1
|
Yu X, Chen M, Wu J, Song R. Research progress of SIRTs activator resveratrol and its derivatives in autoimmune diseases. Front Immunol 2024; 15:1390907. [PMID: 38962006 PMCID: PMC11219927 DOI: 10.3389/fimmu.2024.1390907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Autoimmune diseases (AID) have emerged as prominent contributors to disability and mortality worldwide, characterized by intricate pathogenic mechanisms involving genetic, environmental, and autoimmune factors. In response to this challenge, a growing body of research in recent years has delved into genetic modifications, yielding valuable insights into AID prevention and treatment. Sirtuins (SIRTs) constitute a class of NAD-dependent histone deacetylases that orchestrate deacetylation processes, wielding significant regulatory influence over cellular metabolism, oxidative stress, immune response, apoptosis, and aging through epigenetic modifications. Resveratrol, the pioneering activator of the SIRTs family, and its derivatives have captured global scholarly interest. In the context of AID, these compounds hold promise for therapeutic intervention by modulating the SIRTs pathway, impacting immune cell functionality, suppressing the release of inflammatory mediators, and mitigating tissue damage. This review endeavors to explore the potential of resveratrol and its derivatives in AID treatment, elucidating their mechanisms of action and providing a comprehensive analysis of current research advancements and obstacles. Through a thorough examination of existing literature, our objective is to advocate for the utilization of resveratrol and its derivatives in AID treatment while offering crucial insights for the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Xiaolong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Ruixiao Song
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Ramli I, Posadino AM, Giordo R, Fenu G, Fardoun M, Iratni R, Eid AH, Zayed H, Pintus G. Effect of Resveratrol on Pregnancy, Prenatal Complications and Pregnancy-Associated Structure Alterations. Antioxidants (Basel) 2023; 12:antiox12020341. [PMID: 36829900 PMCID: PMC9952837 DOI: 10.3390/antiox12020341] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Adverse pregnancy outcomes are considered significant health risks for pregnant women and their offspring during pregnancy and throughout their lifespan. These outcomes lead to a perturbated in-utero environment that impacts critical phases of the fetus's life and correlates to an increased risk of chronic pathological conditions, such as diabetes, obesity, and cardiovascular diseases, in both the mother's and adult offspring's life. The dietary intake of naturally occurring antioxidants promotes health benefits and disease prevention. In this regard, maternal dietary intake of polyphenolic antioxidants is linked to a reduced risk of maternal obesity and cardio-metabolic disorders, positively affecting both the fetus and offspring. In this work, we will gather and critically appraise the current literature highlighting the effect/s of the naturally occurring polyphenol antioxidant resveratrol on oxidative stress, inflammation, and other molecular and physiological phenomena associated with pregnancy and pregnancy conditions, such as gestational diabetes, preeclampsia, and preterm labor. The resveratrol impact on prenatal complications and pregnancy-associated structures, such as the fetus and placenta, will also be discussed. Finally, we will draw conclusions from the current knowledge and provide future perspectives on potentially exploiting resveratrol as a therapeutic tool in pregnancy-associated conditions.
Collapse
Affiliation(s)
- Iman Ramli
- Departement de Biologie Animale, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Grazia Fenu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Manal Fardoun
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence:
| |
Collapse
|
3
|
Ramli I, Posadino AM, Zerizer S, Spissu Y, Barberis A, Djeghim H, Azara E, Bensouici C, Kabouche Z, Rebbas K, D'hallewin G, Sechi LA, Pintus G. Low concentrations of Ambrosia maritima L. phenolic extract protect endothelial cells from oxidative cell death induced by H 2O 2 and sera from Crohn's disease patients. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115722. [PMID: 36115603 DOI: 10.1016/j.jep.2022.115722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A rising resort to herbal therapies in Crohn's disease (CD) alternative treatments has been recently observed due to their remarkable natural efficiency. In this context, the weed plant Ambrosia maritima L., traditionally known as Hachich el Aouinet in Algeria and as Damsissa in Egypt and Sudan, is widely used in North African folk medicine to treat infections, inflammatory diseases, gastrointestinal and urinary tract disturbances, rheumatic pain, respiratory problems, diabetes, hypertension and cancer. AIM OF THE STUDY To assess an Ambrosia maritima L. phenolic extract for its phenolic profile composition, its potential antioxidant activity in vitro, and its cytoprotective effect on cultured primary human endothelial cells (ECs) stressed with H2O2 and sera from CD patients. MATERIALS AND METHODS Phenolic compound extraction was performed with a low-temperature method. Extract chemical profile was attained by HPLC-DAD/ESI-MS. The extract in vitro antioxidant activity was assessed using several methods including cupric ion reducing power, DPPH radical scavenging assay, O-Phenanthroline free radical reducing activity, ABTS cation radical decolourisation assay, Galvinoxyl free radicals scavenging assay. Intracellular reactive oxygen species levels were evaluated in human endothelial cells by H2DCFDA, while cell viability was assessed by MTT. RESULTS The phenolic compounds extraction showed a yield of 17.66% with three di-caffeoylquinic acid isomers detected for the first time in Ambrosia maritima L. Using different analytical methods, a significant in vitro antioxidant activity was reported for the Ambrosia maritima L. extract, with an IC50 value of 14.33 ± 3.86 μg/mL for the Galvinoxyl antioxidant activity method. Challenged with ECs the Ambrosia maritima L. extract showed a biphasic dose-dependent effect on H2O2-treated cells, cytoprotective and antioxidant at low doses, and cytotoxic and prooxidant at high doses, respectively. Viability and ROS levels data also demonstrated a prooxidant and cytotoxic effect of CD sera on cultured ECs. Interestingly, 10 μg/mL of Ambrosia maritima L. extract was able to counteract both CD sera-induced oxidative stress and ECs death. CONCLUSION Our data indicated Ambrosia maritima L. as a source of bioactive phenolics potentially employable as a natural alternative for CD treatment.
Collapse
Affiliation(s)
- Iman Ramli
- Département de Biologie Animale, Université des Fréres Mentouri Constantine 1, 25000 Constantine, Algeria.
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Sakina Zerizer
- Département de Biologie Animale, Université des Fréres Mentouri Constantine 1, 25000 Constantine, Algeria
| | - Ylenia Spissu
- Institute of Sciences of Food Production, National Research Council, 07100, Sassari, Italy
| | - Antonio Barberis
- Institute of Sciences of Food Production, National Research Council, 07100, Sassari, Italy
| | - Hanane Djeghim
- Laboratory of Biochemistry, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, Algeria
| | - Emanuela Azara
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), 07100, Sassari, Italy
| | - Chawki Bensouici
- Laboratory of Biochemistry, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, Algeria
| | - Zahia Kabouche
- Laboratoire d'Obtention de Substances Thérapeutiques (LOST), Université des Frères Mentouri Constantine 1, 25000 Constantine, Algeria
| | - Khellaf Rebbas
- University of Mohamed Boudiaf, M'sila, Algeria; Laboratory of Agro-Biotechnology and Nutrition in Arid and Semi-Arid Zones Team, University of Ibn Khaldoun, Tiaret, Algeria
| | - Guy D'hallewin
- Institute of Sciences of Food Production, National Research Council, 07100, Sassari, Italy
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy; Azienda Ospedaliera Universitaria, Uitità Complessa di Microbiologia e Virologia, 07100, Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, And Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
4
|
Shaito A, Al-Mansoob M, Ahmad SM, Haider MZ, Eid AH, Posadino AM, Pintus G, Giordo R. Resveratrol-Mediated Regulation of Mitochondria Biogenesis-associated Pathways in Neurodegenerative Diseases: Molecular Insights and Potential Therapeutic Applications. Curr Neuropharmacol 2023; 21:1184-1201. [PMID: 36237161 PMCID: PMC10286596 DOI: 10.2174/1570159x20666221012122855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/22/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative disorders include different neurological conditions that affect nerve cells, causing the progressive loss of their functions and ultimately leading to loss of mobility, coordination, and mental functioning. The molecular mechanisms underpinning neurodegenerative disease pathogenesis are still unclear. Nonetheless, there is experimental evidence to demonstrate that the perturbation of mitochondrial function and dynamics play an essential role. In this context, mitochondrial biogenesis, the growth, and division of preexisting mitochondria, by controlling mitochondria number, plays a vital role in maintaining proper mitochondrial mass and function, thus ensuring efficient synaptic activity and brain function. Mitochondrial biogenesis is tightly associated with the control of cell division and variations in energy demand in response to extracellular stimuli; therefore, it may represent a promising therapeutic target for developing new curative approaches to prevent or counteract neurodegenerative disorders. Accordingly, several inducers of mitochondrial biogenesis have been proposed as pharmacological targets for treating diverse central nervous system conditions. The naturally occurring polyphenol resveratrol has been shown to promote mitochondrial biogenesis in various tissues, including the nervous tissue, and an ever-growing number of studies highlight its neurotherapeutic potential. Besides preventing cognitive impairment and neurodegeneration through its antioxidant and anti-inflammatory properties, resveratrol has been shown to be able to enhance mitochondria biogenesis by acting on its main effectors, including PGC-1α, SIRT1, AMPK, ERRs, TERT, TFAM, NRF-1 and NRF-2. This review aims to present and discuss the current findings concerning the impact of resveratrol on the machinery and main effectors modulating mitochondrial biogenesis in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Abdullah Shaito
- Biomedical Research Center, College of Medicine, Qatar University, Doha, 2713, Qatar
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, 2713, Qatar
| | - Maryam Al-Mansoob
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Salma M.S. Ahmad
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | | | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, 505055, United Arab Emirates
| |
Collapse
|
5
|
Anti- and Pro-Oxidant Activity of Polyphenols Extracts of Syrah and Chardonnay Grapevine Pomaces on Melanoma Cancer Cells. Antioxidants (Basel) 2022; 12:antiox12010080. [PMID: 36670942 PMCID: PMC9855015 DOI: 10.3390/antiox12010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
The phenolic composition of Syrah and Chardonnay grape pomaces was studied to assess their antioxidant and prooxidant properties. Polyphenols were extracted by a "green" hydroalcoholic solvent (ethanol/water 1:1 v/v), and a detailed chemical and electrochemical characterization of the phenolic compounds was performed. The antioxidant and prooxidant capacity of the pomace was first studied by cyclic voltammetry (CV) and other reference analytical assays, then with biological tests on B16F10 metastatic melanoma cancer cells. Electrochemical data showed that, when a +0.5 V potential was applied, a low to moderate antioxidant capacity was observed. MTT test showed an increasing viability of melanoma cells, after treatments at low concentration (up to 100 μg/mL) and for a short time (6 h), but when cells were treated with higher doses of extract (≥250 μg/mL for 12/24 h), their viability decreased from 25 to 50% vs. control, depending on treatment time, dose, and extract origin. A stronger prooxidant activity resulted when 250 μg/mL of extract was combined with non-toxic doses of H2O2; this activity was correlated with the presence of copper in the extracts. This study shows the potential of winemaking by-products and suggests the opportunity to exploit them for the production of cosmeceuticals, or for combined therapies with approved anticancer drugs.
Collapse
|
6
|
Scanu A, Luisetto R, Ramonda R, Spinella P, Sfriso P, Galozzi P, Oliviero F. Anti-Inflammatory and Hypouricemic Effect of Bioactive Compounds: Molecular Evidence and Potential Application in the Management of Gout. Curr Issues Mol Biol 2022; 44:5173-5190. [PMID: 36354664 PMCID: PMC9688861 DOI: 10.3390/cimb44110352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Gout is caused by the deposition of monosodium urate crystals in the joint and represents the most common form of inflammatory arthritis in men. Its prevalence is rising worldwide mainly due to the increase of risk factors associated with the disease, in particular hyperuricemia. Besides gout, hyperuricemia leads to an increased inflammatory state of the body with consequent increased risk of comorbidities such as cardiovascular diseases. Increasing evidence shows that bioactive compounds have a significant role in fighting inflammatory and immune chronic conditions. In gout and hyperuricemia, these molecules can exert their effects at two levels. They can either decrease serum uric acid concentrations or fight inflammation associated with monosodium urate crystals deposits and hyperuricemia. In this view, they might be considered valuable support to the pharmacological therapy and prevention of the disease. This review aims to provide an overview of the beneficial role of bioactive compounds in hyperuricemia, gout development, and inflammatory pathways of the disease.
Collapse
Affiliation(s)
- Anna Scanu
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology—DISCOG, University of Padova, 35128 Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Paolo Spinella
- Clinical Nutrition Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Paola Galozzi
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| |
Collapse
|
7
|
Giordo R, Wehbe Z, Posadino AM, Erre GL, Eid AH, Mangoni AA, Pintus G. Disease-Associated Regulation of Non-Coding RNAs by Resveratrol: Molecular Insights and Therapeutic Applications. Front Cell Dev Biol 2022; 10:894305. [PMID: 35912113 PMCID: PMC9326031 DOI: 10.3389/fcell.2022.894305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
There have been significant advances, particularly over the last 20 years, in the identification of non-coding RNAs (ncRNAs) and their pathophysiological role in a wide range of disease states, particularly cancer and other chronic conditions characterized by excess inflammation and oxidative stress such as atherosclerosis, diabetes, obesity, multiple sclerosis, osteoporosis, liver and lung fibrosis. Such discoveries have potential therapeutic implications as a better understanding of the molecular mechanisms underpinning the effects of ncRNAs on critical homeostatic control mechanisms and biochemical pathways might lead to the identification of novel druggable targets. In this context, increasing evidence suggests that several natural compounds can target ncRNAs at different levels and, consequently, influence processes involved in the onset and progression of disease states. The natural phenol resveratrol has been extensively studied for therapeutic purposes in view of its established anti-inflammatory and antioxidant effects, particularly in disease states such as cancer and cardiovascular disease that are associated with human aging. However, increasing in vitro and in vivo evidence also suggests that resveratrol can directly target various ncRNAs and that this mediates, at least in part, its potential therapeutic effects. This review critically appraises the available evidence regarding the resveratrol-mediated modulation of different ncRNAs in a wide range of disease states characterized by a pro-inflammatory state and oxidative stress, the potential therapeutic applications, and future research directions.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Zena Wehbe
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, University of London, London, United Kingdom
| | | | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Q.U. Health. Qatar University, Doha, Qatar
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Adelaide, SA, Australia
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| |
Collapse
|
8
|
Bae IA, Ha JW, Choi JY, Boo YC. Antioxidant Effects of Korean Propolis in HaCaT Keratinocytes Exposed to Particulate Matter 10. Antioxidants (Basel) 2022; 11:antiox11040781. [PMID: 35453466 PMCID: PMC9032284 DOI: 10.3390/antiox11040781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Air pollution causes oxidative stress that leads to inflammatory diseases and premature aging of the skin. The purpose of this study was to examine the antioxidant effect of Korean propolis on oxidative stress in human epidermal HaCaT keratinocytes exposed to particulate matter with a diameter of less than 10 μm (PM10). The total ethanol extract of propolis was solvent-fractionated with water and methylene chloride to divide into a hydrophilic fraction and a lipophilic fraction. The lipophilic fraction of propolis was slightly more cytotoxic, and the hydrophilic fraction was much less cytotoxic than the total extract. The hydrophilic fraction did not affect the viability of cells exposed to PM10, but the total propolis extract and the lipophilic fraction aggravated the toxicity of PM10. The total extract and hydrophilic fraction inhibited PM10-induced ROS production and lipid peroxidation in a concentration-dependent manner, whereas the lipophilic fraction did not show such effects. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) analysis showed that the hydrophilic fraction contained phenylpropanoids, such as caffeic acid, p-coumaric acid, and ferulic acid, whereas the lipophilic faction contained caffeic acid phenethyl ester (CAPE). The former three compounds inhibited PM10-induced ROS production, lipid peroxidation, and/or glutathione oxidation, and ferulic acid was the most effective among them, but CAPE exhibited cytotoxicity and aggravated the toxicity of PM10. This study suggests that Korean propolis, when properly purified, has the potential to be used as a cosmetic material that helps to alleviate the skin toxicity of air pollutants.
Collapse
Affiliation(s)
- In Ah Bae
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
| | - Jae Won Ha
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
| | - Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (I.A.B.); (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
9
|
Ha JW, Boo YC. Siegesbeckiae Herba Extract and Chlorogenic Acid Ameliorate the Death of HaCaT Keratinocytes Exposed to Airborne Particulate Matter by Mitigating Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10111762. [PMID: 34829633 PMCID: PMC8615115 DOI: 10.3390/antiox10111762] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Airborne particulate matter with a size of 10 μm or less (PM10) can cause oxidative damages and inflammatory reactions in the skin. This study was conducted to discover natural products that are potentially useful in protecting the skin from PM10. Among the hot water extracts of a total of 23 medicinal plants, Siegesbeckiae Herba extract (SHE), which showed the strongest protective effect against PM10 cytotoxicity, was selected, and its mechanism of action and active constituents were explored. SHE ameliorated PM10-induced cell death, lactate dehydrogenase (LDH) release, lipid peroxidation, and reactive oxygen species (ROS) production in HaCaT cells. SHE decreased the expression of KEAP1, a negative regulator of NRF2, and increased the expression of NRF2 target genes, such as HMOX1 and NQO1. SHE selectively induced the enzymes involved in the synthesis of GSH (GCL-c and GCL-m), the regeneration of GSH (GSR and G6PDH), and GSH conjugation of xenobiotics (GSTκ1), rather than the enzymes that directly scavenge ROS (SOD1, CAT, and GPX1). SHE increased the cellular content of GSH and mitigated the oxidation of GSH to GSSG caused by PM10 exposure. Of the solvent fractions of SHE, the n-butyl alcohol (BA) fraction ameliorated cell death in both the absence and presence of PM10. The BA fraction contained a high amount of chlorogenic acid. Chlorogenic acid reduced PM10-induced cell death, LDH release, and ROS production. This study suggests that SHE protects cells from PM10 toxicity by increasing the cellular antioxidant capacity and that chlorogenic acid may be an active phytochemical of SHE.
Collapse
|
10
|
Quispe C, Cruz-Martins N, Manca ML, Manconi M, Sytar O, Hudz N, Shanaida M, Kumar M, Taheri Y, Martorell M, Sharifi-Rad J, Pintus G, Cho WC. Nano-Derived Therapeutic Formulations with Curcumin in Inflammation-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3149223. [PMID: 34584616 PMCID: PMC8470924 DOI: 10.1155/2021/3149223] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/29/2021] [Indexed: 12/20/2022]
Abstract
Due to its vast therapeutic potential, the plant-derived polyphenol curcumin is utilized in an ever-growing number of health-related applications. Here, we report the extraction methodologies, therapeutic properties, advantages and disadvantages linked to curcumin employment, and the new strategies addressed to improve its effectiveness by employing advanced nanocarriers. The emerging nanotechnology applications used to enhance CUR bioavailability and its targeted delivery in specific pathological conditions are collected and discussed. In particular, new aspects concerning the main strategic nanocarriers employed for treating inflammation and oxidative stress-related diseases are reported and discussed, with specific emphasis on those topically employed in conditions such as wounds, arthritis, or psoriasis and others used in pathologies such as bowel (colitis), neurodegenerative (Alzheimer's or dementia), cardiovascular (atherosclerosis), and lung (asthma and chronic obstructive pulmonary disease) diseases. A brief overview of the relevant clinical trials is also included. We believe the review can provide the readers with an overview of the nanostrategies currently employed to improve CUR therapeutic applications in the highlighted pathological conditions.
Collapse
Affiliation(s)
- Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy
| | - Oksana Sytar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia
- Department of Plant Biology, Educational and Scientific Center “Institute of Biology and Medicine”, Kiev National University of Taras Shevchenko, Volodymyrska, 64, 01033 Kyiv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, Ukraine
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Voli 1, Ternopil, Ukraine
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, UAE
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
11
|
Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson's Disease. Biomedicines 2021; 9:biomedicines9080918. [PMID: 34440122 PMCID: PMC8389563 DOI: 10.3390/biomedicines9080918] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss. The exact pathogenesis of PD is complex and not yet completely understood, but research has established the critical role mitochondrial dysfunction plays in the development of PD. As the main producer of cytosolic reactive oxygen species (ROS), mitochondria are particularly susceptible to oxidative stress once an imbalance between ROS generation and the organelle’s antioxidative system occurs. An overabundance of ROS in the mitochondria can lead to mitochondrial dysfunction and further vicious cycles. Once enough damage accumulates, the cell may undergo mitochondria-dependent apoptosis or necrosis, resulting in the neuronal loss of PD. Polyphenols are a group of natural compounds that have been shown to offer protection against various diseases, including PD. Among these, the plant-derived polyphenol, resveratrol, exhibits neuroprotective effects through its antioxidative capabilities and provides mitochondria protection. Resveratrol also modulates crucial genes involved in antioxidative enzymes regulation, mitochondrial dynamics, and cellular survival. Additionally, resveratrol offers neuroprotective effects by upregulating mitophagy through multiple pathways, including SIRT-1 and AMPK/ERK pathways. This compound may provide potential neuroprotective effects, and more clinical research is needed to establish the efficacy of resveratrol in clinical settings.
Collapse
|
12
|
Gu M, Donato M, Guo M, Wary N, Miao Y, Mao S, Saito T, Otsuki S, Wang L, Harper RL, Sa S, Khatri P, Rabinovitch M. iPSC-endothelial cell phenotypic drug screening and in silico analyses identify tyrphostin-AG1296 for pulmonary arterial hypertension. Sci Transl Med 2021; 13:13/592/eaba6480. [PMID: 33952674 DOI: 10.1126/scitranslmed.aba6480] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disorder leading to occlusive vascular remodeling. Current PAH therapies improve quality of life but do not reverse structural abnormalities in the pulmonary vasculature. Here, we used high-throughput drug screening combined with in silico analyses of existing transcriptomic datasets to identify a promising lead compound to reverse PAH. Induced pluripotent stem cell-derived endothelial cells generated from six patients with PAH were exposed to 4500 compounds and assayed for improved cell survival after serum withdrawal using a chemiluminescent caspase assay. Subsequent validation of caspase activity and improved angiogenesis combined with data analyses using the Gene Expression Omnibus and Library of Integrated Network-Based Cellular Signatures databases revealed that the lead compound AG1296 was positively associated with an anti-PAH gene signature. AG1296 increased abundance of bone morphogenetic protein receptors, downstream signaling, and gene expression and suppressed PAH smooth muscle cell proliferation. AG1296 induced regression of PA neointimal lesions in lung organ culture and PA occlusive changes in the Sugen/hypoxia rat model and reduced right ventricular systolic pressure. Moreover, AG1296 improved vascular function and BMPR2 signaling and showed better correlation with the anti-PAH gene signature than other tyrosine kinase inhibitors. Specifically, AG1296 up-regulated small mothers against decapentaplegic (SMAD) 1/5 coactivators, cAMP response element-binding protein 3 (CREB3), and CREB5: CREB3 induced inhibitor of DNA binding 1 and downstream genes that improved vascular function. Thus, drug discovery for PAH can be accelerated by combining phenotypic screening with in silico analyses of publicly available datasets.
Collapse
Affiliation(s)
- Mingxia Gu
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA.,Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Michele Donato
- Department of Medicine (Biomedical Informatics) and Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minzhe Guo
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Neil Wary
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yifei Miao
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA.,Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shuai Mao
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Toshie Saito
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Shoichiro Otsuki
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Lingli Wang
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Rebecca L Harper
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Silin Sa
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Department of Medicine (Biomedical Informatics) and Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marlene Rabinovitch
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA. .,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Posadino AM, Cossu A, Giordo R, Piscopo A, Abdel-Rahman WM, Piga A, Pintus G. Antioxidant Properties of Olive Mill Wastewater Polyphenolic Extracts on Human Endothelial and Vascular Smooth Muscle Cells. Foods 2021; 10:foods10040800. [PMID: 33917908 PMCID: PMC8068214 DOI: 10.3390/foods10040800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
This work aims to analyze the chemical and biological evaluation of two extracts obtained by olive mill wastewater (OMW), an olive oil processing byproduct. The exploitation of OMW is becoming an important aspect of development of the sustainable olive oil industry. Here we chemically and biologically evaluated one liquid (L) and one solid (S) extract obtained by liquid–liquid extraction followed by acidic hydrolysis (LLAC). Chemical characterization of the two extracts indicated that S has higher phenol content than L. Hydroxytyrosol and tyrosol were the more abundant phenols in both OMW extracts, with hydroxytyrosol significantly higher in S as compared to L. Both extracts failed to induce cell death when challenged with endothelial cells and vascular smooth muscle cells in cell viability experiments. On the contrary, the higher extract dosages employed significantly affected cell metabolic activity, as indicated by the MTT tests. Their ability to counteract H2O2-induced oxidative stress and cell death was assessed to investigate potential antioxidant activities of the extracts. Fluorescence measurements obtained with the reactive oxygen species (ROS) probe H2DCF-DA indicated strong antioxidant activity of the two OMW extracts in both cell models, as indicated by the inhibition of H2O2-induced ROS generation and the counteraction of the oxidative-induced cell death. Our results indicate LLAC-obtained OMW extracts as a safe and useful source of valuable compounds harboring antioxidant activity.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.)
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.)
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, Institute for Medical Research, College of Health Sciences and Sharjah, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.G.); (W.M.A.-R.)
| | - Amalia Piscopo
- Department of AGRARIA, Mediterranean University of Reggio Calabria, 89124 Vito Reggio Calabria, Italy;
| | - Wael M. Abdel-Rahman
- Department of Medical Laboratory Sciences, Institute for Medical Research, College of Health Sciences and Sharjah, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.G.); (W.M.A.-R.)
| | - Antonio Piga
- Department of Agricultural Environmental Sciences and Food Biotechnology, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
- Correspondence: (A.P.); (G.P.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.)
- Department of Medical Laboratory Sciences, Institute for Medical Research, College of Health Sciences and Sharjah, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.G.); (W.M.A.-R.)
- Correspondence: (A.P.); (G.P.)
| |
Collapse
|
14
|
Rok J, Rzepka Z, Maszczyk M, Beberok A, Wrześniok D. Minocycline Impact on Redox Homeostasis of Normal Human Melanocytes HEMn-LP Exposed to UVA Radiation and Hydrogen Peroxide. Int J Mol Sci 2021; 22:ijms22041642. [PMID: 33561995 PMCID: PMC7914767 DOI: 10.3390/ijms22041642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Minocycline is a semisynthetic tetracycline antibiotic. In addition to its antibacterial activity, minocycline shows many non-antibiotic, beneficial effects, including antioxidative action. The property is responsible, e.g., for anti-inflammatory, neuroprotective, and cardioprotective effects of the drug. However, long-term pharmacotherapy with minocycline may lead to hyperpigmentation of the skin. The reasons for the pigmentation disorders include the deposition of the drug and its metabolites in melanin-containing cells and the stimulation of melanogenesis. The adverse drug reaction raises a question about the influence of the drug on melanocyte homeostasis. The study aimed to assess the effect of minocycline on redox balance in human normal melanocytes HEMn-LP exposed to hydrogen peroxide and UVA radiation. The obtained results indicate that minocycline induced oxidative stress in epidermal human melanocytes. The drug inhibited cell proliferation, decreased the level of reduced thiols, and stimulated the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). The described changes were accompanied by an increase in the intracellular level of ROS. On the other hand, pretreatment with minocycline at the same concentrations increased cell viability and significantly attenuated the oxidative stress in melanocytes exposed to hydrogen peroxide and UVA radiation. Moreover, the molecular docking analysis revealed that the different influence of minocycline and other tetracyclines on CAT activity can be related to the location of the binding site.
Collapse
Affiliation(s)
- Jakub Rok
- Correspondence: ; Tel.: +48-32-364-10-50
| | | | | | | | | |
Collapse
|
15
|
Resveratrol-Elicited PKC Inhibition Counteracts NOX-Mediated Endothelial to Mesenchymal Transition in Human Retinal Endothelial Cells Exposed to High Glucose. Antioxidants (Basel) 2021; 10:antiox10020224. [PMID: 33540918 PMCID: PMC7913144 DOI: 10.3390/antiox10020224] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes-associated long-term hyperglycaemia leads to oxidative stress-mediated fibrosis in different tissues and organs. Endothelial-to-mesenchymal-transition (EndMT) appears to play a role in diabetes-associated fibrotic conditions. Here, we investigate whether EndMT is implicated in the diabetic retinopathy fibrotic process and evaluate the possibility that resveratrol could counteract EndMT by inhibiting high glucose (HG)-induced increases in ROS. Primary Human Retinal Endothelial Cells (HRECs) were either pre-treated for 24 h with 1 µM resveratrol or left untreated, then glucose (30 mM) was applied at 3-day intervals for 10 days. qRT-PCR and ELISA were used to detect mRNA or protein expression of endothelial markers (CD31, CDH5, vWF) or mesenchymal markers (VIM, αSMA and collagen I), respectively. Intracellular ROS levels were measured with carboxy-DCFDA, while NOX-associated ROS levels were evaluated using the NADPH-specific redox biosensor p47-roGFP. Treatment of HRECs with HG increased intracellular ROS levels and promoted phenotype shifting towards EndMT, evidenced by decreased expression of endothelial markers concomitant with increased expression of mesenchymal ones. HG-induced EndMT appears to be mediated by NADPH-associated ROS generation as pre-treatment of HRECs with resveratrol or the NADPH inhibitor, diphenyleneiodonium chloride (DPI), attenuated ROS production and EndMT transition, suggesting that the effect of resveratrol on HG-induced ROS occurs via down-regulation of NADPH oxidase. It is worth noting that resveratrol or Chelerythrine, a Protein kinase C (PKC) inhibitor, reduce ROS and EndMT in HG-exposed cells, suggesting that NADPH activation occurs via a PKC-dependent mechanism. Taken together, our results provide the basis for a resveratrol-based potential protective therapy to prevent diabetic-associated complications.
Collapse
|
16
|
Phu HT, Thuan DTB, Nguyen THD, Posadino AM, Eid AH, Pintus G. Herbal Medicine for Slowing Aging and Aging-associated Conditions: Efficacy, Mechanisms and Safety. Curr Vasc Pharmacol 2020; 18:369-393. [PMID: 31418664 DOI: 10.2174/1570161117666190715121939] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
Aging and aging-associated diseases are issues with unsatisfactory answers in the medical field. Aging causes important physical changes which, even in the absence of the usual risk factors, render the cardiovascular system prone to some diseases. Although aging cannot be prevented, slowing down the rate of aging is entirely possible to achieve. In some traditional medicine, medicinal herbs such as Ginseng, Radix Astragali, Ganoderma lucidum, Ginkgo biloba, and Gynostemma pentaphyllum are recognized by the "nourishing of life" and their role as anti-aging phytotherapeutics is increasingly gaining attention. By mainly employing PubMed here we identify and critically analysed 30 years of published studies focusing on the above herbs' active components against aging and aging-associated conditions. Although many plant-based compounds appear to exert an anti-aging effect, the most effective resulted in being flavonoids, terpenoids, saponins, and polysaccharides, which include astragaloside, ginkgolide, ginsenoside, and gypenoside specifically covered in this review. Their effects as antiaging factors, improvers of cognitive impairments, and reducers of cardiovascular risks are described, as well as the molecular mechanisms underlying the above-mentioned effects along with their potential safety. Telomere and telomerase, PPAR-α, GLUTs, FOXO1, caspase-3, bcl-2, along with SIRT1/AMPK, PI3K/Akt, NF-κB, and insulin/insulin-like growth factor-1 pathways appear to be their preferential targets. Moreover, their ability to work as antioxidants and to improve the resistance to DNA damage is also discussed. Although our literature review indicates that these traditional herbal medicines are safe, tolerable, and free of toxic effects, additional well-designed, large-scale randomized control trials need to be performed to evaluate short- and long-term effects and efficacy of these medicinal herbs.
Collapse
Affiliation(s)
- Hoa T Phu
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Duong T B Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Thi H D Nguyen
- Department of Physiology, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Anna M Posadino
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
17
|
Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, Al-Mohannadi A, Abdel-Rahman WM, Eid AH, Nasrallah GK, Pintus G. Potential Adverse Effects of Resveratrol: A Literature Review. Int J Mol Sci 2020; 21:E2084. [PMID: 32197410 PMCID: PMC7139620 DOI: 10.3390/ijms21062084] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols. Resveratrol's health benefits were first highlighted in the early 1990s in the French paradox study, which opened extensive research activity into this compound. Ever since, several pharmacological activities including antioxidant, anti-aging, anti-inflammatory, anti-cancerous, anti-diabetic, cardioprotective, and neuroprotective properties, were attributed to RE. However, results from the available human clinical trials were controversial concerning the protective effects of RE against diseases and their sequelae. The reason for these conflicting findings is varied but differences in the characteristics of the enrolled patients, RE doses used, and duration of RE supplementation were proposed, at least in part, as possible causes. In particular, the optimal RE dosage capable of maximizing its health benefits without raising toxicity issues remains an area of extensive research. In this context, while there is a consistent body of literature on the protective effects of RE against diseases, there are relatively few reports investigating its possible toxicity. Indeed, toxicity and adverse effects were reported following consumption of RE; therefore, extensive future studies on the long-term effects, as well as the in vivo adverse effects, of RE supplementation in humans are needed. Furthermore, data on the interactions of RE when combined with other therapies are still lacking, as well as results related to its absorption and bioavailability in the human body. In this review, we collect and summarize the available literature about RE toxicity and side effects. In this process, we analyze in vitro and in vivo studies that have addressed this stilbenoid. These studies suggest that RE still has an unexplored side. Finally, we discuss the new delivery methods that are being employed to overcome the low bioavailability of RE.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, 1105 Beirut, Lebanon;
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Nadin Younes
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 1105 Beirut, Lebanon;
| | - Dalal Alhababi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Anjud Al-Mohannadi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon
| | - Gheyath K. Nasrallah
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| |
Collapse
|
18
|
New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4598167. [PMID: 31915506 PMCID: PMC6930799 DOI: 10.1155/2019/4598167] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Aging is a progressive disease affecting around 900 million people worldwide, and in recent years, the mechanism of aging and aging-related diseases has been well studied. Treatments for aging-related diseases have also made progress. For the long-term treatment of aging-related diseases, herbal medicine is particularly suitable for drug discovery. In this review, we discuss cellular and molecular mechanisms of aging and aging-related diseases, including oxidative stress, inflammatory response, autophagy and exosome interactions, mitochondrial injury, and telomerase damage, and summarize commonly used herbals and compounds concerned with the development of aging-related diseases, including Ginkgo biloba, ginseng, Panax notoginseng, Radix astragali, Lycium barbarum, Rhodiola rosea, Angelica sinensis, Ligusticum chuanxiong, resveratrol, curcumin, and flavonoids. We also summarize key randomized controlled trials of herbal medicine for aging-related diseases during the past ten years. Adverse reactions of herbs were also described. It is expected to provide new insights for slowing aging and treating aging-related diseases with herbal medicine.
Collapse
|
19
|
Flavin Oxidase-Induced ROS Generation Modulates PKC Biphasic Effect of Resveratrol on Endothelial Cell Survival. Biomolecules 2019; 9:biom9060209. [PMID: 31151226 PMCID: PMC6628153 DOI: 10.3390/biom9060209] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death. Methods: Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined. Results: While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic Bax, while downregulating the antiapoptotic Bcl-2, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes, c-myc, ornithine decarboxylase (ODC) and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations. Conclusions: Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants.
Collapse
|
20
|
Antioxidant Activity Mediates Pirfenidone Antifibrotic Effects in Human Pulmonary Vascular Smooth Muscle Cells Exposed to Sera of Idiopathic Pulmonary Fibrosis Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2639081. [PMID: 30420906 PMCID: PMC6215550 DOI: 10.1155/2018/2639081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/06/2018] [Indexed: 11/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by an exacerbated fibrotic response. Although molecular and cellular determinants involved in the onset and progression of this devastating disease are largely unknown, an aberrant remodeling of the pulmonary vasculature appears to have implications in IPF pathogenesis. Here, we demonstrated for the first time that an increase of reactive oxygen species (ROS) generation induced by sera from IPF patients drives both collagen type I deposition and proliferation of primary human pulmonary artery smooth muscle cells (HPASMCs). IPF sera-induced cellular effects were significantly blunted in cells exposed to the NADPH oxidase inhibitor diphenyleneiodonium (DPI) proving the causative role of ROS and suggesting their potential cellular source. Contrary to IPF naive patients, sera from Pirfenidone-treated IPF patients failed to significantly induce both ROS generation and collagen synthesis in HPASMCs, mechanistically implicating antioxidant properties as the basis for the in vivo effect of this drug.
Collapse
|
21
|
Yu T, Dohl J, Elenberg F, Chen Y, Deuster P. Curcumin induces concentration‐dependent alterations in mitochondrial function through ROS in C2C12 mouse myoblasts. J Cell Physiol 2018; 234:6371-6381. [DOI: 10.1002/jcp.27370] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Tianzheng Yu
- Department of Military and Emergency Medicine Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Jacob Dohl
- Department of Military and Emergency Medicine Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Falicia Elenberg
- Department of Military and Emergency Medicine Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Yifan Chen
- Department of Military and Emergency Medicine Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Patricia Deuster
- Department of Military and Emergency Medicine Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences Bethesda Maryland
| |
Collapse
|
22
|
Posadino AM, Biosa G, Zayed H, Abou-Saleh H, Cossu A, Nasrallah GK, Giordo R, Pagnozzi D, Porcu MC, Pretti L, Pintus G. Protective Effect of Cyclically Pressurized Solid⁻Liquid Extraction Polyphenols from Cagnulari Grape Pomace on Oxidative Endothelial Cell Death. Molecules 2018; 23:molecules23092105. [PMID: 30134642 PMCID: PMC6225102 DOI: 10.3390/molecules23092105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/03/2022] Open
Abstract
The aim of this work is the evaluation of a green extraction technology to exploit winery waste byproducts. Specifically, a solid–liquid extraction technology (Naviglio Extractor®) was used to obtain polyphenolic antioxidants from the Cagnulari grape marc. The extract was then chemically characterized by spectrophotometric analysis, high-performance liquid chromatography, and mass spectrometry, revealing a total polyphenol content of 4.00 g/L ± 0.05, and the presence of anthocyanins, one of the most representative groups among the total polyphenols in grapes. To investigate potential biological activities of the extract, its ability to counteract hydrogen peroxide-induced oxidative stress and cell death was assessed in primary human endothelial cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, used to assess potential extract cytotoxicity, failed to show any deleterious effect on cultured cells. Fluorescence measurements, attained with the intracellular reactive oxygen species (ROS) probe 2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA), revealed a strong antioxidant potential of the marc extract on the used cells, as indicated by the inhibition of the hydrogen peroxide-induced ROS generation and the counteraction of the oxidative-induced cell death. Our results indicate the Naviglio extraction, as a green technology process, can be used to exploit wine waste to obtain antioxidants which can be used to produce enriched foods and nutraceuticals high in antioxidants.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Grazia Biosa
- Porto Conte Ricerche S.r.l, Tramariglio, Alghero, 07041 Sassari, Italy.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Annalisa Cossu
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box 2713 Doha, Qatar.
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Roberta Giordo
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Daniela Pagnozzi
- Porto Conte Ricerche S.r.l, Tramariglio, Alghero, 07041 Sassari, Italy.
| | | | - Luca Pretti
- Porto Conte Ricerche S.r.l, Tramariglio, Alghero, 07041 Sassari, Italy.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box 2713 Doha, Qatar.
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar.
| |
Collapse
|
23
|
Sgarbi G, Liuzzi F, Baracca A, Solaini G. Resveratrol preserves mitochondrial function in a human post-mitotic cell model. J Nutr Biochem 2018; 62:9-17. [PMID: 30216747 DOI: 10.1016/j.jnutbio.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/18/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
Dysfunctions caused by genetic defects in the mitochondrial DNA (mtDNA) of humans are called mitochondrial diseases; however, mtDNA mutations are also associated with aging and age-related diseases. Here, we present an original cellular model that allows gathering information on molecules that might contrast or prevent mitochondrial dysfunctions and their related diseases. This model allowed us to show that resveratrol (RSV), a phytochemical present in food, exerts protective effects at low concentrations on resting human fibroblasts carrying dysfunctional respiratory chain Complex I. Cells were maintained both in resting condition, to mimic the high energy demanding post-mitotic tissues (serum absence and gramicidin presence), and under glucose deficiency to push the synthesis of ATP via oxidative phosphorylation. Pre-incubation with RSV prolonged the viability of the fibroblasts exposed to rotenone, a well-known specific inhibitor of the respiratory chain Complex I, and decreased mitochondrial fragmentation. It significantly prevented the oxidative phosphorylation impairment indirectly caused by the rotenone-mediated Complex I inhibition, allowing for an almost complete preservation of the cellular ATP level. Indeed, RSV limited the rotenone-induced reactive oxygen species increase, allowing for the maintenance of a functional mitochondrial membrane potential. These findings indicate the potential usage of resveratrol to prevent or possibly treat many disorders, in which the bioenergetic defects and oxidative stress are the primary (mitochondrial encephalomyopathy), or the secondary (age-related diseases) causes of the pathology; and to also assist cell senescence during aging.
Collapse
Affiliation(s)
- Gianluca Sgarbi
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - Francesca Liuzzi
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| |
Collapse
|
24
|
Koriem KMM, Arbid MS. Role of caftaric acid in lead-associated nephrotoxicity in rats via antidiuretic, antioxidant and anti-apoptotic activities. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 15:/j/jcim.ahead-of-print/jcim-2017-0024/jcim-2017-0024.xml. [PMID: 29148979 DOI: 10.1515/jcim-2017-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 10/18/2017] [Indexed: 11/15/2022]
Abstract
Background Lead is a toxic metal that is widely distributed in the environment where caftaric acid (CA) is the ester form of caffeic acid where CA is the major dietary polyphenol present in various foods and beverages. The aim of this study was to evaluate the effect of CA in lead acetate (LA)-associated nephrotoxicity through antidiuretic, antioxidant and anti-apoptotic activities. Methods Forty-eight male albino rats divided into six equal groups; group 1 control injected intraperitoneally (ip) with saline (1 mL/kg of bw) over two weeks period, group 2 injected ip with CA (80 mg/kg of bw) over two weeks period, groups 3, 4, 5 and 6 injected ip with 100 μmol/kg of bw LA over two weeks period where groups 4, 5 & 6 co-injected ip with 1-deamino-8-D-arginine vasopressin (dDAVP) drug (1 mg/kg of bw), CA (40 mg/kg of bw), and CA (80 mg/kg of bw), respectively. Results The results obtained revealed that LA induced a significant decrease in kidney weight and serum sodium, potassium and chloride, but caused a significant increase in urinary volume, urinary excretion of sodium, potassium and chloride, serum urea, creatinine and uric acid. The LA also caused a significant decrease in kidney superoxide dismutase, glutathione peroxidase and induced a significant decrease in glutathione level while caused an increase in lipid peroxidation level. In addition, LA caused a decrease in p53 expression while induced an increase in bcl-2 expression in the kidney tissues. Co-injection of CA to LA-treated group restored all the above parameters to approach the normal values. The results supported with histopathological examinations. Conclusions In conclusion, the effect of CA on LA-related nephrotoxicity was occurred through antidiuretic, antioxidant, anti-apoptotic activities where the effect of CA was dose dependent.
Collapse
Affiliation(s)
- Khaled M M Koriem
- Department of Medical Physiology, Medical Research Division, National Research Centre, 33 El-Buhouth Street, P. O. Box 12622 Dokki, Cairo, Egypt
| | - Mahmoud S Arbid
- Department of Pharmacology, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
25
|
Reductive Stress in Inflammation-Associated Diseases and the Pro-Oxidant Effect of Antioxidant Agents. Int J Mol Sci 2017; 18:ijms18102098. [PMID: 28981461 PMCID: PMC5666780 DOI: 10.3390/ijms18102098] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/16/2017] [Accepted: 09/30/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract: Reductive stress (RS) is the counterpart oxidative stress (OS), and can occur in response to conditions that shift the redox balance of important biological redox couples, such as the NAD⁺/NADH, NADP⁺/NADPH, and GSH/GSSG, to a more reducing state. Overexpression of antioxidant enzymatic systems leads to excess reducing equivalents that can deplete reactive oxidative species, driving the cells to RS. A feedback regulation is established in which chronic RS induces OS, which in turn, stimulates again RS. Excess reducing equivalents may regulate cellular signaling pathways, modify transcriptional activity, induce alterations in the formation of disulfide bonds in proteins, reduce mitochondrial function, decrease cellular metabolism, and thus, contribute to the development of some diseases in which NF-κB, a redox-sensitive transcription factor, participates. Here, we described the diseases in which an inflammatory condition is associated to RS, and where delayed folding, disordered transport, failed oxidation, and aggregation are found. Some of these diseases are aggregation protein cardiomyopathy, hypertrophic cardiomyopathy, muscular dystrophy, pulmonary hypertension, rheumatoid arthritis, Alzheimer's disease, and metabolic syndrome, among others. Moreover, chronic consumption of antioxidant supplements, such as vitamins and/or flavonoids, may have pro-oxidant effects that may alter the redox cellular equilibrium and contribute to RS, even diminishing life expectancy.
Collapse
|
26
|
Oxidative stress-induced Akt downregulation mediates green tea toxicity towards prostate cancer cells. Toxicol In Vitro 2017; 42:255-262. [PMID: 28495234 DOI: 10.1016/j.tiv.2017.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/21/2022]
Abstract
Green tea consumption has been shown to possess cancer chemopreventive activity. Polyphenol E (PE) is a widely used standardized green tea extract formulation. This study was designed to investigate the impact of PE on prostate cancer cells (PC3), analyze the potential signals involved and elucidate whether anti- or pro-oxidant effects may be implicated. Treatment of PC3 cells with 30 and 100μg/ml PE significantly decreased cell viability and proliferation. At the tested concentrations, PE did not exert any antioxidant activity, eliciting instead a pro-oxidant effect at concentrations 30 and 100μg/ml, which was consistent with the observed PE cytotoxicity. PE-induced cell death was associated with mitochondrial dysfunction and downregulation of Akt activation, thus suggesting their implication in the PE-elicited cell dysfunction. Cell exposure to the ROS scavenger N-Acetyl Cysteine prevented PE-induced ROS increase, pAkt impairment, and cell death, clearly indicating the causative role of ROS in the observed phenomena. Failure of PE to induce PC3 damage in cells overexpressing Akt further confirms its implication in the PE-elicited cell death. Our findings showed an association between the antiproliferative and the pro-oxidant effect elicited by PE on PC3 cells and delineates a molecular signaling pattern potentially implicated in the toxicity of PE towards prostate cancer cells.
Collapse
|
27
|
de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta Gen Subj 2016; 1860:727-45. [PMID: 26802309 DOI: 10.1016/j.bbagen.2016.01.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mitochondria, the power plants of the cell, are known as a cross-road of different cellular signaling pathways. These cytoplasmic double-membraned organelles play a pivotal role in energy metabolism and regulate calcium flux in the cells. It is well known that mitochondrial dysfunction is associated with different diseases such as neurodegeneration and cancer. A growing body of literature has shown that polyphenolic compounds exert direct effects on mitochondrial ultra-structure and function. Resveratrol is known as one of the most common bioactive constituents of red wine, which improves mitochondrial functions under in vitro and in vivo conditions. SCOPE OF REVIEW This paper aims to review the molecular pathways underlying the beneficial effects of resveratrol on mitochondrial structure and functions. In addition, we discuss the chemistry and main sources of resveratrol. MAJOR CONCLUSIONS Resveratrol represents the promising effects on mitochondria in different experimental models. However, there are several reports on the detrimental effects elicited by resveratrol on mitochondria. GENERAL SIGNIFICANCE An understanding of the chemistry and source of resveratrol, its bioavailability and the promising effects on mitochondria brings a new hope to therapy of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Zohreh Hajheydari
- Department of Dermatology, Boo Ali Sina (Avicenna) Hospital, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Posadino AM, Cossu A, Giordo R, Zinellu A, Sotgia S, Vardeu A, Hoa PT, Nguyen LHV, Carru C, Pintus G. Resveratrol alters human endothelial cells redox state and causes mitochondrial-dependent cell death. Food Chem Toxicol 2015; 78:10-6. [PMID: 25656643 DOI: 10.1016/j.fct.2015.01.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/11/2014] [Accepted: 01/12/2015] [Indexed: 12/22/2022]
Abstract
Studies analyzing the impact of natural antioxidants (NA) on Endothelial Cells (ECs) have dramatically increased during the last years, since a deregulated ECs redox state is at the base of the onset and progression of several cardiovascular diseases. However, whether NA can provide cardiovascular benefits is still a controversial area of debate. Resveratrol (RES), a natural polyphenol found in grapes, is believed to provide cardiovascular benefits by virtue of its antioxidant effect on the endothelium. Here, we report that tissue-attainable doses of resveratrol increased the intracellular oxidative state, thus affecting mitochondrial membrane depolarization and inducing EC death. Cyclosporine A, a mitochondrial permeability transition pore inhibitor, prevented oxidative-mediated cell death, thus implicating mitochondria in resveratrol-induced EC impairment. The specific cytochrome P450 (CYP) 2C9 inhibitor, sulfaphenazole, counteracted both oxidative stress and mitochondrial membrane depolarization, providing EC protection against resveratrol-elicited pro-oxidant effects. Our findings strongly suggest that CYP2C9 mediates resveratrol-induced oxidative stress leading to mitochondria impairment and EC death.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Vascular Biology, University of Sassari, Sassari, Italy
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Vascular Biology, University of Sassari, Sassari, Italy
| | - Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Vascular Biology, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonella Vardeu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Vascular Biology, University of Sassari, Sassari, Italy; Bristol Heart Institute, University of Bristol, Bristol, England, UK
| | - Phu Thi Hoa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Vascular Biology, University of Sassari, Sassari, Italy; Department of Biochemistry, Huè University of Medicine and Pharmacy, Huè, Viet Nam
| | - Le Hong Van Nguyen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Vascular Biology, University of Sassari, Sassari, Italy; Department of Biochemistry, Huè University of Medicine and Pharmacy, Huè, Viet Nam
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Vascular Biology, University of Sassari, Sassari, Italy.
| |
Collapse
|
29
|
Shin JY, Yu HG. Chlorogenic acid supplementation improves multifocal electroretinography in patients with retinitis pigmentosa. J Korean Med Sci 2014; 29:117-21. [PMID: 24431915 PMCID: PMC3890461 DOI: 10.3346/jkms.2014.29.1.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/22/2013] [Indexed: 11/29/2022] Open
Abstract
To evaluate the effect of chlorogenic acid supplementation in patients with retinitis pigmentosa, we evaluated objective change in visual function with multifocal electroretinography, along with visual acuity, visual field, standard electroretinography, and contrast sensitivity. Eighteen patients diagnosed with retinitis pigmentosa were enrolled in this prospective, non-comparative, single-arm study. Multifocal electroretinography, best-corrected visual acuity in Early Treatment Diabetic Retinopathy Study letters, total point score on visual field examination with Humphrey Field Analyzer II, electroretinography, and contrast sensitivity were measured and repeated after 3 months supplementation with chlorogenic acid. The amplitude of ring 5 was significantly higher on multifocal electroretinography after 3 months of chlorogenic acid supplementation (7.2 ± 9.5 vs 8.3 ± 10.8 nV/deg(2), mean ± standard deviation, P = 0.022). There were no significant changes in the best-corrected visual acuity, total point score on Humphrey Field Analyzer, 30 Hz flicker amplitude on standard electroretinography, or contrast sensitivity. Chlorogenic acid may have a beneficial effect on the peripheral area at the margins of retinal degeneration, and should be considered as an anti-oxidant for the management of retinitis pigmentosa.
Collapse
Affiliation(s)
- Joo Young Shin
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University, Seoul, Korea
| | - Hyeong Gon Yu
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University, Seoul, Korea
- Sensory Organs Institute, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
30
|
Lo KY, Zhu Y, Tsai HF, Sun YS. Effects of shear stresses and antioxidant concentrations on the production of reactive oxygen species in lung cancer cells. BIOMICROFLUIDICS 2013; 7:64108. [PMID: 24396542 PMCID: PMC3862592 DOI: 10.1063/1.4836675] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/16/2013] [Indexed: 05/16/2023]
Abstract
Reactive oxygen species (ROS) are known to be a key factor in the development of cancer, and many exogenous sources are supposed to be related to the formation of ROS. In this paper, a microfluidic chip was developed for studying the production of ROS in lung cancer cells under different chemical and physical stimuli. This chip has two unique features: (1) five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 are achieved in the culture regions; (2) a shear stress gradient is produced inside each of the five culture areas. Lung cancer cells were seeded inside this biocompatible chip for investigating their response to different concentrations of H2O2, a chemical stimulus known to increase the production of ROS. Then the effect of shear stress, a physical stimulus, on lung cancer cells was examined, showing that the production of ROS was increased in response to a larger shear stress. Finally, two antioxidants, α-tocopherol and ferulic acid, were used to study their effects on reducing ROS. It was found that high-dose α-tocopherol was not able to effectively eliminate the ROS produced inside cells. This counter effect was not observed in cells cultured in a traditional chamber slide, where no shear stress was present. This result suggests that the current microfluidic chip provides an in vitro platform best mimicking the physiological condition where cells are under circulating conditions.
Collapse
Affiliation(s)
- Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Yun Zhu
- Department of Agricultural Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Hsieh-Fu Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei City 11529, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|