1
|
He X, Lei M, Chen X, Xu F, Liu H, Wei Z. Dynamic Hydrogel-Based Strategy for Traumatic Brain Injury Modeling and Therapy. CNS Neurosci Ther 2025; 31:e70148. [PMID: 39788897 PMCID: PMC11717553 DOI: 10.1111/cns.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most traumatizing and poses serious health risks to people's bodies due to its unique pathophysiological characteristics. The investigations on the pathological mechanism and valid interventions of TBI have attracted widespread attention worldwide. With bio-mimic mechanic cues, the dynamic hydrogels with dynamic stiffness changes or reversible crosslinking have been suggested to construct the in vitro disease models or novel therapeutic agents for TBI. However, there is a lack of clarification on the dynamic hydrogels currently reported and their biomedical applications on TBI. Our review starts with introducing the native mechanical characters and changes in TBI and then summarizes the common chemical strategies of the dynamic hydrogels with dynamically tunable stiffness and reversible networks for in vitro modeling and therapy. Finally, we prospect the future development of dynamic hydrogels in the mechanical modeling of TBI, providing new mechanical insights for TBI and guidance for tailored brain-targeted biomaterials.
Collapse
Affiliation(s)
- Xin He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher EducationZunyiPeople's Republic of China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xuewen Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Heng Liu
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher EducationZunyiPeople's Republic of China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
2
|
Yang X, Zhao Y, Liu W, Gao Z, Wang C, Wang C, Li S, Zhang X. Single-cell transcriptomics reveals neural stem cell trans-differentiation and cell subpopulations in whole heart decellularized extracellular matrix. BIOPHYSICS REPORTS 2024; 10:241-253. [PMID: 39281200 PMCID: PMC11399890 DOI: 10.52601/bpr.2024.240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 09/18/2024] Open
Abstract
The whole heart decellularized extracellular matrix (ECM) has become a promising scaffold material for cardiac tissue engineering. Our previous research has shown that the whole heart acellular matrix possesses the memory function regulating neural stem cells (NSCs) trans-differentiating to cardiac lineage cells. However, the cell subpopulations and phenotypes in the trans-differentiation of NSCs have not been clearly identified. Here, we performed single-cell RNA sequencing and identified 2,765 cells in the recellularized heart with NSCs revealing the cellular diversity of cardiac and neural lineage, confirming NSCs were capable of trans-differentiating into the cardiac lineage while maintaining the original ability to differentiate into the neural lineage. Notably, the trans-differentiated heart-like cells have dual signatures of neuroectoderm and cardiac mesoderm. This study unveils an in-depth mechanism underlying the trans-differentiation of NSCs and provides a new opportunity and theoretical basis for cardiac regeneration.
Collapse
Affiliation(s)
- Xiaoning Yang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yuwei Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Wei Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhongbao Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chunlan Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Siwei Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiao Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
3
|
López-Martínez S, Rodríguez-Eguren A, de Miguel-Gómez L, Francés-Herrero E, Faus A, Díaz A, Pellicer A, Ferrero H, Cervelló I. Bioengineered endometrial hydrogels with growth factors promote tissue regeneration and restore fertility in murine models. Acta Biomater 2021; 135:113-125. [PMID: 34428563 DOI: 10.1016/j.actbio.2021.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) hydrogels obtained from decellularized tissues are promising biocompatible materials for tissue regeneration. These biomaterials may provide important options for endometrial pathologies such as Asherman's syndrome and endometrial atrophy, which lack effective therapies thus far. First, we performed a proteomic analysis of a decellularized endometrial porcine hydrogel (EndoECM) to describe the specific role of ECM proteins related to regenerative processes. Furthermore, we investigated the ability of a bioengineered system-EndoECM alone or supplemented with growth factors (GFs)-to repair the endometrium in a murine model of endometrial damage. For this model, the uterine horns of female C57BL/6 mice were first injected with 70% ethanol, then four days later, they were treated with: saline (negative control); biotin-labeled EndoECM; or biotin-labeled EndoECM plus platelet-derived GF, basic fibroblast GF, and insulin-like GF 1 (EndoECM+GF). Endometrial regeneration and fertility restoration were evaluated by assessing the number of glands, endometrial area, cell proliferation, neaoangiogenesis, reduction of collagen deposition, and fertility restoration. Interestingly, regenerative effects such as an increased number of endometrial glands, increased area, high cell proliferative index, development of new blood vessels, reduction of collagen deposition, and higher pregnancy rate occurred in mice treated with EndoECM+GF. Thus, a bioengineered system based on EndoECM hydrogel supplemented with GFs may be promising for the clinical treatment of endometrial conditions such as Asherman's syndrome and endometrial atrophy. STATEMENT OF SIGNIFICANCE: In the last years, the bioengineering field has developed new and promising approaches to regenerate tissues or replace damaged and diseased tissues. Bioengineered hydrogels offer an ideal option because these materials can be used not only as treatments but also as carriers of drugs and other therapeutics. The present work demonstrates for the first time how hydrogels derived from pig endometrium loaded with growth factors could treat uterine pathologies in a mouse model of endometrial damage. These findings provide scientific evidence about bioengineered hydrogels based on tissue-specific extracellular matrix offering new options to treat human infertility from endometrial causes such as Asherman's syndrome or endometrial atrophy.
Collapse
Affiliation(s)
- Sara López-Martínez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Adolfo Rodríguez-Eguren
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Lucía de Miguel-Gómez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain; University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Emilio Francés-Herrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain; University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Amparo Faus
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Ana Díaz
- University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Antonio Pellicer
- University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain; IVIRMA Roma, Largo Ildebrando Pizzetti, 1, Roma 00197, Italy
| | - Hortensia Ferrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain.
| |
Collapse
|
4
|
Damian C, Ghuman H, Mauney C, Azar R, Reinartz J, Badylak SF, Modo M. Post-Stroke Timing of ECM Hydrogel Implantation Affects Biodegradation and Tissue Restoration. Int J Mol Sci 2021; 22:ijms222111372. [PMID: 34768800 PMCID: PMC8583606 DOI: 10.3390/ijms222111372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 01/01/2023] Open
Abstract
Extracellular matrix (ECM) hydrogel promotes tissue regeneration in lesion cavities after stroke. However, a bioscaffold's regenerative potential needs to be considered in the context of the evolving pathological environment caused by a stroke. To evaluate this key issue in rats, ECM hydrogel was delivered to the lesion core/cavity at 7-, 14-, 28-, and 90-days post-stroke. Due to a lack of tissue cavitation 7-days post-stroke, implantation of ECM hydrogel did not achieve a sufficient volume and distribution to warrant comparison with the other time points. Biodegradation of ECM hydrogel implanted 14- and 28-days post-stroke were efficiently (80%) degraded by 14-days post-bioscaffold implantation, whereas implantation 90-days post-stroke revealed only a 60% decrease. Macrophage invasion was robust at 14- and 28-days post-stroke but reduced in the 90-days post-stroke condition. The pro-inflammation (M1) and pro-repair (M2) phenotype ratios were equivalent at all time points, suggesting that the pathological environment determines macrophage invasion, whereas ECM hydrogel defines their polarization. Neural cells (neural progenitors, neurons, astrocytes, oligodendrocytes) were found at all time points, but a 90-days post-stroke implantation resulted in reduced densities of mature phenotypes. Brain tissue restoration is therefore dependent on an efficient delivery of a bioscaffold to a tissue cavity, with 28-days post-stroke producing the most efficient biodegradation and tissue regeneration, whereas by 90-days post-stroke, these effects are significantly reduced. Improving our understanding of how the pathological environment influences biodegradation and the tissue restoration process is hence essential to devise engineering strategies that could extend the therapeutic window for bioscaffolds to repair the damaged brain.
Collapse
Affiliation(s)
- Corina Damian
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (C.D.); (C.M.)
| | - Harmanvir Ghuman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.G.); (R.A.); (S.F.B.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Carrinton Mauney
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (C.D.); (C.M.)
| | - Reem Azar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.G.); (R.A.); (S.F.B.)
| | - Janina Reinartz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Stephen F. Badylak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.G.); (R.A.); (S.F.B.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michel Modo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.G.); (R.A.); (S.F.B.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Correspondence: ; Tel.: +1-(412)-383-7200
| |
Collapse
|
5
|
Ikegami Y, Ijima H. Decellularization of Nervous Tissues and Clinical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:241-252. [PMID: 34582027 DOI: 10.1007/978-3-030-82735-9_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nervous system is an ensemble of organs that transmit and process external information and are responsible for the adaption to the external environment and homeostasis control of the internal environment. The nervous system of vertebrates is divided into the central nervous system (CNS) and peripheral nervous system (PNS) due to its structural features. The CNS, which includes the brain and the spinal cord, processes information from external stimuli and assembles orders suitable for these stimuli. The CNS then sends signals to control other organs/tissues. On the other hand, the PNS connects the CNS to other organs/tissues and functions as a signal pathway. Therefore, the decline and loss of various functions due to injuries of the nervous system cause an impaired quality of life (QOL) and eventually the termination of life activities. Here, we report mainly on decellularized neural tissue and its application as a substrate for the regeneration of the nervous system.
Collapse
Affiliation(s)
- Yasuhiro Ikegami
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
6
|
Jiang Y, Li R, Han C, Huang L. Extracellular matrix grafts: From preparation to application (Review). Int J Mol Med 2020; 47:463-474. [PMID: 33416123 PMCID: PMC7797433 DOI: 10.3892/ijmm.2020.4818] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023] Open
Abstract
Recently, the increasing emergency of traffic accidents and the unsatisfactory outcome of surgical intervention are driving research to seek a novel technology to repair traumatic soft tissue injury. From this perspective, decellularized matrix grafts (ECM-G) including natural ECM materials, and their prepared hydrogels and bioscaffolds, have emerged as possible alternatives for tissue engineering and regenerative medicine. Over the past decades, several physical and chemical decellularization methods have been used extensively to deal with different tissues/organs in an attempt to carefully remove cellular antigens while maintaining the non-immunogenic ECM components. It is anticipated that when the decellularized biomaterials are seeded with cells in vitro or incorporated into irregularly shaped defects in vivo, they can provide the appropriate biomechanical and biochemical conditions for directing cell behavior and tissue remodeling. The aim of this review is to first summarize the characteristics of ECM-G and describe their major decellularization methods from different sources, followed by analysis of how the bioactive factors and undesired residual cellular compositions influence the biologic function and host tissue response following implantation. Lastly, we also provide an overview of the in vivoapplication of ECM-G in facilitating tissue repair and remodeling.
Collapse
Affiliation(s)
- Yongsheng Jiang
- Science and Education Management Center, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China
| | - Rui Li
- Science and Education Management Center, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China
| | - Chunchan Han
- Science and Education Management Center, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China
| | - Lijiang Huang
- Science and Education Management Center, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China
| |
Collapse
|
7
|
The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep 2019; 9:14933. [PMID: 31624357 PMCID: PMC6797749 DOI: 10.1038/s41598-019-49575-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
Tissue-derived decellularized biomaterials are ideal for tissue engineering applications as they mimic the biochemical composition of the native tissue. These materials can be used as hydrogels for cell encapsulation and delivery. The decellularization process can alter the composition of the extracellular matrix (ECM) and thus influence the hydrogels characteristics. The aim of this study was to examine the impact of decellularization protocols in ECM-derived hydrogels obtained from porcine corneas. Porcine corneas were isolated and decellularized with SDS, Triton X-100 or by freeze-thaw cycles. All decellularization methods decreased DNA significantly when measured by PicoGreen and visually assessed by the absence of cell nuclei. Collagen and other ECM components were highly retained, as quantified by hydroxyproline content and sGAG, by histological analysis and by SDS-PAGE. Hydrogels obtained by freeze-thaw decellularization were the most transparent. The method of decellularization impacted gelation kinetics assessed by turbidimetric analysis. All hydrogels showed a fibrillary and porous structure determined by cryoSEM. Human corneal stromal cells were embedded in the hydrogels to assess cytotoxicity. SDS decellularization rendered cytotoxic hydrogels, while the other decellularization methods produced highly cytocompatible hydrogels. Freeze-thaw decellularization produced hydrogels with the overall best properties.
Collapse
|
8
|
Tatic N, Rose FRAJ, des Rieux A, White LJ. Stem cells from the dental apical papilla in extracellular matrix hydrogels mitigate inflammation of microglial cells. Sci Rep 2019; 9:14015. [PMID: 31570730 PMCID: PMC6768850 DOI: 10.1038/s41598-019-50367-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
After spinal cord injury (SCI) chronic inflammation hampers regeneration. Influencing the local microenvironment after SCI may provide a strategy to modulate inflammation and the immune response. The objectives of this work were to determine whether bone or spinal cord derived ECM hydrogels can deliver human mesenchymal stem cells from the apical papilla (SCAP) to reduce local inflammation and provide a regenerative microenvironment. Bone hydrogels (8 and 10 mg/ml, B8 and B10) and spinal cord hydrogels (8 mg/ml, S8) supplemented with fibrin possessed a gelation rate and a storage modulus compatible with spinal cord implantation. S8 and B8 impact on the expression of anti and pro-inflammatory cytokines (Arg1, Nos2, Tnf) in LPS treated microglial cells were assessed using solubilised and solid hydrogel forms. S8 significantly reduced the Nos2/Arg1 ratio and solubilised B8 significantly reduced Tnf and increased Arg1 whereas solid S8 and B8 did not impact inflammation in microglial cells. SCAP incorporation within ECM hydrogels did not impact upon SCAP immunoregulatory properties, with significant downregulation of Nos2/Arg1 ratio observed for all SCAP embedded hydrogels. Tnf expression was reduced with SCAP embedded in B8, reflecting the gene expression observed with the innate hydrogel. Thus, ECM hydrogels are suitable vehicles to deliver SCAP due to their physical properties, preservation of SCAP viability and immunomodulatory capacity.
Collapse
Affiliation(s)
- Natalija Tatic
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, 1200, Belgium
| | - Felicity R A J Rose
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Anne des Rieux
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, 1200, Belgium
| | - Lisa J White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
9
|
Buckenmeyer MJ, Meder TJ, Prest TA, Brown BN. Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods 2019; 171:41-61. [PMID: 31398392 DOI: 10.1016/j.ymeth.2019.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 01/15/2023] Open
Abstract
A variety of surgical and non-surgical approaches have been used to address the impacts of nervous system injuries, which can lead to either impairment or a complete loss of function for affected patients. The inherent ability of nervous tissues to repair and/or regenerate is dampened due to irreversible changes that occur within the tissue remodeling microenvironment following injury. Specifically, dysregulation of the extracellular matrix (i.e., scarring) has been suggested as one of the major factors that can directly impair normal cell function and could significantly alter the regenerative potential of these tissues. A number of tissue engineering and regenerative medicine-based approaches have been suggested to intervene in the process of remodeling which occurs following injury. Decellularization has become an increasingly popular technique used to obtain acellular scaffolds, and their derivatives (hydrogels, etc.), which retain tissue-specific components, including critical structural and functional proteins. These advantageous characteristics make this approach an intriguing option for creating materials capable of stimulating the sensitive repair mechanisms associated with nervous system injuries. Over the past decade, several diverse decellularization methods have been implemented specifically for nervous system applications in an attempt to carefully remove cellular content while preserving tissue morphology and composition. Each application-based decellularized ECM product requires carefully designed treatments that preserve the unique biochemical signatures associated within each tissue type to stimulate the repair of brain, spinal cord, and peripheral nerve tissues. Herein, we review the decellularization techniques that have been applied to create biomaterials with the potential to promote the repair and regeneration of tissues within the central and peripheral nervous system.
Collapse
Affiliation(s)
- Michael J Buckenmeyer
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Tyler J Meder
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Travis A Prest
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Bryan N Brown
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| |
Collapse
|
10
|
Modo M, Badylak SF. A roadmap for promoting endogenous in situ tissue restoration using inductive bioscaffolds after acute brain injury. Brain Res Bull 2019; 150:136-149. [PMID: 31128250 DOI: 10.1016/j.brainresbull.2019.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
The regeneration of brain tissue remains one of the greatest unsolved challenges in medicine and by many is considered unfeasible. Indeed, the adult mammalian brain does not regenerate tissue, but there is ongoing endogenous neurogenesis, which is upregulated after injury and contributes to tissue repair. This endogenous repair response is a conditio sine que non for tissue regeneration. However, scarring around the lesion core and cavitation provide unfavorable conditions for tissue regeneration in the brain. Based on the success of using extracellular matrix (ECM)-based bioscaffolds in peripheral soft tissue regeneration, it is plausible that the provision of an inductive ECM-based hydrogel inside the volumetric tissue loss can attract neural cells and create a de novo viable tissue. Following perturbation theory of these successes in peripheral tissues, we here propose 9 perturbation parts (i.e. requirements) that can be solved independently to create an integrated series to build a functional and integrated de novo neural tissue. Necessities for tissue formation, anatomical and functional connectivity are further discussed to provide a new substrate to support the improvement of behavioral impairments after acute brain injury. We also consider potential parallel developments of this tissue engineering effort that can support therapeutic benefits in the absence of de novo tissue formation (e.g. structural support to veterate brain tissue). It is envisaged that eventually top-down inductive "natural" bioscaffolds composed of decellularized tissues (i.e. ECM) will be replaced by bottom-up synthetic designer hydrogels that will provide very defined structural and signaling properties, potentially even opening up opportunities we currently do not envisage using natural materials.
Collapse
Affiliation(s)
- Michel Modo
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA; University of Pittsburgh, Department of Radiology, Pittsburgh, PA, USA.
| | - Stephen F Badylak
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA; University of Pittsburgh, Department of Surgery, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Effects of topical applications of porcine acellular urinary bladder matrix and Centella asiatica extract on oral wound healing in a rat model. Clin Oral Investig 2018; 23:2083-2095. [DOI: 10.1007/s00784-018-2620-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
|
12
|
Wu Y, Wang J, Shi Y, Pu H, Leak RK, Liou AKF, Badylak SF, Liu Z, Zhang J, Chen J, Chen L. Implantation of Brain-Derived Extracellular Matrix Enhances Neurological Recovery after Traumatic Brain Injury. Cell Transplant 2018; 26:1224-1234. [PMID: 28933217 PMCID: PMC5639909 DOI: 10.1177/0963689717714090] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Scaffolds composed of extracellular matrix (ECM) are being investigated for their ability to facilitate brain tissue remodeling and repair following injury. The present study tested the hypothesis that the implantation of brain-derived ECM would attenuate experimental traumatic brain injury (TBI) and explored potential underlying mechanisms. TBI was induced in mice by a controlled cortical impact (CCI). ECM was isolated from normal porcine brain tissue by decellularization methods, prepared as a hydrogel, and injected into the ipsilesional corpus callosum and striatum 1 h after CCI. Lesion volume and neurological function were evaluated up to 35 d after TBI. Immunohistochemistry was performed to assess post-TBI white matter integrity, reactive astrogliosis, and microglial activation. We found that ECM treatment reduced lesion volume and improved neurobehavioral function. ECM-treated mice showed less post-TBI neurodegeneration in the hippocampus and less white matter injury than control, vehicle-treated mice. Furthermore, ECM ameliorated TBI-induced gliosis and microglial pro-inflammatory responses, thereby providing a favorable microenvironment for tissue repair. Our study indicates that brain ECM hydrogel implantation improved the brain microenvironment that facilitates post-TBI tissue recovery. Brain ECM offers excellent biocompatibility and holds potential as a therapeutic agent for TBI, alone or in combination with other treatments.
Collapse
Affiliation(s)
- Yun Wu
- 1 Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,2 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiayin Wang
- 3 Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yejie Shi
- 2 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hongjian Pu
- 2 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- 4 Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Anthony K F Liou
- 2 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- 5 Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhixiong Liu
- 1 Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhang
- 6 Department of Neurosurgery, General Hospital of PLA, Beijing, China
| | - Jun Chen
- 2 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ling Chen
- 6 Department of Neurosurgery, General Hospital of PLA, Beijing, China
| |
Collapse
|
13
|
Lin GQ, He XF, Liang FY, Guo Y, Sunnassee G, Chen J, Cao XM, Chen YY, Pan GJ, Pei Z, Tan S. Transplanted human neural precursor cells integrate into the host neural circuit and ameliorate neurological deficits in a mouse model of traumatic brain injury. Neurosci Lett 2018; 674:11-17. [PMID: 29501684 DOI: 10.1016/j.neulet.2018.02.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) is to date one of the major critical conditions causing death and disability worldwide. Exogenous neural stem/precursor cells (NSCs/NPCs) hold great promise for improving neurological dysfunction, but their functional properties in vivo remain unknown. Human neural precursor cells (hNPCs) carrying one fluorescent reporter gene (DsRed) can be observed directly in vivo using two-photon laser-scanning microscope. Therefore, we evaluated the neural integration and potential therapeutic effect of hNPCs on mice with TBI. Behavioral tests were performed by rotarod task and Morris Water Maze task. Neural integration was detected by fluorometric Ca2+ imaging and nerve tracing. We found that motor and cognition functions were significantly improved in mice with hNPCs injection compared to mice with vehicle treatment, and hNPCs integrated into the host circuit and differentiated toward neuronal lineage. Our study provided reliable evidence for further hNPCs transplantation in clinical practice.
Collapse
Affiliation(s)
- Gui-Qing Lin
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; The Cadre Ward in Department of Neurology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xiao-Fei He
- Department of Neurology, The First Affiliated Hospital, SunYat-sen University, Guangzhou, China
| | - Feng-Yin Liang
- Department of Neurology, The First Affiliated Hospital, SunYat-sen University, Guangzhou, China
| | - Yang Guo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gavin Sunnassee
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Chen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Min Cao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Yi Chen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guang-Jin Pan
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, SunYat-sen University, Guangzhou, China.
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Spang MT, Christman KL. Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater 2018; 68:1-14. [PMID: 29274480 DOI: 10.1016/j.actbio.2017.12.019] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Abstract
Decellularized extracellular matrix (ECM) has been widely used for tissue engineering applications and is becoming increasingly versatile as it can take many forms, including patches, powders, and hydrogels. Following additional processing, decellularized ECM can form an inducible hydrogel that can be injected, providing for new minimally-invasive procedure opportunities. ECM hydrogels have been derived from numerous tissue sources and applied to treat many disease models, such as ischemic injuries and organ regeneration or replacement. This review will focus on in vivo applications of ECM hydrogels and functional outcomes in disease models, as well as discuss considerations for clinical translation. STATEMENT OF SIGNIFICANCE Extracellular matrix (ECM) hydrogel therapies are being developed to treat diseased or damaged tissues and organs throughout the body. Many ECM hydrogels are progressing from in vitro models to in vivo biocompatibility studies and functional models. There is significant potential for clinical translation of these therapies since one ECM hydrogel therapy is already in a Phase 1 clinical trial.
Collapse
|
15
|
Song CG, Zhang YZ, Wu HN, Cao XL, Guo CJ, Li YQ, Zheng MH, Han H. Stem cells: a promising candidate to treat neurological disorders. Neural Regen Res 2018; 13:1294-1304. [PMID: 30028342 PMCID: PMC6065243 DOI: 10.4103/1673-5374.235085] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neurologic impairments are usually irreversible as a result of limited regeneration in the central nervous system. Therefore, based on the regenerative capacity of stem cells, transplantation therapies of various stem cells have been tested in basic research and preclinical trials, and some have shown great prospects. This manuscript overviews the cellular and molecular characteristics of embryonic stem cells, induced pluripotent stem cells, neural stem cells, retinal stem/progenitor cells, mesenchymal stem/stromal cells, and their derivatives in vivo and in vitro as sources for regenerative therapy. These cells have all been considered as candidates to treat several major neurological disorders and diseases, owing to their self-renewal capacity, multi-directional differentiation, neurotrophic properties, and immune modulation effects. We also review representative basic research and recent clinical trials using stem cells for neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and age-related macular degeneration, as well as traumatic brain injury and glioblastoma. In spite of a few unsuccessful cases, risks of tumorigenicity, and ethical concerns, most results of animal experiments and clinical trials demonstrate efficacious therapeutic effects of stem cells in the treatment of nervous system disease. In summary, these emerging findings in regenerative medicine are likely to contribute to breakthroughs in the treatment of neurological disorders. Thus, stem cells are a promising candidate for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yi-Zhe Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Hai-Ning Wu
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiu-Li Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chen-Jun Guo
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yong-Qiang Li
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Min-Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Hua Han
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
16
|
Ghuman H, Gerwig M, Nicholls FJ, Liu JR, Donnelly J, Badylak SF, Modo M. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater 2017; 63:50-63. [PMID: 28917705 DOI: 10.1016/j.actbio.2017.09.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 12/29/2022]
Abstract
Salvaging or functional replacement of damaged tissue caused by stroke in the brain remains a major therapeutic challenge. In situ gelation and retention of a hydrogel bioscaffold composed of 8mg/mL extracellular matrix (ECM) can induce a robust invasion of cells within 24h and potentially promote a structural remodeling to replace lost tissue. Herein, we demonstrate a long-term retention of ECM hydrogel within the lesion cavity. A decrease of approximately 32% of ECM volume is observed over 12weeks. Lesion volume, as measured by magnetic resonance imaging and histology, was reduced by 28%, but a battery of behavioral tests (bilateral asymmetry test; footfault; rotameter) did not reveal a therapeutic or detrimental effect of the hydrogel. Glial scarring and peri-infarct astrocytosis were equivalent between untreated and treated animals, potentially indicating that permeation into host tissue is required to exert therapeutic effects. These results reveal a marked difference of biodegradation of ECM hydrogel in the stroke-damaged brain compared to peripheral soft tissue repair. Further exploration of these structure-function relationships is required to achieve a structural remodeling of the implanted hydrogel, as seen in peripheral tissues, to replace lost tissue and promote behavioral recovery. STATEMENT OF SIGNIFICANCE In situ gelation of ECM is essential for its retention within a tissue cavity. The brain is a unique environment with restricted access that necessitates image-guided delivery through a thin needle to access tissue cavities caused by stroke, as well as other conditions, such as traumatic brain injury or glioma resection. Knowledge about a brain tissue response to implanted hydrogels remains limited, especially in terms of long-term effects and potential impact on behavioral function. We here address the long-term retention of hydrogel within the brain environment, its impact on behavioral function, as well as its ability to reduce further tissue deformation caused by stroke. This study highlights considerable differences in the brain's long-term response to an ECM hydrogel compared to peripheral soft tissue. It underlines the importance of understanding the effect of the structural presence of a hydrogel within a cavity upon host brain tissue and behavioral function. As demonstrated herein, ECM hydrogel can fill a cavity long-term to reduce further progression of the cavity, while potentially serving as a reservoir for local drug or cell delivery.
Collapse
Affiliation(s)
- Harmanvir Ghuman
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madeline Gerwig
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francesca J Nicholls
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessie R Liu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia Donnelly
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Costa A, Naranjo JD, Londono R, Badylak SF. Biologic Scaffolds. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025676. [PMID: 28320826 DOI: 10.1101/cshperspect.a025676] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix are commonly used for the repair and functional reconstruction of injured and missing tissues. These naturally occurring bioscaffolds are manufactured by the removal of the cellular content from source tissues while preserving the structural and functional molecular units of the remaining extracellular matrix (ECM). The mechanisms by which these bioscaffolds facilitate constructive remodeling and favorable clinical outcomes include release or creation of effector molecules that recruit endogenous stem/progenitor cells to the site of scaffold placement and modulation of the innate immune response, specifically the activation of an anti-inflammatory macrophage phenotype. The methods by which ECM biologic scaffolds are prepared, the current understanding of in vivo scaffold remodeling, and the associated clinical outcomes are discussed in this article.
Collapse
Affiliation(s)
- Alessandra Costa
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219
| | - Juan Diego Naranjo
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219
| | - Ricardo Londono
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219.,School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
18
|
Gao Y, Yang Z, Li X. Regeneration strategies after the adult mammalian central nervous system injury-biomaterials. Regen Biomater 2016; 3:115-22. [PMID: 27047678 PMCID: PMC4817328 DOI: 10.1093/rb/rbw004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 01/12/2023] Open
Abstract
The central nervous system (CNS) has very restricted intrinsic regeneration ability under the injury or disease condition. Innovative repair strategies, therefore, are urgently needed to facilitate tissue regeneration and functional recovery. The published tissue repair/regeneration strategies, such as cell and/or drug delivery, has been demonstrated to have some therapeutic effects on experimental animal models, but can hardly find clinical applications due to such methods as the extremely low survival rate of transplanted cells, difficulty in integrating with the host or restriction of blood–brain barriers to administration patterns. Using biomaterials can not only increase the survival rate of grafts and their integration with the host in the injured CNS area, but also sustainably deliver bioproducts to the local injured area, thus improving the microenvironment in that area. This review mainly introduces the advances of various strategies concerning facilitating CNS regeneration.
Collapse
Affiliation(s)
- Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China,; Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China,; Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
19
|
Koutsoudaki PN, Papastefanaki F, Stamatakis A, Kouroupi G, Xingi E, Stylianopoulou F, Matsas R. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury. Glia 2015; 64:763-79. [PMID: 26712314 DOI: 10.1002/glia.22959] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 01/09/2023]
Abstract
The central nervous system has limited capacity for regeneration after traumatic injury. Transplantation of neural stem/progenitor cells (NPCs) has been proposed as a potential therapeutic approach while insulin-like growth factor I (IGF-I) has neuroprotective properties following various experimental insults to the nervous system. We have previously shown that NPCs transduced with a lentiviral vector for IGF-I overexpression have an enhanced ability to give rise to neurons in vitro but also in vivo, upon transplantation in a mouse model of temporal lobe epilepsy. Here we studied the regenerative potential of NPCs, IGF-I-transduced or not, in a mouse model of hippocampal mechanical injury. NPC transplantation, with or without IGF-I transduction, rescued the injury-induced spatial learning deficits as revealed in the Morris Water Maze. Moreover, it had beneficial effects on the host tissue by reducing astroglial activation and microglial/macrophage accumulation while enhancing generation of endogenous oligodendrocyte precursor cells. One or two months after transplantation the grafted NPCs had migrated towards the lesion site and in the neighboring myelin-rich regions. Transplanted cells differentiated toward the oligodendroglial, but not the neuronal or astrocytic lineages, expressing the early and late oligodendrocyte markers NG2, Olig2, and CNPase. The newly generated oligodendrocytes reached maturity and formed myelin internodes. Our current and previous observations illustrate the high plasticity of transplanted NPCs which can acquire injury-dependent phenotypes within the host CNS, supporting the fact that reciprocal interactions between transplanted cells and the host tissue are an important factor to be considered when designing prospective cell-based therapies for CNS degenerative conditions.
Collapse
Affiliation(s)
- Paraskevi N Koutsoudaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Antonios Stamatakis
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, University of Athens, Athens, 11527, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Fotini Stylianopoulou
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, University of Athens, Athens, 11527, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| |
Collapse
|
20
|
Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury(1,2,3). eNeuro 2015; 2:eN-REV-0077-15. [PMID: 26478910 PMCID: PMC4603254 DOI: 10.1523/eneuro.0077-15.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022] Open
Abstract
Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer "biohybrid" sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome.
Collapse
|
21
|
Skop NB, Calderon F, Cho CH, Gandhi CD, Levison SW. Improvements in biomaterial matrices for neural precursor cell transplantation. MOLECULAR AND CELLULAR THERAPIES 2014; 2:19. [PMID: 26056586 PMCID: PMC4452047 DOI: 10.1186/2052-8426-2-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/05/2014] [Indexed: 12/24/2022]
Abstract
Progress is being made in developing neuroprotective strategies for traumatic brain injuries; however, there will never be a therapy that will fully preserve neurons that are injured from moderate to severe head injuries. Therefore, to restore neurological function, regenerative strategies will be required. Given the limited regenerative capacity of the resident neural precursors of the CNS, many investigators have evaluated the regenerative potential of transplanted precursors. Unfortunately, these precursors do not thrive when engrafted without a biomaterial scaffold. In this article we review the types of natural and synthetic materials that are being used in brain tissue engineering applications for traumatic brain injury and stroke. We also analyze modifications of the scaffolds including immobilizing drugs, growth factors and extracellular matrix molecules to improve CNS regeneration and functional recovery. We conclude with a discussion of some of the challenges that remain to be solved towards repairing and regenerating the brain.
Collapse
Affiliation(s)
- Nolan B Skop
- Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA ; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Frances Calderon
- Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA
| | - Cheul H Cho
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Chirag D Gandhi
- Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA ; Department of Neurological Surgery, Rutgers University-New Jersey Medical School, New Jersey Medical School, Newark, NJ 07103 USA
| | - Steven W Levison
- Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA
| |
Collapse
|
22
|
Skop NB, Calderon F, Cho CH, Gandhi CD, Levison SW. Improvements in biomaterial matrices for neural precursor cell transplantation. MOLECULAR AND CELLULAR THERAPIES 2014; 2:19. [PMID: 26056586 PMCID: PMC4452047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/05/2014] [Indexed: 11/21/2023]
Abstract
Progress is being made in developing neuroprotective strategies for traumatic brain injuries; however, there will never be a therapy that will fully preserve neurons that are injured from moderate to severe head injuries. Therefore, to restore neurological function, regenerative strategies will be required. Given the limited regenerative capacity of the resident neural precursors of the CNS, many investigators have evaluated the regenerative potential of transplanted precursors. Unfortunately, these precursors do not thrive when engrafted without a biomaterial scaffold. In this article we review the types of natural and synthetic materials that are being used in brain tissue engineering applications for traumatic brain injury and stroke. We also analyze modifications of the scaffolds including immobilizing drugs, growth factors and extracellular matrix molecules to improve CNS regeneration and functional recovery. We conclude with a discussion of some of the challenges that remain to be solved towards repairing and regenerating the brain.
Collapse
Affiliation(s)
- Nolan B Skop
- />Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA
- />Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Frances Calderon
- />Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA
| | - Cheul H Cho
- />Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Chirag D Gandhi
- />Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA
- />Department of Neurological Surgery, Rutgers University-New Jersey Medical School, New Jersey Medical School, Newark, NJ 07103 USA
| | - Steven W Levison
- />Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA
| |
Collapse
|
23
|
Abstract
Injury to the CNS typically results in significant morbidity and endogenous repair mechanisms are limited in their ability to restore fully functional CNS tissue. Biologic scaffolds composed of individual purified components have been shown to facilitate functional tissue reconstruction following CNS injury. Extracellular matrix scaffolds derived from mammalian tissues retain a number of bioactive molecules and their ability for CNS repair has recently been recognized. In addition, novel biomaterials for dural mater repairs are of clinical interest as the dura provides barrier function and maintains homeostasis to CNS. The present article describes the application of regenerative medicine principles to the CNS tissues and dural mater repair. While many approaches have been exploring the use of cells and/or therapeutic molecules, the strategies described herein focus upon the use of extracellular matrix scaffolds derived from mammalian tissues that are free of cells and exogenous factors.
Collapse
Affiliation(s)
- Fanwei Meng
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15203, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15203, USA
| |
Collapse
|