1
|
Michel M, Renaud D, Schmidt R, Einkemmer M, Laser LV, Michel E, Dubowy KO, Karall D, Laser KT, Scholl-Bürgi S. Altered Serum Proteins Suggest Inflammation, Fibrogenesis and Angiogenesis in Adult Patients with a Fontan Circulation. Int J Mol Sci 2024; 25:5416. [PMID: 38791454 PMCID: PMC11121818 DOI: 10.3390/ijms25105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Previous omics research in patients with complex congenital heart disease and single-ventricle circulation (irrespective of the stage of palliative repair) revealed alterations in cardiac and systemic metabolism, inter alia abnormalities in energy metabolism, and inflammation, oxidative stress or endothelial dysfunction. We employed an affinity-proteomics approach focused on cell surface markers, cytokines, and chemokines in the serum of 20 adult Fontan patients with a good functioning systemic left ventricle, and we 20 matched controls to reveal any specific processes on a cellular level. Analysis of 349 proteins revealed 4 altered protein levels related to chronic inflammation, with elevated levels of syndecan-1 and glycophorin-A, as well as decreased levels of leukemia inhibitory factor and nerve growth factor-ß in Fontan patients compared to controls. All in all, this means that Fontan circulation carries specific physiological and metabolic instabilities, including chronic inflammation, oxidative stress imbalance, and consequently, possible damage to cell structure and alterations in translational pathways. A combination of proteomics-based biomarkers and the traditional biomarkers (uric acid, γGT, and cholesterol) performed best in classification (patient vs. control). A metabolism- and signaling-based approach may be helpful for a better understanding of Fontan (patho-)physiology. Syndecan-1, glycophorin-A, leukemia inhibitory factor, and nerve growth factor-ß, especially in combination with uric acid, γGT, and cholesterol, might be interesting candidate parameters to complement traditional diagnostic imaging tools and the determination of traditional biomarkers, yielding a better understanding of the development of comorbidities in Fontan patients, and they may play a future role in the identification of targets to mitigate inflammation and comorbidities in Fontan patients.
Collapse
Affiliation(s)
- Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David Renaud
- Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France;
- Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
| | | | - Matthias Einkemmer
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Lea Valesca Laser
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, 32545 Bad Oeynhausen, Germany; (L.V.L.); (K.O.D.); (K.T.L.)
| | - Erik Michel
- Clinic for Pediatrics, Medizin Campus Bodensee, 88048 Friedrichshafen, Germany;
| | - Karl Otto Dubowy
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, 32545 Bad Oeynhausen, Germany; (L.V.L.); (K.O.D.); (K.T.L.)
| | - Daniela Karall
- Department of Child and Adolescent Health, Division Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria (S.S.-B.)
| | - Kai Thorsten Laser
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, 32545 Bad Oeynhausen, Germany; (L.V.L.); (K.O.D.); (K.T.L.)
| | - Sabine Scholl-Bürgi
- Department of Child and Adolescent Health, Division Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria (S.S.-B.)
| |
Collapse
|
2
|
Clode M, Tran D, Majumdar A, Ayer J, Ferrie S, Cordina R. Nutritional considerations for people living with a Fontan circulation: a narrative review. Cardiol Young 2024; 34:238-249. [PMID: 38258459 DOI: 10.1017/s1047951123004389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The population of people living with a Fontan circulation are highly heterogenous, including both children and adults, who have complex health issues and comorbidities associated with their unique physiology throughout life. Research focused on nutritional considerations and interventions in the Fontan population is extremely limited beyond childhood. This review article discusses the current literature examining nutritional considerations in the setting of Fontan physiology and provides an overview of the available evidence to support nutritional management strategies and future research directions. Protein-losing enteropathy, growth deficits, bone mineral loss, and malabsorption are well-recognised nutritional concerns within this population, but increased adiposity, altered glucose metabolism, and skeletal muscle deficiency are also more recently identified issues. Emergencing evidence suggets that abnormal body composition is associated with poor circulatory function and health outcomes. Many nutrition-related issues, including the impact of congenital heart disease on nutritional status, factors contributing to altered body composition and comorbidities, as well as the role of the microbiome and metabolomics, remain poodly understood.
Collapse
Affiliation(s)
- Melanie Clode
- The University of Sydney, Sydney Medical School, Camperdown, NSW, Australia
- Heart Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Derek Tran
- The University of Sydney, Sydney Medical School, Camperdown, NSW, Australia
- Heart Research Institute, Newtown, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Avik Majumdar
- The University of Sydney, Sydney Medical School, Camperdown, NSW, Australia
| | - Julian Ayer
- The University of Sydney, Sydney Medical School, Camperdown, NSW, Australia
- The Heart Centre for Children, The Sydney Children's Hospital Network, Westmead, NSW, Australia
| | - Suzie Ferrie
- The University of Sydney, Sydney Medical School, Camperdown, NSW, Australia
- Department of Nutrition and Dietetics, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Rachael Cordina
- The University of Sydney, Sydney Medical School, Camperdown, NSW, Australia
- Heart Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Heart Research Institute, Newtown, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
3
|
Renaud D, Scholl-Bürgi S, Karall D, Michel M. Comparative Metabolomics in Single Ventricle Patients after Fontan Palliation: A Strong Case for a Targeted Metabolic Therapy. Metabolites 2023; 13:932. [PMID: 37623876 PMCID: PMC10456471 DOI: 10.3390/metabo13080932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Most studies on single ventricle (SV) circulation take a physiological or anatomical approach. Although there is a tight coupling between cardiac contractility and metabolism, the metabolic perspective on this patient population is very recent. Early findings point to major metabolic disturbances, with both impaired glucose and fatty acid oxidation in the cardiomyocytes. Additionally, Fontan patients have systemic metabolic derangements such as abnormal glucose metabolism and hypocholesterolemia. Our literature review compares the metabolism of patients with a SV circulation after Fontan palliation with that of patients with a healthy biventricular (BV) heart, or different subtypes of a failing BV heart, by Pubmed review of the literature on cardiac metabolism, Fontan failure, heart failure (HF), ketosis, metabolism published in English from 1939 to 2023. Early evidence demonstrates that SV circulation is not only a hemodynamic burden requiring staged palliation, but also a metabolic issue with alterations similar to what is known for HF in a BV circulation. Alterations of fatty acid and glucose oxidation were found, resulting in metabolic instability and impaired energy production. As reported for patients with BV HF, stimulating ketone oxidation may be an effective treatment strategy for HF in these patients. Few but promising clinical trials have been conducted thus far to evaluate therapeutic ketosis with HF using a variety of instruments, including ketogenic diet, ketone esters, and sodium-glucose co-transporter-2 (SGLT2) inhibitors. An initial trial on a small cohort demonstrated favorable outcomes for Fontan patients treated with SGLT2 inhibitors. Therapeutic ketosis is worth considering in the treatment of Fontan patients, as ketones positively affect not only the myocardial energy metabolism, but also the global Fontan physiopathology. Induced ketosis seems promising as a concerted therapeutic strategy.
Collapse
Affiliation(s)
- David Renaud
- Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France
- Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
- Fundacja Recover, 05-124 Skrzeszew, Poland
| | - Sabine Scholl-Bürgi
- Department of Child and Adolescent Health, Division of Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniela Karall
- Department of Child and Adolescent Health, Division of Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Michel M, Dubowy KO, Zlamy M, Karall D, Adam MG, Entenmann A, Keller MA, Koch J, Odri Komazec I, Geiger R, Salvador C, Niederwanger C, Müller U, Scholl-Bürgi S, Laser KT. Targeted metabolomic analysis of serum phospholipid and acylcarnitine in the adult Fontan patient with a dominant left ventricle. Ther Adv Chronic Dis 2020; 11:2040622320916031. [PMID: 32426103 PMCID: PMC7222265 DOI: 10.1177/2040622320916031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with a Fontan circulation have altered cholesterol and lipoprotein values. We analysed small organic molecules in extended phopsholipid and acylcarnitine metabolic pathways ('metabolomes') in adult Fontan patients with a dominant left ventricle, seeking differences between profiles in baseline and Fontan circulations. METHODS In an observational matched cross-sectional study, we compared phosphatidylcholine (PC), sphingomyelin (SM), and acylcarnitine metabolomes (105 analytes; AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) in 20 adult Fontan patients having a dominant left ventricle with those in 20 age- and sex-matched healthy controls. RESULTS Serum levels of total PC (q-value 0.01), total SM (q-value 0.0002) were significantly lower, and total acylcarnitines (q-value 0.02) were significantly higher in patients than in controls. After normalisation of data, serum levels of 12 PC and 1 SM Fontan patients were significantly lower (q-values <0.05), and concentrations of 3 acylcarnitines were significantly higher than those in controls (q-values <0.05). CONCLUSION Metabolomic profiling can use small specimens to identify biomarker patterns that track derangement in multiple metabolic pathways. The striking alterations in the phospholipid and acylcarnitine metabolome that we found in Fontan patients may reflect altered cell signalling and metabolism as found in heart failure in biventricular patients, chronic low-level inflammation, and alteration of functional or structural properties of lymphatic or blood vessels. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Identifier NCT03886935.
Collapse
Affiliation(s)
- Miriam Michel
- Department of Pediatrics III, Division of Pediatric Cardiology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, Georgstraße, Bad Oeynhausen, Germany
| | - Karl-Otto Dubowy
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, Georgstraße, Bad Oeynhausen, Germany
| | - Manuela Zlamy
- Department of Pediatrics I, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Karall
- Department of Pediatrics I, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Andreas Entenmann
- Department of Pediatrics I, Division of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Irena Odri Komazec
- Department of Pediatrics III, Division of Pediatric Cardiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ralf Geiger
- Department of Pediatrics III, Division of Pediatric Cardiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Salvador
- Department of Pediatrics I, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Niederwanger
- Department of Pediatrics I, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Udo Müller
- Biocrates Life Sciences AG, Innsbruck, Austria
| | - Sabine Scholl-Bürgi
- Department of Pediatrics I, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai Thorsten Laser
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, Georgstraße, Bad Oeynhausen, Germany
| |
Collapse
|