transforming pressure. Since Hsp90 binds to inactive transcription factor heat shock factor-1 (HSF-1), inhibition of Hsp90 could activate HSF-1 and transcription of heat shock element containing genes subsequently, like Hsp70 as an anti-apoptotic factor. Our trial of silencing Hsp90 expression through transfection of Hsp90 siRNAs into neuronal PC12 cells being exposed to 6-OHDA resulted in the inhibition of pro-apoptotic factors, Bax, caspase-3, and PARP and upregulation of anti-apoptotic factor, Bcl2. In this manner,our data suggest a protective role for Hsp70 as it was observed to be induced upon Hsp90 knockdown. Furthermore, our results showed that Hsp90 silencing against 6-OHDA-induced oxidative stress may associate with upregulation of nuclear factor-erythroid 2-related factor 2. In summary, we found that silencing of Hsp90 expression leads to induction of cytoprotective pathways which can protect neurons against apoptosis in a PD model.
Collapse
|
48
|
Dutton BL, Kitson RRA, Parry-Morris S, Roe SM, Prodromou C, Moody CJ. Synthesis of macrolactam analogues of radicicol and their binding to heat shock protein Hsp90. Org Biomol Chem 2014; 12:1328-40. [PMID: 24435512 DOI: 10.1039/c3ob42211a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A series of macrolactam analogues of the naturally occurring resorcylic acid lactone radicicol have been synthesised from methyl orsellinate in 7 steps, involving chlorination, protection of the two phenolic groups, and hydrolysis to the benzoic acid. Formation of the dianion and quenching with a Weinreb amide results in acylation of the toluene methyl group that is followed by amide formation and ring closing metathesis to form the macrocyclic lactam. Final deprotection of the phenolic groups gives the desired macrolactams whose binding to the N-terminal domain of yeast Hsp90 was studied by isothermal titration calorimetry and protein X-ray crystallography.
Collapse
Affiliation(s)
- Bridie L Dutton
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | | | | | | | | | | |
Collapse
|
49
|
Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal 2014; 8:293-310. [PMID: 25208934 DOI: 10.1007/s12079-014-0243-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA,
| |
Collapse
|
50
|
Lei Z, Brizzee C, Johnson GVW. BAG3 facilitates the clearance of endogenous tau in primary neurons. Neurobiol Aging 2014; 36:241-8. [PMID: 25212465 DOI: 10.1016/j.neurobiolaging.2014.08.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/30/2014] [Accepted: 08/12/2014] [Indexed: 12/17/2022]
Abstract
Tau is a microtubule associated protein that is found primarily in neurons, and in pathologic conditions, such as Alzheimer's disease (AD) it accumulates and contributes to the disease process. Because tau plays a fundamental role in the pathogenesis of AD and other tauopathies, and in AD mouse models reducing tau levels improves outcomes, approaches that facilitate tau clearance are being considered as therapeutic strategies. However, fundamental to the development of such interventions is a clearer understanding of the mechanisms that regulate tau clearance. Here, we report a novel mechanism of tau degradation mediated by the co-chaperone BAG3. BAG3 has been shown to be an essential component of a complex that targets substrates to the autophagy pathway for degradation. In rat primary neurons, activation of autophagy by inhibition of proteasome activity or treatment with trehalose resulted in significant decreases in tau and phospho-tau levels. These treatments also induced an upregulation of BAG3. Proteasome inhibition activated JNK, which was responsible for the upregulation of BAG3 and increased tau clearance. Inhibiting JNK or knocking down BAG3 blocked the proteasome inhibition-induced decreases in tau. Further, BAG3 overexpression alone resulted in significant decreases in tau and phospho-tau levels in neurons. These results indicate that BAG3 plays a critical role in regulating the levels of tau in neurons, and interventions that increase BAG3 levels could provide a therapeutic approach in the treatment of AD.
Collapse
Affiliation(s)
- Zhinian Lei
- Department of Anesthesiology, University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Corey Brizzee
- Department of Anesthesiology, University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester Medical Center, University of Rochester, Rochester, NY, USA.
| |
Collapse
|