1
|
Sowa-Kućma M, Pańczyszyn-Trzewik P, Jaeschke RR. Exploring the Pharmacological and Clinical Features of Lumateperone: A Promising Novel Antipsychotic. Int J Mol Sci 2024; 25:13289. [PMID: 39769054 PMCID: PMC11678021 DOI: 10.3390/ijms252413289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
Lumateperone is a novel antipsychotic recently approved for the treatment of schizophrenia. Its unique pharmacological profile includes modulation of serotonergic, dopaminergic, and glutamatergic neurotransmission, differentiating it from other second-generation antipsychotics. This paper explores the pharmacological features and clinical potential of lumateperone across neuropsychiatric conditions. A review of current literature, including pharmacokinetic and pharmacodynamic studies, was conducted. It focused on lumateperone's mechanism of action and receptor-binding profile, and clinical trials assessing its efficacy and safety in schizophrenia and other psychiatric disorders. Lumateperone demonstrates high affinity for 5-HT2A receptors, moderate affinity for D2 receptors, and low affinity for H1 and 5-HT2C receptors. It acts as a presynaptic D2 agonist and a postsynaptic antagonist, contributing to a favorable side-effect profile with reduced extrapyramidal symptoms. Clinical trials suggest that lumateperone is effective in reducing both positive and negative symptoms of schizophrenia, with minimal metabolic and cardiovascular risks. It is also being explored as an adjunctive therapy for major depressive disorder and bipolar depression. Lumateperone presents a promising therapeutic option for schizophrenia with a novel mechanism of action and a favorable safety profile. Its potential application in other psychiatric conditions warrants further investigation, particularly in treatment-resistant populations.
Collapse
Affiliation(s)
- Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszów University, Kopisto 2a, 35-315 Rzeszów, Poland
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland
| | - Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszów University, Kopisto 2a, 35-315 Rzeszów, Poland
| | - Rafał R. Jaeschke
- Section of Affective Disorders, Department of Psychiatry, Jagiellonian University Medical College, Kopernika 21a, 31-501 Kraków, Poland
| |
Collapse
|
2
|
Kwon KJ, Kim HY, Han SH, Shin CY. Future Therapeutic Strategies for Alzheimer's Disease: Focus on Behavioral and Psychological Symptoms. Int J Mol Sci 2024; 25:11338. [PMID: 39518892 PMCID: PMC11547068 DOI: 10.3390/ijms252111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive, degenerative brain disorder that impairs memory and thinking skills, leading to significant economic and humanistic burdens. It is associated with various neuropsychiatric symptoms (NPS) such as anxiety, agitation, depression, aggression, apathy, and psychosis. NPSs are common in patients with AD, affecting up to 97% of individuals diagnosed with AD. The severity of NPS is linked to disease progression and cognitive decline. NPS in Alzheimer's disease leads to increased morbidity, mortality, caregiver burden, earlier nursing home placement, and higher healthcare costs. Despite their significant impact, clinical research on NPS in AD is limited. In clinical settings, accurately distinguishing and diagnosing NPS related to AD remains a challenge. Additionally, conventional treatments for NPS in AD are often ineffective, highlighting the need for new therapies that target these specific symptoms. Understanding these comorbidities can aid in early diagnosis and better management of AD. In this review, we provide a summary of the various neurological and psychiatric symptoms (NPS) associated with AD and new candidates under development for the treatment of NPS based on their therapeutic targets and mechanisms. On top of the conventional NPS studied so far, this review adds recent advancements in the understanding of social functional impairment in AD. This review also provides information that can contribute to the advancement of studies and translational research in this field by emphasizing therapeutic targets and mechanisms of action focused on AD-related NPS rather than conventional mechanisms targeted in AD drug development. Above all, considering the relative lack of research in this new field despite the importance of clinical, medical, and translational research, it may increase interest in NPS in AD, its pathophysiological mechanisms, and potential therapeutic candidates such as molecules with antioxidant potential.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Hahn Young Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Seol-Heui Han
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
| |
Collapse
|
3
|
Qiu Y, Guo J, Chen J, Zhang W, Wang W. Metabolic profiling of lumateperone in vitro and in vivo by UPLC-Q Exactive Orbitrap HRMS, and its pharmacokinetic study in rat plasma by LC-MS/MS. J Pharm Biomed Anal 2024; 246:116221. [PMID: 38759324 DOI: 10.1016/j.jpba.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Lumateperone is a novel agent approved by FDA for treatment of schizophrenia in adults. To elucidate the species differences in the of biotransformation of lumateperone and its pharmacokinetic (PK) characteristics in rats, the metabolite identification of lumateperone was carried out in rat, dog and human liver microsomes, and rat plasma after oral administration using UPLC-Q Exactive Orbitrap high-resolution mass spectrometry HRMS. Furtherly, the PK characteristics of lumateperone and its N-demethylated metabolite (M3) in rat plasma were investigated using a validated LC-MS/MS method following intravenous and oral administration. Fourteen phase I metabolites were found in liver microsomes and ten of them were observed in rat plasma. N-demethylation, carbonylation, dehydrogenation, and piperazine ring cleavage were main metabolic pathway of lumateperone. No unique metabolites were formed in human liver microsomes. After rapid absorption in rats, lumateperone was quickly metabolized and eliminated with bioavailability of less than 5%. The exposure level of M3 was about 1.5-fold higher than that of lumateperone in rat plasma. Lumatperone underwent extensive metabolism and was absorbed rapidly in rats. Metabolite M3 had equivalent or slightly higher exposure levels than lumateperone. This study provides essential PK information to facilitate further pharmacodynamic researches of lumateperone.
Collapse
Affiliation(s)
- Yifan Qiu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jindong Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Wenjing Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai, Shandong 264003, China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai, Shandong 264003, China.
| |
Collapse
|
4
|
Longo G, Cicolini A, Orsolini L, Volpe U. The Novel Antipsychotic Lumateperone (Iti-007) in the Treatment of Schizophrenia: A Systematic Review. Brain Sci 2023; 13:1641. [PMID: 38137089 PMCID: PMC10741391 DOI: 10.3390/brainsci13121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Lumateperone (also known as ITI-007 or ITI-722) represents a novel second-generation medication characterized by a favorable safety and tolerability profile. This is attributed to its notable selectivity for D2 receptors within specific regions of the brain. The U.S. Food and Drug Administration (FDA) granted approval for the treatment of schizophrenia in adults in December 2019. Additionally, it gained approval for addressing depressive episodes associated with bipolar I and II disorders in adults, either as a standalone therapy or in conjunction with lithium or valproate, in December 2021. The objective of this investigation is to systematically review the existing literature to assess the safety, tolerability, and efficacy of lumateperone in the treatment of schizophrenia. Lumateperone has demonstrated effectiveness in addressing positive, negative, and cognitive symptoms associated with schizophrenia. The evaluation of safety indicators in the reviewed studies indicates that lumateperone is deemed to be a well-tolerated and safe antipsychotic. Additional research is warranted to explore lumateperone's efficacy in managing major depressive disorders, behavioral issues in Alzheimer's disease and dementia, sleep maintenance insomnia, bipolar disorders, and personality disorders.
Collapse
Affiliation(s)
| | | | - Laura Orsolini
- Unit of Clinical Psychiatry, Department of Neurosciences/DIMSC, School of Medicine, Polytechnic University of Marche, Via Conca 71, 60126 Ancona, Italy; (G.L.); (A.C.); (U.V.)
| | | |
Collapse
|
5
|
Recent Advances in Psychopharmacology: From Bench to Bedside Novel Trends in Schizophrenia. J Pers Med 2023; 13:jpm13030411. [PMID: 36983593 PMCID: PMC10058851 DOI: 10.3390/jpm13030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Research in the field of psychopharmacology is ongoing to develop novel compounds which can revolutionize the treatment of psychiatric disorders. The concept of bench-to-bedside is a tedious process, transforming the initial research performed in the laboratories into novel treatment options. Schizophrenia (SCZ) is a chronic psychiatric illness with significant morbidity and mortality. SCZ not only presents with psychotic symptoms including hallucinations and delusions but also with negative and cognitive symptoms. The negative symptoms include the diminished ability to express emotions, loss of pleasure, and motivation with minimal social interactions. Conventional antipsychotics primarily target positive symptoms with minimal therapeutic benefits for negative and cognitive symptoms along with metabolic side effects. Researchers have explored novel targets to develop new compounds to overcome the above limitations. The glutamatergic system has provided new hope in treating schizophrenia by targeting negative and cognitive symptoms. Other receptor modulators, including serotonergic, phosphodiesterase, trans-amine-associated receptors, etc., are novel targets for developing new compounds. Future research is required in this field to explore novel compounds and establish their efficacy and safety for the treatment of schizophrenia. Last but not least, pharmacogenomics has effectively utilized genetic information to develop novel compounds by minimizing the risk of failure of the clinical trials and enhancing efficacy and safety.
Collapse
|
6
|
Syed AB, Brašić JR. The role of lumateperone in the treatment of schizophrenia. Ther Adv Psychopharmacol 2021; 11:20451253211034019. [PMID: 34377435 PMCID: PMC8326816 DOI: 10.1177/20451253211034019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a devastating mental disorder resulting in marked morbidity and mortality despite the optimal use of all currently available interventions. For this reason, the release of lumateperone (CaptylaR), also known as ITI-007, an orally administered, atypical antipsychotic provided a welcome novel tool for clinicians to utilize precision medicine to tailor an optimal treatment plan to the specific needs of each person with schizophrenia. To generate a foundation for clinicians to assess the risks and benefits of lumateperone in relation to other interventions for schizophrenia, we conducted a search of items for 'ITI-007' and 'lumateperone' on PubMed, ScienceDirect, Web of Science, Google Scholar, and www.clinicaltrials.gov. We present a critical evaluation of the limited information about lumateperone for schizophrenia, its use approved by the US Food and Drug Administration. Lumateperone merits consideration for patients with treatment-resistant schizophrenia and for patients with schizophrenia who are vulnerable to developing metabolic dysfunction and movement disorders. On the other hand, lumateperone should not be used for (a) women who are pregnant or breastfeeding, children, adolescents, and elderly patients with dementia-related psychosis, (b) patients who are at risk for cerebrovascular diseases, (c) patients who use inducers and moderate or strong inhibitors of the cytochrome P450-3A4 (CYP3A4) isozyme, and (d) patients who use alcohol and other sedating agents. Clinical trials from multiple centers without financial conflicts of interest to market lumateperone are needed to directly compare and contrast lumateperone and other antipsychotic agents to generate trustworthy evidence to be assessed objectively by clinicians treating patients with schizophrenia. Future investigations will provide the foundations to identify the evidence for comprehensive evaluations of the role of lumateperone in the treatment of people with schizophrenia and other conditions.
Collapse
Affiliation(s)
| | - James Robert Brašić
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 1101 Saint Paul Street, Unit 1107, Baltimore, MD 21202-2664, USA
| |
Collapse
|