1
|
Singh AV, Bhardwaj P, Laux P, Pradeep P, Busse M, Luch A, Hirose A, Osgood CJ, Stacey MW. AI and ML-based risk assessment of chemicals: predicting carcinogenic risk from chemical-induced genomic instability. FRONTIERS IN TOXICOLOGY 2024; 6:1461587. [PMID: 39659701 PMCID: PMC11628524 DOI: 10.3389/ftox.2024.1461587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Chemical risk assessment plays a pivotal role in safeguarding public health and environmental safety by evaluating the potential hazards and risks associated with chemical exposures. In recent years, the convergence of artificial intelligence (AI), machine learning (ML), and omics technologies has revolutionized the field of chemical risk assessment, offering new insights into toxicity mechanisms, predictive modeling, and risk management strategies. This perspective review explores the synergistic potential of AI/ML and omics in deciphering clastogen-induced genomic instability for carcinogenic risk prediction. We provide an overview of key findings, challenges, and opportunities in integrating AI/ML and omics technologies for chemical risk assessment, highlighting successful applications and case studies across diverse sectors. From predicting genotoxicity and mutagenicity to elucidating molecular pathways underlying carcinogenesis, integrative approaches offer a comprehensive framework for understanding chemical exposures and mitigating associated health risks. Future perspectives for advancing chemical risk assessment and cancer prevention through data integration, advanced machine learning techniques, translational research, and policy implementation are discussed. By implementing the predictive capabilities of AI/ML and omics technologies, researchers and policymakers can enhance public health protection, inform regulatory decisions, and promote sustainable development for a healthier future.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Preeti Bhardwaj
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Prachi Pradeep
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Madleen Busse
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Akihiko Hirose
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | - Christopher J. Osgood
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Michael W. Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
2
|
Armon-Omer A, Mansor T, Edelstein M, Bukovetzky E, Groisman L, Rorman E, Nov AS, Shahien R. Association between multiple sclerosis and urinary levels of toxic metals and organophosphates: A cross-sectional study in Israel. Mult Scler Relat Disord 2024; 83:105445. [PMID: 38242049 DOI: 10.1016/j.msard.2024.105445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a multifactorial disease of uncertain etiology damaging myelin sheaths around axons of the central nervous system. Myelin protects the axon from potentially harmful exogenous factors. The aetiological role of environmental exposure metals and organophosphates is unclear. OBJECTIVE Identify whether urinary levels of metals and organophosphates differed in MS patients and controls. METHODS We recruited MS patients from Ziv Medical Centre and healthy controls. MS patients were evaluated according to Expanded Disability Status Scale into mild and moderate-severe conditions. Each participant provided a urine sample and completed epidemiological questionnaires. The levels of six metal (Aluminum, Cadmium, Chromium, Lead, Mercury, Nickel) and one metalloid (Arsenic) and common organophosphates pesticide metabolites (6 dialkylphosphates, DAP) were measured in urine using inductively coupled plasma-mass spectrometry and gas-chromatography mass-spectrometry. We compared cases with controls in terms of urinary levels of these compounds using Mann-Whitney and Kruskall-Wallis tests. RESULTS Urinary cadmium and mercury levels were higher in the 49 MS patients than the 37 controls (p < 0.01). Cadmium levels were higher in moderate-severe MS patients (n = 24) than mild MS patients (n = 25) (p = 0.003). CONCLUSION Urinary cadmium and mercury levels were higher among MS patients than controls. Cadmium levels correlated with disease severity. Further studies are needed to explore potential causal pathways between these compounds and MS pathogenesis.
Collapse
Affiliation(s)
| | - Tarek Mansor
- Department of Neurology, Ziv Medical Center, Zefat, Israel
| | - Michael Edelstein
- Ziv Medical Center, Research Institute, Zefat, Israel; Azrieli Faculty of Medicine, Bar Ilan University, Zefat, Israel
| | | | - Luda Groisman
- National Public Health Laboratories, Tel Aviv, Israel
| | - Efrat Rorman
- National Public Health Laboratories, Tel Aviv, Israel
| | | | - Radi Shahien
- Department of Neurology, Ziv Medical Center, Zefat, Israel; Azrieli Faculty of Medicine, Bar Ilan University, Zefat, Israel.
| |
Collapse
|
3
|
Kirichuk AA, Skalny AV, Chizhov AY, Tskhovrebov AG, Schaumlöffel D, Kritchenkov AS. Characteristic features of toxic metal content in hair samples of foreign students at RUDN University from different geographic regions. J Trace Elem Med Biol 2023; 80:127303. [PMID: 37741050 DOI: 10.1016/j.jtemb.2023.127303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND This study explores the regional variations in toxic metal accumulation among RUDN University students from various global regions. METHODS This comparative analysis examined hair samples from students hailing from different regions, including Russia, Asia, the Middle East, Africa, and Latin America. The concentrations of Aluminium (Al), Arsenic (As), Cadmium (Cd), Mercury (Hg), Lead (Pb), and Tin (Sn) were measured in the hair samples. The data was then evaluated using regression models to assess the link between the region of residence and toxic metal content in the hair. RESULTS The analysis indicated significant regional variations in the levels of toxic metals in the students' hair. The highest content of Al, Cd, and Pb was observed in students from Africa (13.542, 0.028, 0.794 µg/g) and Latin America (9.947, 0.025, 0.435 µg/g). Arsenic levels in students from all regions exceeded that of Russian students by over two-fold. No substantial group differences were found in the Sn content. The regression models suggested that residing in Asia, Africa, and Latin America was a predictor of high Hg levels in hair (0.130, 0.096, 0.227 µg/g). Living in Africa was significantly associated with higher Pb levels (0.794 µg/g), and living in Latin America was close to significantly associated with the Cd level in the hair (0.025 µg/g). CONCLUSION This study confirmed an increased accumulation of toxic metals, especially Hg, Cd, and Pb, in students primarily from Latin America and Africa. The findings highlighted the importance of understanding the regional variations in toxic metal accumulation to address associated health risks and the potential impact on students' well-being and academic performance. These insights may guide the development of targeted interventions to reduce exposure to toxic metals in students from various regions around the world.
Collapse
Affiliation(s)
- Anatoly A Kirichuk
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation; Sechenov University, Moscow 119435, Russian Federation
| | - Aleksey Ya Chizhov
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Alexander G Tskhovrebov
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Dirk Schaumlöffel
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation; CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France
| | - Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Republic of Belarus.
| |
Collapse
|
4
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
5
|
Deng L, Li Q, Hu W, Chen X, Chen T, Song S, Mo P, Zou S, Zhang Y, Gao S, Chen L, Zhuang K, Yang R, Xiong Y. Metagenomic next-generation sequencing versus traditional laboratory methods for the diagnosis of central nervous system opportunistic infections in HIV-infected Chinese adults. Sci Rep 2023; 13:4921. [PMID: 36966258 PMCID: PMC10039683 DOI: 10.1038/s41598-023-31974-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
To evaluate clinical value of metagenomic next-generation sequencing (mNGS) in people living with HIV/AIDS (PLWHA) who had CNS disorders. Cerebrospinal fluid (CSF) samples from 48 PLWHA presenting with CNS disorders were sequenced using mNGS and compared with clinical conventional diagnostic methods. In total, 36/48 ss(75%) patients were diagnosed with pathogen(s) infection by mNGS, and the positive detection proportion by mNGS was higher than that by clinical conventional diagnostic methods (75% vs 52.1%, X2 = 5.441, P = 0.020). Thirteen out of 48 patients (27.1%) were detected with 3-7 pathogens by mNGS. Moreover, 77 pathogen strains were detected, of which 94.8% (73/77) by mNGS and 37.0% (30/77) by clinical conventional methods (X2 = 54.206, P < 0.001). The sensitivity and specificity of pathogens detection by mNGS were 63.9% (23/36) and 66.7% (8/12), respectively, which were superior to that by clinical conventional methods (23/36 vs 9/25, X2 = 4.601, P = 0.032; 8/12 vs 5/23, X2 = 5.029, P = 0.009). The application of mNGS was superior for its ability to detect a variety of unknown pathogens and multiple pathogens infection, and relatively higher sensitivity and specificity in diagnosis of CNS disorders in PLWHA.
Collapse
Affiliation(s)
- Liping Deng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenjia Hu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoping Chen
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tielong Chen
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shihui Song
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pingzheng Mo
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yongxi Zhang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shicheng Gao
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ke Zhuang
- ABSL-III Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Rongrong Yang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yong Xiong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
The Molecular Gut-Brain Axis in Early Brain Development. Int J Mol Sci 2022; 23:ijms232315389. [PMID: 36499716 PMCID: PMC9739658 DOI: 10.3390/ijms232315389] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Millions of nerves, immune factors, and hormones in the circulatory system connect the gut and the brain. In bidirectional communication, the gut microbiota play a crucial role in the gut-brain axis (GBA), wherein microbial metabolites of the gut microbiota regulate intestinal homeostasis, thereby influencing brain activity. Dynamic changes are observed in gut microbiota as well as during brain development. Altering the gut microbiota could serve as a therapeutic target for treating abnormalities associated with brain development. Neurophysiological development and immune regulatory disorders are affected by changes that occur in gut microbiota composition and function. The molecular aspects relevant to the GBA could help develop targeted therapies for neurodevelopmental diseases. Herein, we review the findings of recent studies on the role of the GBA in its underlying molecular mechanisms in the early stages of brain development. Furthermore, we discuss the bidirectional regulation of gut microbiota from mother to infant and the potential signaling pathways and roles of posttranscriptional modifications in brain functions. Our review summarizes the role of molecular GBA in early brain development and related disorders, providing cues for novel therapeutic targets.
Collapse
|
7
|
Iqbal D, Rizvi SMD, Rehman MT, Khan MS, Bin Dukhyil A, AlAjmi MF, Alshehri BM, Banawas S, Zia Q, Alsaweed M, Madkhali Y, Alsagaby SA, Alturaiki W. Soyasapogenol-B as a Potential Multitarget Therapeutic Agent for Neurodegenerative Disorders: Molecular Docking and Dynamics Study. ENTROPY 2022; 24:e24050593. [PMID: 35626478 PMCID: PMC9141571 DOI: 10.3390/e24050593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
Neurodegenerative disorders involve various pathophysiological pathways, and finding a solution for these issues is still an uphill task for the scientific community. In the present study, a combination of molecular docking and dynamics approaches was applied to target different pathways leading to neurodegenerative disorders such as Alzheimer’s disease. Initially, abrineurin natural inducers were screened using physicochemical properties and toxicity assessment. Out of five screened compounds, a pentacyclic triterpenoid, i.e., Soyasapogenol B appeared to be the most promising after molecular docking and simulation analysis. Soyasapogenol B showed low TPSA (60.69), high absorption (82.6%), no Lipinski rule violation, and no toxicity. Docking interaction analysis revealed that Soyasapogenol B bound effectively to all of the targeted proteins (AChE, BuChE MAO-A, MAO-B, GSK3β, and NMDA), in contrast to other screened abrineurin natural inducers and inhibitors. Importantly, Soyasapogenol B bound to active site residues of the targeted proteins in a similar pattern to the native ligand inhibitor. Further, 100 ns molecular dynamics simulations analysis showed that Soyasapogenol B formed stable complexes against all of the targeted proteins. RMSD analysis showed that the Soyasapogenol B–protein complex exhibited average RMSD values of 1.94 Å, 2.11 Å, 5.07 Å, 2.56 Å, 3.83 Å and 4.07 Å. Furthermore, the RMSF analysis and secondary structure analysis also indicated the stability of the Soyasapogenol B–protein complexes.
Collapse
Affiliation(s)
- Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Correspondence: (D.I.); (S.M.D.R.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Correspondence: (D.I.); (S.M.D.R.)
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.R.); (M.F.A.)
| | - M. Salman Khan
- Clinical Biochemistry & Natural Product Research Laboratory, Department of Biosciences, Integral University, Lucknow 226026, U.P., India;
| | - Abdulaziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.R.); (M.F.A.)
| | - Bader Mohammed Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| |
Collapse
|