1
|
Analysis of Metabolic Differences in the Water Extract of Shenheling Fermented by Lactobacillus fermentum Based on Nontargeted Metabolomics. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective: To explore the characteristics of metabolites in Shenheling (SHL) fermented by Lactobacillus fermentum. Methods: In this study, ultrahigh-performance liquid chromatography-quadrupole electrostatic field orbit trap mass spectrometry (UHPLC-QE-MS) was used to qualitatively, quantitatively, and differentially analyze the metabolites of SHL before and after fermentation. Results: A total of 102 significant differential metabolites in nine categories were analyzed before and after fermentation. It mainly includes 29 terpenoids, 17 alkaloids, 14 organic acids and derivatives, 10 flavonoids, 9 phenylpropanoids, 6 phenols, 3 aromaticity, and 3 amino acid derivatives. Further screening found that the content of most active substances, such as alkaloids, organic acids, and flavonoids, increased significantly. These metabolites play an important role in improving the taste and efficacy of SHL. After fermentation, the contents of differential metabolites, such as panaquinquecol 2, ginsenoside Rh3, ginsenoside Rg3, dehydronuciferin, nicotinic acid, 5-hydroxytryptophan, azelaic acid, dihydrokaempferol, and chrysin, were increased, which increased the effects of antioxidation, anti-obesity, hypoglycemic, antibacterial, and improved immunity compared with those before fermentation. KEGG pathway analysis identified 10 metabolic pathways. Isoquinoline alkaloid biosynthesis, vitamin B6 metabolism, beta-alanine metabolism, nicotinate, and nicotinamide metabolism, purine metabolism, pantothenate and CoA biosynthesis, glyoxylate and dicarboxylate metabolism, tyrosine metabolism, citrate cycle (TCA cycle), phenylpropanoid biosynthesis, etc. Conclusions: Fermentation significantly changed the metabolites in SHL and played an important role in improving its taste, aroma quality, antioxidant, anti-obesity, and other health care functional components.
Collapse
|
2
|
Lim DW, Wang JH. Gut Microbiome: The Interplay of an "Invisible Organ" with Herbal Medicine and Its Derived Compounds in Chronic Metabolic Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13076. [PMID: 36293657 PMCID: PMC9603471 DOI: 10.3390/ijerph192013076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Resembling a concealed "organ" in a holobiont, trillions of gut microbes play complex roles in the maintenance of homeostasis, including participating in drug metabolism. The conventional opinion is that most of any drug is metabolized by the host and that individual differences are principally due to host genetic factors. However, current evidence indicates that only about 60% of the individual differences in drug metabolism are attributable to host genetics. Although most common chemical drugs regulate the gut microbiota, the gut microbiota is also known to be involved in drug metabolism, like the host. Interestingly, many traditional herbal medicines and derived compounds are biotransformed by gut microbiota, manipulating the compounds' effects. Accordingly, the gut microbiota and its specified metabolic pathways can be deemed a promising target for promoting drug efficacy and safety. However, the evidence regarding causality and the corresponding mechanisms concerning gut microbiota and drug metabolism remains insufficient, especially regarding drugs used to treat metabolic disorders. Therefore, the present review aims to comprehensively summarize the bidirectional roles of gut microbiota in the effects of herbal medicine in metabolic diseases to provide vital clues for guiding the clinical application of precision medicine and personalized drug development.
Collapse
Affiliation(s)
- Dong-Woo Lim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang 10326, Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea
| |
Collapse
|
3
|
In Vitro Anti-Obesity Effect of Shenheling Extract (SHLE) Fermented with Lactobacillus fermentum grx08. Foods 2022; 11:foods11091221. [PMID: 35563944 PMCID: PMC9104015 DOI: 10.3390/foods11091221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Obesity is a common global problem. There are many fat-reducing herbal prescriptions in traditional Chinese medicine that have been proven to be safe and functional during long-term application. Microbial fermentation can improve the efficacy of herbal medicine and improve the unsavory flavor. In this study, Shenheling extract (SHLE) composed of six medicine food homology materials was used as the research object. The purpose of this study was to evaluate the effects of Lactobacillusfermentum grx08 fermentation on the antiobesity efficacy and flavor of SHLE. We found that L. fermentum grx08 grew well in SHLE. After 72 h of fermentation, the total polysaccharides, total flavonoids, total polyphenols and total saponins of SHLE decreased, but the lipase inhibitory activity and total antioxidant capacity (FRAP) were significantly increased (p < 0.01). There were no significant differences in the α-glucosidase inhibition rate and DPPH· clearance rate before or after fermentation (p > 0.05). In addition, the fermentation reduces the unpleasant flavors of SHLE such as bitterness and grassy and cassia flavors. This study demonstrates that SHLE fermented by L. fermentum grx08 improved some anti-obesity functions and improved the unpleasant flavor.
Collapse
|
4
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|
5
|
Singla RK. Secondary Metabolites as Treatment of Choice for Metabolic Disorders and Infectious Diseases and their Metabolic Profiling: Part 1. Curr Drug Metab 2020; 21:480-481. [PMID: 33172364 DOI: 10.2174/138920022107200925101631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Anti-Obesity Effects of a Prunus persica and Nelumbo nucifera Mixture in Mice Fed a High-Fat Diet. Nutrients 2020; 12:nu12113392. [PMID: 33158191 PMCID: PMC7694277 DOI: 10.3390/nu12113392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Prunus persica and Nelumbo nucifera are major crops cultivated worldwide. In East Asia, both P. persica flowers and N. nucifera leaves are traditionally used for therapeutic purposes and consumed as teas for weight loss. Herein, we investigated the anti-obesity effects of an herbal extract mixture of P. persica and N. nucifera (HT077) and the underlying mechanism using a high-fat diet (HFD)-induced obesity model. Male C57BL/6 mice were fed a normal diet, HFD, HFD containing 0.02% orlistat (positive control), or HFD containing 0.1, 0.2, or 0.4% HT077 for 12 weeks. HT077 significantly reduced final body weights, weight gain, abdominal fat weights, liver weights, and hepatic levels of triglycerides and total cholesterol. HT077 also lowered glucose, cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and leptin levels and increased AST/ALT and adiponectin/leptin ratios and adiponectin levels. Real-time polymerase chain reaction analysis showed that HT077 decreased the expression of lipogenic genes and increased the expression of fatty acid oxidation-related genes in adipose tissue. Our results indicate that HT077 exerts anti-obesity effects and prevents the development of obesity-related metabolic disorders. These beneficial effects might be partially attributed to ameliorating adipokine imbalances and regulating lipid synthesis and fatty acid oxidation in adipose tissue.
Collapse
|
7
|
Scandiffio R, Geddo F, Cottone E, Querio G, Antoniotti S, Gallo MP, Maffei ME, Bovolin P. Protective Effects of ( E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020; 12:nu12113273. [PMID: 33114564 PMCID: PMC7692661 DOI: 10.3390/nu12113273] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
(E)-β-caryophyllene (BCP) is a bicyclic sesquiterpene widely distributed in the plant kingdom, where it contributes a unique aroma to essential oils and has a pivotal role in the survival and evolution of higher plants. Recent studies provided evidence for protective roles of BCP in animal cells, highlighting its possible use as a novel therapeutic tool. Experimental results show the ability of BCP to reduce pro-inflammatory mediators such as tumor necrosis factor-alfa (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), thus ameliorating chronic pathologies characterized by inflammation and oxidative stress, in particular metabolic and neurological diseases. Through the binding to CB2 cannabinoid receptors and the interaction with members of the family of peroxisome proliferator-activated receptors (PPARs), BCP shows beneficial effects on obesity, non-alcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) liver diseases, diabetes, cardiovascular diseases, pain and other nervous system disorders. This review describes the current knowledge on the biosynthesis and natural sources of BCP, and reviews its role and mechanisms of action in different inflammation-related metabolic and neurologic disorders.
Collapse
Affiliation(s)
- Rosaria Scandiffio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Giulia Querio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
- Correspondence:
| |
Collapse
|
8
|
Wang S, Xu Z, Cai B, Chen Q. Berberine as a Potential Multi-Target Agent for Metabolic Diseases: A Review of Investigations for Berberine. Endocr Metab Immune Disord Drug Targets 2020; 21:971-979. [PMID: 32914727 DOI: 10.2174/1871530320666200910105612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
Berberine (BBR) is a botanic alkaloid extracted from Coptis chinensis (Huanglian), which has various properties, compassing anti-hyperglycemia, anti-obesity, anti-inflammation, and improves insulin resistance, etc. Several researches have confirmed that BBR has effective actions in treating glycolipid metabolic abnormalities. BBR is also beneficial in regulating intestinal flora. Metabolic diseases are strongly associated with metabolic disorders, which are growing in the population and dramatically impacting human health, which also have been considered as a leading cause of diseases and death globally. This review is to evaluate the metabolic properties of BBR, and its potential application to the treatment of metabolic diseases by its effective actions on metabolic disorders.
Collapse
Affiliation(s)
- Shengju Wang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Zhang Xu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Baochao Cai
- Endocrinology Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
9
|
Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules 2020; 25:molecules25081833. [PMID: 32316274 PMCID: PMC7221665 DOI: 10.3390/molecules25081833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Thanks to omic disciplines and a systems biology approach, the study of essential oils and phytocomplexes has been lately rolling on a faster track. While metabolomic fingerprinting can provide an effective strategy to characterize essential oil contents, network pharmacology is revealing itself as an adequate, holistic platform to study the collective effects of herbal products and their multi-component and multi-target mediated mechanisms. Multivariate analysis can be applied to analyze the effects of essential oils, possibly overcoming the reductionist limits of bioactivity-guided fractionation and purification of single components. Thanks to the fast evolution of bioinformatics and database availability, disease-target networks relevant to a growing number of phytocomplexes are being developed. With the same potential actionability of pharmacogenomic data, phytogenomics could be performed based on relevant disease-target networks to inform and personalize phytocomplex therapeutic application.
Collapse
|