1
|
Shu Q, Lai R. miR-874-3p Alleviates Macrophage-Mediated Inflammatory Injury in Intracerebral Hemorrhage by Targeting HIPK2. Cell Biochem Biophys 2024:10.1007/s12013-024-01527-y. [PMID: 39298065 DOI: 10.1007/s12013-024-01527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
Macrophages mediate secondary inflammatory injury after intracerebral hemorrhage (ICH). This study aimed to investigate the role and molecular mechanisms of miR-874-3p in macrophage polarization. A mice model of ICH was constructed by autologous blood injection. Macrophages were treated with erythrocyte lysates to construct an ICH cell model. Real-time quantitative reverse transcription PCR (RT-qPCR) was used to detect miR-874-3p levels. Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect macrophage polarization markers. Brain tissue water content and neurological deficit scores were used to assess the degree of inflammatory injury in ICH mice. RNA immunoprecipitation (RIP) and Dual-luciferase reporter (DLR) assays were used to analyze the targeting relationship between miR-874-3p and target mRNA. miR-874-3p levels were decreased in ICH mice and erythrocyte lysates-treated macrophages. miR-874-3p mimic alleviated inflammatory injury, decreased the levels of M1 macrophage markers, and increased the levels of M2 macrophage markers, suggesting that miR-874-3p is involved in ICH by regulating macrophage polarization. HIPK2 is the target mRNA of miR-874-3p and has the opposite expression pattern of miR-874-3p. Overexpression of HIPK2 attenuates the effect of elevated miR-874-3p levels on macrophage polarization and inflammatory brain injury in ICH mice. miR-874-3p regulates macrophage polarization in ICH by targeting HIPK2. Therefore, the miR-874-3p/HIPK2 axis may be a promising target for ICH treatment.
Collapse
Affiliation(s)
- Quan Shu
- Internal Medicine Teaching and Research Office of Clinical Medicine College, Hubei University of Science and Technology, Xianning, 437000, China
| | - Ruihui Lai
- Department of Neurology, Xianning Central Hospital, Xianning, 437000, China.
| |
Collapse
|
2
|
Bai C, Liu X, Wang F, Sun Y, Wang J, Liu J, Hao X, Zhou L, Yuan Y, Liu J. Identification of immune-related biomarkers for intracerebral hemorrhage diagnosis based on RNA sequencing and machine learning. Front Immunol 2024; 15:1421942. [PMID: 39281688 PMCID: PMC11392791 DOI: 10.3389/fimmu.2024.1421942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a severe stroke subtype with high morbidity, disability, and mortality rates. Currently, no biomarkers for ICH are available for use in clinical practice. We aimed to explore the roles of RNAs in ICH pathogenesis and identify potential diagnostic biomarkers. Methods We collected 233 individual blood samples from two independent cohorts, including 64 patients with ICH, 59 patients with ischemic stroke (IS), 60 patients with hypertension (HTN) and 50 healthy controls (CTRL) for RNA sequencing. Differentially expressed genes (DEGs) analysis, gene set enrichment analysis (GSEA), and weighted correlation network analysis (WGCNA) were performed to identify ICH-specific modules. The immune cell composition was evaluated with ImmuneCellAI. Multiple machine learning algorithms to select potential biomarkers for ICH diagnosis, and further validated by quantitative real-time polymerase chain reaction (RT-PCR). Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were performed to evaluate the diagnostic value of the signature for ICH. Finally, we generated M1 and M2 macrophages to investigate the expression of candidate genes. Results In both cohorts, 519 mRNAs and 131 lncRNAs were consistently significantly differentially expressed between ICH patients and HTN controls. Gene function analysis suggested that immune system processes may be involved in ICH pathology. ImmuneCellAI analysis revealed that the abundances of 11 immune cell types were altered after ICH in both cohorts. WGCNA and GSEA identified 18 immune-related DEGs. Multiple algorithms identified an RNA panel (CKAP4, BCL6, TLR8) with high diagnostic value for discriminating ICH patients from HTN controls, CTRLs and IS patients (AUCs: 0.93, 0.95 and 0.82; sensitivities: 81.3%, 84.4% and 75%; specificities: 100%, 96% and 79.7%, respectively). Additionally, CKAP4 and TLR8 mRNA and protein levels decreased in RAW264.7 M1 macrophages and increased in RAW264.7 M2 macrophages, while BCL6 expression increased in M1 macrophages but not in M2 macrophages, which may provide potential therapeutic targets for ICH. Conclusions This study demonstrated that the expression levels of lncRNAs and mRNAs are associated with ICH, and an RNA panel (CKAP4, BCL6, TLR8) was developed as a potential diagnostic tool for distinguishing ICH from IS and controls, which could provide useful insight into ICH diagnosis and pathogenesis.
Collapse
Affiliation(s)
- Congxia Bai
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinran Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fengjuan Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Zhou
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Yuan
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jiayun Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Wang M, Zhang B, Jin F, Li G, Cui C, Feng S. Exosomal MicroRNAs: Biomarkers of moyamoya disease and involvement in vascular cytoskeleton reconstruction. Heliyon 2024; 10:e32022. [PMID: 38868045 PMCID: PMC11168404 DOI: 10.1016/j.heliyon.2024.e32022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Moyamoya disease currently lacks a suitable method for early clinical screening.This study aimed to identify a simple and feasible clinical screening index by investigating microRNAs carried by peripheral blood exosomes. Experimental subjects participated in venous blood collection, and exosomes were isolated using Exquick-related technology. Sequencing was performed on the extracted exosomal ribonucleic acids (RNAs) to identify differential microRNAs. Verification of the results involved selecting relevant samples from the genetic database. The study successfully pinpointed a potential marker for early screening, hsa-miR-328-3p + hsa-miR-200c-3p carried by peripheral blood exosomes. Enrichment analysis of target genes revealed associations with intercellular junctions, impaired cytoskeletal regulation, and increased fibroblast proliferation, leading to bilateral internal carotid artery neointimal expansion and progressive stenosis. These findings establish the diagnostic value of hsa-miR-328-3p+hsa-miR-200c-3p in screening moyamoya disease, while also contributing to a deeper understanding of its underlying pathophysiology. Significant differences in microRNA expressions derived from peripheral blood exosomes were observed between moyamoya disease patients and control subjects. Consequently, the utilization of peripheral blood exosomes, specifically hsa-miR-328-3p + hsa-miR-200c-3p, holds potential for diagnostic screening purposes.
Collapse
Affiliation(s)
- Mengjie Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Bin Zhang
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Feng Jin
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, Shandong, China
| | - Genhua Li
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
| | - Song Feng
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, No.133, Lotus Road, Jining, Shandong, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), 266042, Qingdao, Shandong, China
| |
Collapse
|
4
|
Chen K, Cheng X, Yuan S, Sun Y, Hao J, Tan Q, Lin Y, Li S, Yang J. Signature and function of plasma exosome-derived circular RNAs in patients with hypertensive intracerebral hemorrhage. Mol Genet Genomics 2024; 299:50. [PMID: 38734849 DOI: 10.1007/s00438-024-02144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Intracerebral hemorrhage (ICH) is one of the major causes of death and disability, and hypertensive ICH (HICH) is the most common type of ICH. Currently, the outcomes of HICH patients remain poor after treatment, and early prognosis prediction of HICH is important. However, there are limited effective clinical treatments and biomarkers for HICH patients. Although circRNA has been widely studied in diseases, the role of plasma exosomal circRNAs in HICH remains unknown. The present study was conducted to investigate the characteristics and function of plasma exosomal circRNAs in six HICH patients using circRNA microarray and bioinformatics analysis. The results showed that there were 499 differentially expressed exosomal circRNAs between the HICH patients and control subjects. According to GO annotation and KEGG pathway analyses, the targets regulated by differentially expressed exosomal circRNAs were tightly related to the development of HICH via nerve/neuronal growth, neuroinflammation and endothelial homeostasis. And the differentially expressed exosomal circRNAs could mainly bind to four RNA-binding proteins (EIF4A3, FMRP, AGO2 and HUR). Moreover, of differentially expressed exosomal circRNAs, hsa_circ_00054843, hsa_circ_0010493 and hsa_circ_00090516 were significantly associated with bleeding volume and Glasgow Coma Scale score of the subjects. Our findings firstly revealed that the plasma exosomal circRNAs are significantly involved in the progression of HICH, and could be potent biomarkers for HICH. This provides the basis for further research to pinpoint the best biomarkers and illustrate the mechanism of exosomal circRNAs in HICH.
Collapse
Affiliation(s)
- Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Xiaoyuan Cheng
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Shanshan Yuan
- Department of Critical Care Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yang Sun
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Junli Hao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Quandan Tan
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yapeng Lin
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Shuping Li
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, People's Republic of China.
| |
Collapse
|
5
|
Zhou B. Bioinformatics analysis identifies potential m6A hub genes in the pathogenesis of intracerebral hemorrhage. J Neuroimmunol 2023; 385:578224. [PMID: 37907028 DOI: 10.1016/j.jneuroim.2023.578224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a type of stroke associated with a high rate of disability and mortality. The role of N6-methyladenosine (m6A) in ICH remains unclear. METHODS Screening of m6A DEGs by differentially expressed genes (DEGs) analysis. m6A hub genes in ICH were identified by protein-protein interaction (PPI) networks. Pearson correlation tests were used to explore the relationship between m6A hub genes and DNA methylation. m6A hub genes were examined by ROC curves for their ability to predict ICH occurrence. Immune cell infiltration and m6A hub gene correlation in ICH were analysed using the CIBERSORT algorithm. Construction of ceRNA networks and enrichment analysis by GO/KEGG. RESULTS A total of 12 m6A regulatory enzymes were differentially expressed after ICH. the PPI network screened three m6A hub genes, including YTHDF2, FTO and HNRNPA2B1. A high expression of YTHDF2 was associated with DNA hypomethylation after ICH and could better predict the development of ICH. yTHDF2 was associated with high infiltration of M1 macrophages after ICH. A ceRNA network was constructed based on the m6A central gene with target genes enriched in transcriptional regulation and the LKB1 signalling pathway. CONCLUSION M6A modifications are involved in the progression of ICH. YTHDF2, an m6A key gene, may regulate ICH progression by promoting infiltration of M1 macrophages or through the ceRNA network.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Neurosurgery, the First People's Hospital of Jiashan County, Jiaxing City, Zhejiang Province, PR China.
| |
Collapse
|
6
|
Xia S, Xu C, Liu F, Chen G. Development of microRNA-based therapeutics for central nervous system diseases. Eur J Pharmacol 2023; 956:175956. [PMID: 37541374 DOI: 10.1016/j.ejphar.2023.175956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
MicroRNA (miRNA)-mediated gene silencing is a method of RNA interference in which a miRNA binds to messenger RNA sequences and regulates target gene expression. MiRNA-based therapeutics have shown promise in treating a variety of central nervous system diseases, as verified by results from diverse preclinical model organisms. Over the last decade, several miRNA-based therapeutics have entered clinical trials for various kinds of diseases, such as tumors, infections, and inherited diseases. However, such clinical trials for central nervous system diseases are scarce, and many central nervous system diseases, including hemorrhagic stroke, ischemic stroke, traumatic brain injury, intractable epilepsy, and Alzheimer's disease, lack effective treatment. Considering its effectiveness for central nervous system diseases in preclinical experiments, microRNA-based intervention may serve as a promising treatment for these kinds of diseases. This paper reviews basic principles and recent progress of miRNA-based therapeutics and summarizes general procedures to develop such therapeutics for treating central nervous system diseases. Then, the current obstacles in drug development are discussed. This review also provides a new perspective on possible solutions to these obstacles in the future.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China; Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Gareev I, Beylerli O, Liang Y, Lu E, Ilyasova T, Sufianov A, Sufianova G, Shi H, Ahmad A, Yang G. The Role of Mitochondria-Targeting miRNAs in Intracerebral Hemorrhage. Curr Neuropharmacol 2023; 21:1065-1080. [PMID: 35524670 PMCID: PMC10286585 DOI: 10.2174/1570159x20666220507021445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/02/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Arterial hypertension (AH) is most often the cause of ICH, followed by atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication and vitamin deficiencies. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. AH is difficult to treat, requires surgery and can lead to disability or death. One of the important directions in the study of the pathogenesis of ICH is mitochondrial dysfunction and its regulation. The key role of mitochondrial dysfunction in AH and atherosclerosis, as well as in the development of brain damage after hemorrhage, has been acknowledged. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that regulate a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., primarily through gene repression. There is growing evidence to support dysregulated miRNAs in various cardiovascular diseases, including ICH. Further, the realization of miRNAs within mitochondrial compartment has challenged the traditional knowledge of signaling pathways involved in the regulatory network of cardiovascular diseases. However, the role of miRNAs in mitochondrial dysfunction for ICH is still under-appreciated, with comparatively much lesser studies and investigations reported, than those in other cardiovascular diseases. In this review, we summarize the up-to-date findings on the published role miRNAs in mitochondrial function for ICH, and the potential use of miRNAs in clinical settings, such as potential therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Federal Centre of Neurosurgery, Tyumen, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Ozal Beylerli
- Federal Centre of Neurosurgery, Tyumen, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Albert Sufianov
- Federal Centre of Neurosurgery, Tyumen, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Aamir Ahmad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
8
|
Bai C, Hao X, Zhou L, Sun Y, Song L, Wang F, Yang L, Liu J, Chen J. Machine learning-based identification of the novel circRNAs circERBB2 and circCHST12 as potential biomarkers of intracerebral hemorrhage. Front Neurosci 2022; 16:1002590. [PMID: 36523430 PMCID: PMC9745062 DOI: 10.3389/fnins.2022.1002590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/14/2022] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The roles and potential diagnostic value of circRNAs in intracerebral hemorrhage (ICH) remain elusive. METHODS This study aims to investigate the expression profiles of circRNAs by RNA sequencing and RT-PCR in a discovery cohort and an independent validation cohort. Bioinformatics analysis was performed to identify the potential functions of circRNA host genes. Machine learning classification models were used to assess circRNAs as potential biomarkers of ICH. RESULTS A total of 125 and 284 differentially expressed circRNAs (fold change > 1.5 and FDR < 0.05) were found between ICH patients and healthy controls in the discovery and validation cohorts, respectively. Nine circRNAs were consistently altered in ICH patients compared to healthy controls. The combination of the novel circERBB2 and circCHST12 in ICH patients and healthy controls showed an area under the curve of 0.917 (95% CI: 0.869-0.965), with a sensitivity of 87.5% and a specificity of 82%. In combination with ICH risk factors, circRNAs improved the performance in discriminating ICH patients from healthy controls. Together with hsa_circ_0005505, two novel circRNAs for differentiating between patients with ICH and healthy controls showed an AUC of 0.946 (95% CI: 0.910-0.982), with a sensitivity of 89.1% and a specificity of 86%. CONCLUSION We provided a transcriptome-wide overview of aberrantly expressed circRNAs in ICH patients and identified hsa_circ_0005505 and novel circERBB2 and circCHST12 as potential biomarkers for diagnosing ICH.
Collapse
Affiliation(s)
- Congxia Bai
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoyan Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lei Zhou
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengjuan Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Yang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiayun Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| |
Collapse
|
9
|
Zhao X, Qiao D, Guan D, Wang K, Cui Y. Chrysophanol Ameliorates Hemin-Induced Oxidative Stress and Endoplasmic Reticulum Stress by Regulating MicroRNA-320-5p/Wnt3a Pathway in HT22 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9399658. [PMID: 35936221 PMCID: PMC9355772 DOI: 10.1155/2022/9399658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress, endoplasmic reticulum (ER) stress, and neuronal cell apoptosis have been considered as the main pathogenesis factors of brain injury after intracerebral hemorrhage (ICH). Chrysophanol (CHR) has been proved to have neuroprotective effects, but the role and underlying mechanisms of CHR in ICH remain unclear. HT22 cells were dealt with hemin to mimic an in vitro ICH model and then subjected to treatment with or without CHR. The cell viability, apoptosis, ER stress, and oxidative stress were evaluated by conducting the cell counting kit-8 (CCK-8), TdT-mediated dUTP nick end labeling (TUNEL) staining assays, western blot, and corresponding kit, respectively. Further, microRNA-sequencing, bioinformatic analysis, dual-luciferase reporter method, and rescue experiments were conducted to explore the molecular mechanisms of CHR alleviating hemin-induced ER in HT22 cell. Our data revealed that CHR increased cells viability, antiapoptosis, anti-ER stress, and antioxidative stress under conditions of hemin-induced HT22 cell injury. Mechanically, it was observed that Wnt3a was competitively sponged by miR-320-5p, and CHR activated β-catenin pathway by regulating miR-320-5p/Wnt3a molecular axis. Finally, results from the rescue experiment suggested that CHR inhibited hemin-induced cells apoptosis, ER stress, and oxidative stress through regulating the miR-320-5p/Wnt3a axis in HT22 cells. In conclusion, CHR prevented hemin-induced apoptosis, ER stress, and oxidative stress via inhibiting the miR-320-5p/Wnt3a/β-catenin pathway in HT22 cells. Our results certified that CHR could be served as a promising treatment for brain damage following ICH.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Pharmacy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Dongge Qiao
- Nursing Department, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Dongsheng Guan
- Department of Encephalopathy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Kun Wang
- Department of Pharmacy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| | - Yinglin Cui
- Department of Encephalopathy, Henan Province Hospital of TCM (The Second Clinical Medical College, Henan University of Traditional Chinese Medicine), Zhengzhou 450002, China
| |
Collapse
|
10
|
Early Prediction of Cerebral Computed Tomography under Intelligent Segmentation Algorithm Combined with Serological Indexes for Hematoma Enlargement after Intracerebral Hemorrhage. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5863082. [PMID: 35747135 PMCID: PMC9213170 DOI: 10.1155/2022/5863082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022]
Abstract
The aim of this study was to explore the application value of brain computed tomography (CT) images under intelligent segmentation algorithm and serological indexes in the early prediction of hematoma enlargement in patients with intracerebral hemorrhage (ICH). Fuzzy C-means (FCM) intelligence segmentation algorithm was introduced, and 150 patients with early ICH were selected as the research objects. Patient cerebral CT images were intelligently segmented to assess the diagnostic value of this algorithm. According to different hematoma volumes during CT examination, patients were divided into observation group (hematoma enlargement occurred, n = 48) and control group (no hematoma enlargement occurred, n = 102). The predicative value of hematoma enlargement after ICH was investigated by assessing CT image quality and measuring intracerebral edema, hematoma volume, and serological indicators of the patients of the two groups. The results demonstrated that the sensitivity, specificity, and accuracy of CT images processed by intelligence segmentation algorithm amounted to 0.894, 0.898, and 0.930, respectively. Besides, early edema enlargement and hematoma of patients in the observation group were more significant than those of patients in the control group. Relative edema volume was 0.912, which was apparently lower than that in the control group (1.017) (P < 0.05). In terms of CT signs of ICH patients, the incidence of blend sign, low density sign, and stroke of the observation group was evidently higher than those of the control group (P < 0.05). Besides, absolute lymphocyte count (ALC) and hemoglobin (HGB) concentration of the patients in the observation group were 6.23 × 109/L and 6.29 × 109/L, respectively, both of which were higher than those of the control group (6.08 × 109/L and 4.25 × 109/L). Neutrophil to lymphocyte ratio (NLR) was 0.99 × 109/L, which was apparently lower than that in the control group (1.43 × 109/L) (P < 0.05). To sum up, cerebral CT images processed by FCM algorithm showed good diagnostic effect on ICH and high clinical values in the early prediction of hematoma among ICH patients.
Collapse
|
11
|
Wang C, Luo Y, Tang H, Yan Y, Chang X, Zhao R, Li Q, Yang P, Hong B, Xu Y, Huang Q, Liu J. Hsa_circ_0031608: A Potential Modulator of VSMC Phenotype in the Rupture of Intracranial Aneurysms. Front Mol Neurosci 2022; 15:842865. [PMID: 35359572 PMCID: PMC8963354 DOI: 10.3389/fnmol.2022.842865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays an important role in the development of intracranial aneurysms (IAs). Growing evidence has demonstrated that circular RNAs (circRNAs) may serve as a potential modulator of VSMC phenotype in various vascular diseases. This study aimed to assess the potential function of circRNAs in the rupture of IAs and VSMC phenotypic modulation. Methods Using surgically dissected human ruptured (n = 8) and unruptured (n = 8) IA lesions, differentially expressed circRNAs were screened by transcriptomic sequencing and verified using qRT-PCR. Based on the screened circRNA, we predicted and screened the combined miRNA and downstream mRNAs to construct circRNA-miRNA-mRNA networks. Further in vitro experiments were performed to investigate the relationship between the validated circRNA and the phenotypic switching of VSMCs. Results We found 1,373 differentially expressed genes in ruptured versus unruptured aneurysms. The top five dysregulated circRNAs were selected for qRT-PCR validation. We found hsa_circ_0031608 was both highly expressed in ruptured IAs and pro-inflammatory transformation of VSMCs. Then, a regulatory circRNA-miRNA-mRNA with one circRNA node, six miRNA nodes, and 84 mRNA nodes was constructed. GO analysis and KEGG pathway enrichment analysis were performed on mRNAs in the network. Then, a PPI network was built based on these mRNAs and five hub genes were identified (FOXO3, DICER1, CCND2, IGF1R, and TNRC6B) by the cytoHubba plugin in Cytoscape software. In vitro, overexpression of hsa_circ_0031608 influenced the expression of VSMC phenotypic markers validated by qPCR and Western blotting. Furthermore, hsa_circ_0031608 promoted the migration and proliferation capacity of VSMCs. Conclusion hsa_circ_0031608 regulated the phenotypic modulation of VSMCs and played an important role in the rupture of IAs. The specific mechanism should be further studied and confirmed.
Collapse
Affiliation(s)
- Chuanchuan Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yin Luo
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Biomedical Engineering, School of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haishuang Tang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, Naval Medical Center of PLA, Shanghai, China
| | - Yazhou Yan
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, 971 Hospital of PLA, Qingdao, China
| | - Xiaozan Chang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Rui Zhao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bo Hong
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qinghai Huang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Han Z, Li L, Liu P, Huang Y, Zhang S, Li G, Li F, Zhao H, Tao Z, Wang R, Ma Q, Luo Y. Metabolic Adjustments by LncRNAs in Peripheral Neutrophils Partly Account for the Complete Compensation of Asymptomatic MMD Patients. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:306-317. [PMID: 32552656 DOI: 10.2174/1871527319666200618150827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Due to the recent development of non-invasive examinations, more asymptomatic patients with Moyamoya Disease (MMD) have been diagnosed than ever. However, its underlying molecular mechanisms and clinical intervention guidelines are all still obscure. METHODS Microarray was used to explore those differentially expressed mRNAs and lncRNAs in peripheral neutrophils of asymptomatic MMD patients. Then enrichment analyses based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for those differentially expressed mRNAs and lncRNA associated mRNAs were performed for underlying molecular mechanisms. RESULTS Here, we identified a total of 2824 differentially expressed lncRNAs and 522 differentially expressed mRNAs (fold change > 2 and P<0.05) in peripheral neutrophils of asymptomatic MMD patients, compared with healthy controls. Then enrichment analyses based on GO and KEGG showed that the neighboring protein-coding mRNAs of those up-regulated and down-regulated lncRNAs were mainly involved in distinct metabolic processes respectively, which may act as a complementary response to insufficient blood supplies in MMD. Further enrichment analyses of those differentially expressed mRNAs preferentially listed essential physiological processes such as peptide cross-linking, chromatin assembly among others. Moreover, altered mRNAs also revealed to be enriched in renin secretion, platelet activation, inflammation and others. CONCLUSION We demonstrated for the first time that metabolic adjustments by dysregulated lncRNAs in peripheral neutrophils might partially account for the complete compensation of asymptomatic MMD patients. In addition, more attention should be paid on renin secretion and platelet activation in order to better understand the pathogenesis and guide clinical intervention for asymptomatic MMDs.
Collapse
Affiliation(s)
- Ziping Han
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lingzhi Li
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ping Liu
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuyou Huang
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijia Zhang
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guangwen Li
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fangfang Li
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research, Department of Neurology, and Department of Neurosurgery of Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
13
|
Reconstruction of circRNA-miRNA-mRNA associated ceRNA networks reveal functional circRNAs in intracerebral hemorrhage. Sci Rep 2021; 11:11584. [PMID: 34078991 PMCID: PMC8172571 DOI: 10.1038/s41598-021-91059-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Abstract
Circular RNA (circRNA), a novel class of noncoding RNAs, has been used extensively to complement transcriptome remodeling in the central nervous system, although the genomic coverage provided has rarely been studied in intracerebral hemorrhage (ICH) and is limited and fails to provide a detailed picture of the cerebral transcriptome landscape. Here, we described sequencing-based transcriptome profiling, providing comprehensive analysis of cerebral circRNA, messenger RNA (mRNA) and microRNA (miRNA) expression in ICH rats. In the study, male Sprague-Dawley rats were subjected to ICH, and next-generation sequencing of RNAs isolated from non-hemorrhagic (Sham) and hemorrhagic (ICH) rat brain samples collected 7 (early phase) and 28 (chronic phase) days after insults, was conducted. Bioinformatics analysis was performed to determine miRNA binding sites and gene ontology of circRNAs, target genes of miRNAs, as well as biological functions of mRNAs, altered after ICH. These analyses revealed different expression profiles of circRNAs, mRNAs and miRNAs in day-7 and day-28 ICH groups, respectively, compared with the Sham. In addition, the expression signature of circRNAs was more sensitive to disease progression than that of mRNAs or miRNAs. Further analysis suggested two temporally specific circRNA-miRNA-mRNA networks based on the competitive endogenous RNA theory, which had profound impacts on brain activities after ICH. In summary, these results suggested an important role for circRNAs in the pathogenesis of ICH and in reverse remodeling based on self-protection support, providing deep insights into diverse possibilities for ICH therapy through targeting circRNAs.
Collapse
|
14
|
Wan SY, Li GS, Tu C, Chen WL, Wang XW, Wang YN, Peng LB, Tan F. MicroNAR-194-5p hinders the activation of NLRP3 inflammasomes and alleviates neuroinflammation during intracerebral hemorrhage by blocking the interaction between TRAF6 and NLRP3. Brain Res 2021; 1752:147228. [PMID: 33385377 DOI: 10.1016/j.brainres.2020.147228] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
The possible role of miR-194-5p in brain and neurodegenerative diseases has been reported, but its role in intracerebral hemorrhage (ICH) has not been studied. This study estimated the mechanism of miR-194-5p in ICH. ICH rat model was established by injecting collagenase type VII. miR-194-5p expression in brain tissue of ICH rats was overexpressed by injection of miR-194-5p agomir. Then neurological function score and brain water content were measured. The morphological changes of brain tissue and neuronal apoptosis were evaluated by histological staining. Levels of NLRP3 inflammasomes, IL-1β and IL-18 were measured. The target relation between miR-194-5p and TRAF6 was verified and the binding of TRAF6 to NLRP3 was explored. miR-194-5p was decreased in ICH rats. After overexpression of miR-194-5p, the neuropathological injury in ICH rats was significantly reduced, and NLRP3-mediated inflammatory injury was inhibited. miR-194-5p targeted TRAF6. TRAF6 interacted with NLRP3 to promote the activation of NLRP3 inflammasomes. Overexpression of miR-194-5p reduced the interaction between TRAF6 and NLRP3, thereby alleviating the neuroinflammation. Collectively, overexpression of miR-194-5p reduced the TRAF6/NLRP3 interaction, thus inhibiting the activation of NLRP3 inflammasomes and reducing neuroinflammation during ICH. This study may shed new light on ICH treatment.
Collapse
Affiliation(s)
- Sai-Ying Wan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Gui-Su Li
- Department of Neurology, Shenzhen Longhua District People's Hospital, China
| | - Chen Tu
- Department of Bone, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Wen-Lin Chen
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Xue-Wen Wang
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Yun-Nan Wang
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Lie-Biao Peng
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine of Guangdong Province, China.
| |
Collapse
|
15
|
Bai C, Liu T, Sun Y, Li H, Xiao N, Zhang M, Feng Y, Xu H, Ge J, Wang X, Song L, Ping J, Chen J. Identification of circular RNA expression profiles and potential biomarkers for intracerebral hemorrhage. Epigenomics 2021; 13:379-395. [PMID: 33507103 DOI: 10.2217/epi-2020-0432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To investigate the expression profiles of circRNAs after intracerebral hemorrhage (ICH). Materials & methods: RNA sequencing and qRT-PCR were used to investigate and validate circRNA expression levels. Bioinformatics analysis was performed to explore potential functions of the circRNAs. Results: Expression levels of 15 circRNAs were consistently altered in patients with ICH compared with their expression levels in hypertension. Three circRNAs, hsa_circ_0001240, hsa_circ_0001947 and hsa_circ_0001386, individually or combined, were confirmed as promising biomarkers for predicting and diagnosing ICH. The circRNAs were involved mainly in lysine degradation and the immune system. Conclusion: This is the first study to report expression profiles of circRNAs after ICH and to propose that three circRNAs are potential biomarkers for ICH.
Collapse
Affiliation(s)
- Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, PR China
| | - Tingting Liu
- General Hospital of Ningxia Medical University, Ningxia 750004, PR China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, PR China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, PR China
| | - Ning Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, PR China
| | - Meijun Zhang
- Annoroad Gene Technology (Beijing) Company Limited, Beijing 100176, PR China
| | - Yanjie Feng
- Annoroad Gene Technology (Beijing) Company Limited, Beijing 100176, PR China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, PR China
| | - Jing Ge
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, PR China
| | - Xuliang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, PR China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, PR China
| | - Jiedan Ping
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, PR China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, PR China.,National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou 451464, PR China
| |
Collapse
|
16
|
Hong G, Yan Y, Zhong Y, Chen J, Tong F, Ma Q. Combined Ischemic Preconditioning and Resveratrol Improved Bloodbrain Barrier Breakdown via Hippo/YAP/TAZ Signaling Pathway. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:713-722. [PMID: 31642795 DOI: 10.2174/1871527318666191021144126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transient Ischemia/Reperfusion (I/R) is the main reason for brain injury and results in disruption of the Blood-Brain Barrier (BBB). It had been reported that BBB injury is one of the main risk factors for early death in patients with cerebral ischemia. Numerous investigations focus on the study of BBB injury which have been carried out. OBJECTIVE The objective of this study was to investigate the treatment function of the activation of the Hippo/Yes-Associated Protein (YAP) signaling pathway by combined Ischemic Preconditioning (IPC) and resveratrol (RES) before brain Ischemia/Reperfusion (BI/R) improves Blood-Brain Barrier (BBB) disruption in rats. METHODS Sprague-Dawley (SD) rats were pretreated with 20 mg/kg RES and IPC and then subjected to 2 h of ischemia and 22 h of reperfusion. The cerebral tissues were collected; the cerebral infarct volume was determined; the Evans Blue (EB) level, the brain Water Content (BWC), and apoptosis were assessed; and the expressions of YAP and TAZ were investigated in cerebral tissues. RESULTS Both IPC and RES preconditioning reduced the cerebral infarct size, improved BBB permeability, lessened apoptosis, and upregulated expressions of YAP and transcriptional co-activator with PDZ-binding motif (TAZ) compared to the Ischemia/Reperfusion (I/R) group, while combined IPC and RES significantly enhanced this action. CONCLUSION combined ischemic preconditioning and resveratrol improved blood-brain barrier breakdown via Hippo/YAP/TAZ signaling pathway.
Collapse
Affiliation(s)
- Ganji Hong
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Yan
- Department of Rehabilitation Medicine, Zhejiang Chinese Medical University, The Third Clinical Medicine, Hangzhou, Zhejiang, China
| | - Yali Zhong
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Jianer Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fei Tong
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, China.,Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Qilin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Rajdev K, Mehan S. Neuroprotective Methodologies of Co-Enzyme Q10 Mediated Brain Hemorrhagic Treatment: Clinical and Pre-Clinical Findings. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:446-465. [PMID: 31187715 DOI: 10.2174/1871527318666190610101144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
Cerebral brain hemorrhage is associated with the highest mortality and morbidity despite only constituting approximately 10-15% of all strokes classified into intracerebral and intraventricular hemorrhage where most of the patients suffer from impairment in memory, weakness or paralysis in arms or legs, headache, fatigue, gait abnormality and cognitive dysfunctions. Understanding molecular pathology and finding the worsening cause of hemorrhage will lead to explore the therapeutic interventions that could prevent and cure the disease. Mitochondrial ETC-complexes dysfunction has been found to increase neuroinflammatory cytokines, oxidative free radicals, excitotoxicity, neurotransmitter and energy imbalance that are the key neuropathological hallmarks of cerebral hemorrhage. Coenzyme Q10 (CoQ10), as a part of the mitochondrial respiratory chain can effectively restore these neuronal dysfunctions by preventing the opening of mitochondrial membrane transition pore, thereby counteracting cell death events as well as exerts an anti-inflammatory effect by influencing the expression of NF-kB1 dependent genes thus preventing the neuroinflammation and energy restoration. Due to behavior and biochemical heterogeneity in post cerebral brain hemorrhagic pattern different preclinical autologous blood injection models are required to precisely investigate the forthcoming therapeutic strategies. Despite emerging pre-clinical research and resultant large clinical trials for promising symptomatic treatments, there are very less pharmacological interventions demonstrated to improve post operative condition of patients where intensive care is required. Therefore, in current review, we explore the disease pattern, clinical and pre-clinical interventions under investigation and neuroprotective methodologies of CoQ10 precursors to ameliorate post brain hemorrhagic conditions.
Collapse
Affiliation(s)
- Kajal Rajdev
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
18
|
Yang H, Gao X, Su J, Jiang H, Lei Y, Ni W, Gu Y. Pharmacokinetics and Acute Toxicity of a Histone Deacetylase Inhibitor, Scriptaid, and its Neuroprotective Effects in Mice After Intracranial Hemorrhage. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 19:55-65. [PMID: 31858907 DOI: 10.2174/1871527319666191220111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/26/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE The pharmacokinetics and acute toxicity of a histone deacetylase inhibitor, Scriptaid, was unknown in the mouse. The aim of this study was to determine the pharmacokinetics, acute toxicity, and tissue distribution of Scriptaid, a new histone deacetylase inhibitor, in mice, and its neuroprotective efficacy in a mouse intracranial hemorrhage (ICH) model. METHODS The pharmacokinetics, acute toxicity, and tissue distribution were determined in C57BL/6 male and female mice after the intraperitoneal administration of a single dose. Behavioral tests, as well as investigations of brain atrophy and white matter injury, were used to evaluate the neuroprotective effect of Scriptaid after ICH. Western blotting was used to investigate if Scriptaid could offer antiinflammatory benefits after ICH. RESULTS No significant differences were observed in body weight or brain histopathology between the group that received Scriptaid at 50 mg/kg and the group that received dimethyl sulfoxide (control). The pharmacokinetics of Scriptaid in mice was nonlinear, and it was cleared rapidly at low doses and slowly at higher doses. Consistent with the pharmacokinetic data, Scriptaid was found to distribute in several tissues, including the spleen and kidneys. In the ICH model, we found that Scriptaid could reduce neurological deficits, brain atrophy, and white matter injury in a dose-dependent manner. Western blotting results demonstrated that Scriptaid could decrease the expression of pro-inflammatory cytokines IL1β and TNFα, as well as iNOS, after ICH. CONCLUSION These findings indicate that Scriptaid is safe and can alleviate brain injury after ICH, thereby providing a foundation for the pharmacological action of Scriptaid in the treatment of brain injury after ICH.
Collapse
Affiliation(s)
- Heng Yang
- Division of Cerebrovascular Surgery and Interventional Neuroradiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinjie Gao
- Division of Cerebrovascular Surgery and Interventional Neuroradiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiabin Su
- Division of Cerebrovascular Surgery and Interventional Neuroradiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hanqiang Jiang
- Division of Cerebrovascular Surgery and Interventional Neuroradiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Lei
- Division of Cerebrovascular Surgery and Interventional Neuroradiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
19
|
Liu W, Bai X, Zhang A, Huang J, Xu S, Zhang J. Role of Exosomes in Central Nervous System Diseases. Front Mol Neurosci 2019; 12:240. [PMID: 31636538 PMCID: PMC6787718 DOI: 10.3389/fnmol.2019.00240] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
There are many types of intercellular communication, and extracellular vesicles are one of the important forms of this. They are released by a variety of cell types, are heterogeneous, and can roughly be divided into microvesicles and exosomes according to their occurrence and function. Of course, exosomes do not just play a role in cell-to-cell communication. In the nervous system, exosomes can participate in intercellular communication, maintain the myelin sheath, and eliminate waste. Similarly, exosomes in the brain can play a role in central nervous system diseases, such as stroke, Alzheimer's disease (AD), Parkinson's disease (PD), prion disease, and traumatic encephalopathy (CTE), with both positive and negative effects (such as the transfer of misfolded proteins). Exosomes contain a variety of key bioactive substances and can therefore be considered as a snapshot of the intracellular environment. Studies have shown that exosomes from the central nervous system can be found in cerebrospinal fluid and peripheral body fluids, and that their contents will change with disease occurrence. Because exosomes can penetrate the blood brain barrier (BBB) and are highly stable in peripheral circulation, they can protect disease-related molecules well and therefore, using exosomes as a biomarker of central nervous system diseases is an attractive prospect as they can be used to monitor disease development and enable early diagnosis and treatment optimization. In this review, we discuss the current state of knowledge of exosomes, and introduce their pathophysiological roles in different diseases of the central nervous system as well as their roles and applications as a viable pathological biomarker.
Collapse
Affiliation(s)
- Wanying Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodan Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao Zhang
- Epidemiology, College of Global Public Health, New York University, New York, NY, United States
| | - Juanjuan Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|