1
|
Assis de Andrade E, Machinski I, Terso Ventura AC, Barr SA, Pereira AV, Beltrame FL, Strangman WK, Williamson RT. A Review of the Popular Uses, Anatomical, Chemical, and Biological Aspects of Kalanchoe (Crassulaceae): A Genus of Plants Known as "Miracle Leaf". Molecules 2023; 28:5574. [PMID: 37513446 PMCID: PMC10383218 DOI: 10.3390/molecules28145574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Species of the genus Kalanchoe have a long history of therapeutic use in ethnomedicine linked to their remarkable healing properties. Several species have chemical and anatomical similarities, often leading to confusion when they are used in folk medicine. This review aims to provide an overview and discussion of the reported traditional uses, botanical aspects, chemical constituents, and pharmacological potential of the Kalanchoe species. Published scientific materials were collected from the PubMed and SciFinder databases without restriction regarding the year of publication through April 2023. Ethnopharmacological knowledge suggests that these species have been used to treat infections, inflammation, injuries, and other disorders. Typically, all parts of the plant are used for medicinal purposes either as crude extract or juice. Botanical evaluation can clarify species differentiation and can enable correct identification and validation of the scientific data. Flavonoids are the most common classes of secondary metabolites identified from Kalanchoe species and can be correlated with some biological studies (antioxidant, anti-inflammatory, and antimicrobial potential). This review summarizes several topics related to the Kalanchoe genus, supporting future studies regarding other unexplored research areas. The need to conduct further studies to confirm the popular uses and biological activities of bioactive compounds is also highlighted.
Collapse
Affiliation(s)
- Evelyn Assis de Andrade
- Pharmaceutical Science Graduate Program, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Isadora Machinski
- Pharmaceutical Science Graduate Program, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Ana Carolina Terso Ventura
- Pharmaceutical Science Graduate Program, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Sarah Ainslie Barr
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28409, USA
| | - Airton Vicente Pereira
- Pharmaceutical Science Graduate Program, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Flávio Luís Beltrame
- Pharmaceutical Science Graduate Program, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Wendy Karen Strangman
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28409, USA
| | - Robert Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28409, USA
| |
Collapse
|
2
|
Potent and Selective Inhibition of CYP1A2 Enzyme by Obtusifolin and Its Chemopreventive Effects. Pharmaceutics 2022; 14:pharmaceutics14122683. [PMID: 36559174 PMCID: PMC9786103 DOI: 10.3390/pharmaceutics14122683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Obtusifolin, a major anthraquinone component present in the seeds of Cassia tora, exhibits several biological activities, including the amelioration of memory impairment, prevention of breast cancer metastasis, and reduction of cartilage damage in osteoarthritis. We aimed to evaluate the inhibitory effects of obtusifolin and its analogs on CYP1A enzymes, which are responsible for activating procarcinogens, and investigate its inhibitory mechanism and chemopreventive effects. P450-selective substrates were incubated with human liver microsomes (HLMs) or recombinant CYP1A1 and CYP1A2 in the presence of obtusifolin and its four analogs. After incubation, the samples were analyzed using liquid chromatography-tandem mass spectrometry. Molecular docking simulations were performed using the crystal structure of CYP1A2 to identify the critical interactions between anthraquinones and human CYP1A2. Obtusifolin potently and selectively inhibited CYP1A2-mediated phenacetin O-deethylation (POD) with a Ki value of 0.031 µM in a competitive inhibitory manner in HLMs, whereas it exhibited negligible inhibitory effect against other P450s (IC50 > 28.6 µM). Obtusifolin also inhibited CYP1A1- and CYP1A2-mediated POD and ethoxyresorufin O-deethylation with IC50 values of <0.57 µM when using recombinant enzymes. Our molecular docking models suggested that the high CYP1A2 inhibitory activity of obtusifolin may be attributed to the combination of hydrophobic interactions and hydrogen bonding. This is the first report of selective and potent inhibitory effects of obtusifolin against CYP1A, indicating their potential chemopreventive effects.
Collapse
|
3
|
Ji SB, Park SY, Bae S, Seo HJ, Kim SE, Lee GM, Wu Z, Liu KH. Comprehensive Investigation of Stereoselective Food Drug Interaction Potential of Resveratrol on Nine P450 and Six UGT Isoforms in Human Liver Microsomes. Pharmaceutics 2021; 13:pharmaceutics13091419. [PMID: 34575495 PMCID: PMC8470274 DOI: 10.3390/pharmaceutics13091419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
The stereoselectivity of the food drug inhibition potential of resveratrol on cytochrome P450s and uridine 5'-diphosphoglucuronosyl transferases was investigated in human liver microsomes. Resveratrol enantiomers showed stereoselective inhibition of CYP2C9, CYP3A, and UGT1A1. The inhibitions of CYP1A2, CYP2B6, and CYP2C19 by resveratrol were stereo-nonselective. The estimated Ki values determined for CYP1A2 were 13.8 and 9.2 μM for trans- and cis-resveratrol, respectively. Trans-resveratrol noncompetitively inhibited CYP3A and UGT1A1 activities with Ki values of 23.8 and 27.4 μM, respectively. Trans-resveratrol inhibited CYP1A2, CYP2C19, CYP2E1, and CYP3A in a time-dependent manner with Ki shift values >2.0, while cis-resveratrol time-dependently inhibited CYP2C19 and CYP2E1. The time-dependent inhibition of trans-resveratrol against CYP3A4, CYP2E1, CYP2C19, and CYP1A2 was elucidated using glutathione as a trapping reagent. This information helped the prediction of food drug interaction potentials between resveratrol and co-administered drugs which are mainly metabolized by UGT1A1, CYP1A2, CYP2C19, CYP2E1, and CYP3A.
Collapse
Affiliation(s)
- Seung-Bae Ji
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Daegu 41566, Korea; (S.-B.J.); (S.-Y.P.); (S.B.); (H.-J.S.); (S.-E.K.); (G.-M.L.)
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu 41566, Korea
| | - So-Young Park
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Daegu 41566, Korea; (S.-B.J.); (S.-Y.P.); (S.B.); (H.-J.S.); (S.-E.K.); (G.-M.L.)
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu 41566, Korea
| | - Subin Bae
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Daegu 41566, Korea; (S.-B.J.); (S.-Y.P.); (S.B.); (H.-J.S.); (S.-E.K.); (G.-M.L.)
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu 41566, Korea
| | - Hyung-Ju Seo
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Daegu 41566, Korea; (S.-B.J.); (S.-Y.P.); (S.B.); (H.-J.S.); (S.-E.K.); (G.-M.L.)
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu 41566, Korea
| | - Sin-Eun Kim
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Daegu 41566, Korea; (S.-B.J.); (S.-Y.P.); (S.B.); (H.-J.S.); (S.-E.K.); (G.-M.L.)
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu 41566, Korea
| | - Gyung-Min Lee
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Daegu 41566, Korea; (S.-B.J.); (S.-Y.P.); (S.B.); (H.-J.S.); (S.-E.K.); (G.-M.L.)
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu 41566, Korea
| | - Zhexue Wu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu 41566, Korea
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Z.W.); (K.-H.L.); Tel.: +82-53-950-8567 (Z.W. & K.-H.L.); Fax: +82-53-950-8557 (Z.W. & K.-H.L.)
| | - Kwang-Hyeon Liu
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Daegu 41566, Korea; (S.-B.J.); (S.-Y.P.); (S.B.); (H.-J.S.); (S.-E.K.); (G.-M.L.)
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu 41566, Korea
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Z.W.); (K.-H.L.); Tel.: +82-53-950-8567 (Z.W. & K.-H.L.); Fax: +82-53-950-8557 (Z.W. & K.-H.L.)
| |
Collapse
|
4
|
Amaeze O, Eng H, Horlbogen L, Varma MVS, Slitt A. Cytochrome P450 Enzyme Inhibition and Herb-Drug Interaction Potential of Medicinal Plant Extracts Used for Management of Diabetes in Nigeria. Eur J Drug Metab Pharmacokinet 2021; 46:437-450. [PMID: 33844145 DOI: 10.1007/s13318-021-00685-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE The use of herbal medicines is common in Africa, and patients often use a combination of herbs and drugs. Concurrent herbal and pharmaceuticals treatments can cause adverse effects through herb-drug interactions (HDI). This study evaluated the potential risk of HDI for five medicinal plants, Vernonia amygdalina, Ocimum gratissimum, Moringa oleifera, Azadirachta indica, and Picralima nitida, using in vitro assays. Patients with diabetes and some other disease conditions commonly use these medicinal plants in Nigeria, and little is known regarding their potential for drug interaction, despite their enormous use. METHODS Crude extracts of the medicinal plants were evaluated for reversible and time-dependent inhibition (TDI) activity of six cytochrome P450 (CYP) enzymes using pooled human liver microsomes and cocktail probe-based assays. Enzyme activity was determined by quantifying marker metabolites' formation using liquid chromatography-mass spectrometry/mass spectrometry. The drug interaction potential was predicted for each herbal extract using the in vitro half-maximal inhibitory concentration (IC50) values and the percentage yield. RESULTS O. gratissimum methanol extracts reversibly inhibited CYP 1A2, 2C8, 2C9 and 2C19 enzymes (IC50: 6.21 µg/ml, 2.96 µg/ml, 3.33 µg/ml and 1.37 µg/ml, respectively). Additionally, V. amygdalina methanol extract inhibited CYP2C8 activity (IC50: 5.71 µg/ml); P. nitida methanol and aqueous extracts inhibited CYP2D6 activity (IC50: 1.99 µg/ml and 2.36 µg/ml, respectively) while A. indica methanol extract inhibited CYP 3A4/5, 2C8 and 2C9 activity (IC50: 7.31 µg/ml, 9.97 µg/ml and 9.20 µg/ml, respectively). The extracts showed a potential for TDI of the enzymes when incubated at 200 µg/ml; V. amygdalina and A. indica methanol extracts exhibited TDI potential for all the major CYPs. CONCLUSIONS The medicinal plants inhibited CYP activity in vitro, with the potential to cause in vivo HDI. Clinical risk assessment and proactive monitoring are recommended for patients who use these medicinal plants concurrently with drugs that are cleared through CYP metabolism.
Collapse
Affiliation(s)
- Ogochukwu Amaeze
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA.,Department of Clinical Pharmacy and Biopharmacy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Heather Eng
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT, USA
| | - Lauren Horlbogen
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT, USA
| | | | - Angela Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA.
| |
Collapse
|
5
|
Seo HJ, Ji SB, Kim SE, Lee GM, Park SY, Wu Z, Jang DS, Liu KH. Inhibitory Effects of Schisandra Lignans on Cytochrome P450s and Uridine 5'-Diphospho-Glucuronosyl Transferases in Human Liver Microsomes. Pharmaceutics 2021; 13:pharmaceutics13030371. [PMID: 33802239 PMCID: PMC8000448 DOI: 10.3390/pharmaceutics13030371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/21/2023] Open
Abstract
Schisandra chinensis has been widely used as a traditional herbal medicine to treat chronic coughs, fatigue, night sweats, and insomnia. Numerous bioactive components including lignans have been identified in this plant. Lignans with a dibenzocyclooctadiene moiety have been known to possess anti-cancer, anti-inflammatory, and hepatoprotective activity. Fragmentary studies have reported the ability of some lignans to modulate some cytochrome P450 (P450) enzymes. Herein, we investigated the drug interaction potential of six dibenzocyclooctadiene lignans (schisandrin, gomisin A, B, C, and N, and wuweizisu C) on nine P450 enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A) and six uridine 5'-diphosphoglucuronosyl transferase (UGT) enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) using human liver microsomes. We found that lignans with one or two methylenedioxyphenyl groups inhibited CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP2E1 activities in a time- and concentration-dependent like their CYP3A inhibition. In comparison, these lignans do not induce time-dependent inhibition of CYP1A2, CYP2A6, and CYP2D6. The time-dependent inhibition of gomisin A against CYP2C8, CYP2C19, and CYP3A4 was also elucidated using glutathione as a trapping reagent of reactive carbene metabolites given that gomisin A strongly inhibits these P450 enzymes in a time-dependent manner. A glutathione conjugate of gomisin A was generated in reactions with human recombinant CYP2C8, CYP2C19, and CYP3A4. This suggests that the time-dependent inhibition of gomisin A against CYP2C8, CYP2C9, and CYP3A4 is due to the production of carbene reactive metabolite. Six of the lignans we tested inhibited the activities of six UGT to a limited extent (IC50 > 15 μM). This information may aid the prediction of possible drug interactions between Schisandra lignans and any co-administered drugs which are mainly metabolized by P450s.
Collapse
Affiliation(s)
- Hyung-Ju Seo
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
| | - Seung-Bae Ji
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
| | - Sin-Eun Kim
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
| | - Gyung-Min Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
| | - So-Young Park
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
| | - Zhexue Wu
- Mass Spectrometry Based Convergence Research Institute and Department of Chemistry, Kyungpook National University, Daegu 41566, Korea;
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (D.S.J.); (K.-H.L.); Tel.: +82-2-961-0719 (D.S.J.); +82-53-950-8567 (K.-H.L.)
| | - Kwang-Hyeon Liu
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (H.-J.S.); (S.-B.J.); (S.-E.K.); (G.-M.L.); (S.-Y.P.)
- Mass Spectrometry Based Convergence Research Institute and Department of Chemistry, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (D.S.J.); (K.-H.L.); Tel.: +82-2-961-0719 (D.S.J.); +82-53-950-8567 (K.-H.L.)
| |
Collapse
|
6
|
Kalanchoe laciniata and Bryophyllum pinnatum: an updated review about ethnopharmacology, phytochemistry, pharmacology and toxicology. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Awortwe C, Makiwane M, Reuter H, Muller C, Louw J, Rosenkranz B. Critical evaluation of causality assessment of herb-drug interactions in patients. Br J Clin Pharmacol 2018; 84:679-693. [PMID: 29363155 DOI: 10.1111/bcp.13490] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this review was to assess the severity of adverse drug reactions (ADRs) due to herb-drug interactions (HDI) in patients taking herbs and prescribed medications based on published evidence. Electronic databases of PubMed, the Cochrane Library, Medline and Scopus were searched for randomized or nonrandomized clinical studies, case-control and case reports of HDI. The data were extracted and the causal relationship of ADRs as consequences of HDI assessed using Horn's drug interaction probability scale or Roussel Uclaf Causality Assessment Method scoring systems. The mechanism of interaction was ascertained using Stockley's herbal medicine interaction companion. Forty-nine case reports and two observational studies with 15 cases of ADRs were recorded. The majority of the patients were diagnosed with cardiovascular diseases (30.60%), cancer (22.45%) and renal transplants (16.32%) receiving mostly warfarin, alkylating agents and cyclosporine, respectively. HDI occurred in patients resulting in clinical ADRs with different severity. Patients may poorly respond to therapeutic agents or develop toxicity due to severe HDI, which in either scenario may increase the cost of treatment and/or lead to or prolong patient hospitalization. It is warranted to increase patient awareness of the potential interaction between herbs and prescribed medicines and their consequences to curb HDI as a potential health problem.
Collapse
Affiliation(s)
- Charles Awortwe
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa.,Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Memela Makiwane
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Christo Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Bernd Rosenkranz
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| |
Collapse
|
8
|
Gouws C, Hamman JH. Recent developments in our understanding of the implications of traditional African medicine on drug metabolism. Expert Opin Drug Metab Toxicol 2017; 14:161-168. [PMID: 29268027 DOI: 10.1080/17425255.2018.1421171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The use of traditional herbal medicines has become increasingly popular globally, but in some countries, it is the main or sometimes even the only healthcare service available in the most rural areas. This is especially true for Africa where herbal medicines form a key component of traditional medicinal practices and there is access to a diversity of medicinal plants. Although many benefits have been derived from the use of traditional herbal medicines, many concerns are associated with their use of which herb-drug interactions have been identified to have a rising impact on patient treatment outcome. One type of pharmacokinetic interaction involves the modulation of drug metabolizing enzymes, which may result in enhanced or reduced bioavailability of co-administered drugs. Areas covered: This review highlights the current information available on drug metabolism-associated information with regards to traditional African medicines related to some of the most prevalent diseases burdening the African continent. Expert opinion: It is clear from previous studies that enzyme modulation by traditional African medicines plays a significant role in the pharmacokinetics of some co-administered drugs, but more research is needed to provide detailed information on these interactions, specifically for treatment of prevalent diseases such as tuberculosis and hypertension.
Collapse
Affiliation(s)
- Chrisna Gouws
- a Pharmacen™, Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| | - Josias H Hamman
- a Pharmacen™, Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| |
Collapse
|
9
|
Cytochrome P450 and P-Glycoprotein-Mediated Interactions Involving African Herbs Indicated for Common Noncommunicable Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2582463. [PMID: 28250793 PMCID: PMC5307007 DOI: 10.1155/2017/2582463] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 12/26/2022]
Abstract
Herbal remedies are regularly used to complement conventional therapies in the treatment of various illnesses in Africa. This may be because they are relatively cheap and easily accessible and are believed by many to be safe, cause fewer side effects, and are less likely to cause dependency. On the contrary, many herbs have been shown to alter the pharmacokinetics of coadministered allopathic medicines and can either synergize or antagonize therapeutic effects as well as altering the toxicity profiles of these drugs. Current disease burden data point towards epidemiological transitions characterised by increasing urbanization and changing lifestyles, risk factors for chronic diseases like hypertension, diabetes, and cancer which often present as multimorbidities. As a result, we highlight African herb-drug interactions (HDIs) modulated via cytochrome P450 enzyme family (CYP) and P-glycoprotein (P-gp) and the consequences thereof in relation to antihypertensive, antidiabetic, and anticancer drugs. CYPs are enzymes which account for to up to 70% of drug metabolism while P-gp is an efflux pump that extrudes drug substrates out of cells. Consequently, regulation of the relative activity of both CYP and P-gp by African herbs influences the effective drug concentration at the site of action and modifies therapeutic outcomes.
Collapse
|
10
|
In Vitro Reversible and Time-Dependent CYP450 Inhibition Profiles of Medicinal Herbal Plant Extracts Newbouldia laevis and Cassia abbreviata: Implications for Herb-Drug Interactions. Molecules 2016; 21:molecules21070891. [PMID: 27399660 PMCID: PMC6274561 DOI: 10.3390/molecules21070891] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/19/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023] Open
Abstract
This study evaluated the effects of Newbouldia laevis and Cassia abbreviata extracts on CYP450 enzyme activity. Recombinant CYP450 enzyme and fluorogenic substrates were used for evaluating inhibition, allowing the assessment of herb–drug interactions (HDI). Phytochemical fingerprinting was performed using UPLC-MS. The herbal extracts were risk ranked for HDI based on the IC50 values determined for each CYP enzyme. Newbouldia laevis inhibited CYP1A2, CYP2C9, and CYP2C19 enzyme activities with Ki of 2.84 µg/mL, 1.55 µg/mL, and 1.23 µg/mL, respectively. N. laevis exhibited a TDI (4.17) effect on CYP1A2 but not CYP2C9 and CYP2C19 enzyme activities. Cassia abbreviata inhibited CYP1A2, CYP2C9, and CYP2C19 enzyme activities showing a Ki of 4.86 µg/mL, 5.98 µg/mL, and 1.58 µg/mL, respectively. TDI potency assessment for Cassia abbreviata showed it as a potential TDI candidate (1.64) for CYP1A2 and CYP2C19 (1.72). UPLC-MS analysis showed that Newbouldia laevis and Cassia abbreviata possess polyphenols that likely give them their therapeutic properties; some of them are likely to be responsible for the observed inhibition. The observations made in this study suggest the potential for these herbal compounds to interact, especially when co-administered with other medications metabolized by these CYP450 enzymes.
Collapse
|