1
|
Du Y, Guan X, Zhu Y, Jin S, Liu J. LncRNA in periodontal tissue-derived cells on osteogenic differentiation in the periodontitis field. Oral Dis 2024; 30:4087-4097. [PMID: 38655682 DOI: 10.1111/odi.14970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Periodontitis can lead to the destruction of periodontal tissues and potentially tooth loss. Numerous periodontal tissue-derived cells display osteogenic differentiation potential. The presence of differentially expressed long non-coding RNAs (lncRNAs) in these cells indicate their ability to regulate the process of osteogenic differentiation. We aim to elucidate the various lncRNA-mediated regulatory mechanisms in the osteogenic differentiation of periodontal tissue-derived cells in the field of periodontitis at epigenetic modification, transcriptional, and post-transcriptional levels. SUBJECTS AND METHODS We systematically searched the PubMed, Web of Science, and ScienceDirect databases to identify relevant literature in the field of periodontitis discussing the role of lncRNAs in regulating osteogenic differentiation of periodontal tissue-derived cells. The identified literature was subsequently summarized for comprehensive review. RESULTS In this review, we have comprehensively summarized the regulatory mechanisms of lncRNAs in the osteogenic differentiation of periodontal tissue-derived cells in the field of periodontitis and discussed how these lncRNAs provide novel perspectives for understanding the pathogenesis and progression of periodontitis. CONCLUSION These results indicate the pivotal role of lncRNAs as regulators in the osteogenic differentiation of periodontal tissue-derived cells, providing a solid basis for future investigations on the role of lncRNAs in the periodontitis field.
Collapse
Affiliation(s)
- Yuanhang Du
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Yinci Zhu
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Suhan Jin
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Diseases Research, Higher Education Institution, Zunyi, China
| |
Collapse
|
2
|
Li J, Fu L, Lu Q, Guo S, Chen S, Xia T, Wang M, Chen L, Bai Y, Xia H. Comparison of the osteogenic potential of fibroblasts from different sources. Tissue Cell 2024; 88:102358. [PMID: 38537379 DOI: 10.1016/j.tice.2024.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 06/17/2024]
Abstract
OBJECTIVE With the growing interest in the role of fibroblasts in osteogenesis, this study presents a comparative evaluation of the osteogenic potential of fibroblasts derived from three distinct sources: human gingival fibroblasts (HGFs), mouse embryonic fibroblasts (NIH3T3 cells), and mouse subcutaneous fibroblasts (L929 cells). MC3T3-E1 pre-osteoblast cells were employed as a positive control for osteogenic behavior. DESIGN Our assessment involved multiple approaches, including vimentin staining for cell origin verification, as well as ALP and ARS staining in conjunction with RT-PCR for osteogenic characterization. RESULTS Our findings revealed the superior osteogenic differentiation capacity of HGFs compared to MC3T3-E1 and NIH3T3 cells. Analysis of ALP staining confirmed that early osteogenic differentiation was most prominent in MC3T3-E1 cells at 7 days, followed by NIH3T3 and HGFs. However, ARS staining at 21 days demonstrated that HGFs produced the highest number of calcified nodules, indicating their robust potential for late-stage mineralization. This late-stage osteogenic potential of HGFs was further validated through RT-PCR analysis. In contrast, L929 cells displayed no significant osteogenic differentiation potential. CONCLUSIONS In light of these findings, HGFs emerge as the preferred choice for seed cells in bone tissue engineering applications. This study provides valuable insights into the potential utility of HGFs in the fields of bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jiaojiao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liangliang Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qian Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuling Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Si Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liangwen Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
3
|
Huang J, Xu Y, Huang P. Salivary miR-150-5p as an indicator of periodontitis severity and regulator of human periodontal ligament fibroblast behavior by targeting AIFM2. J Periodontal Res 2024; 59:187-194. [PMID: 37965810 DOI: 10.1111/jre.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE This study aimed to evaluate the role of miR-150-5p in the onset and progression of periodontitis, and reveal the potential molecular mechanism underlying its function and to explore a novel biomarker for periodontitis. BACKGROUND Periodontitis is the leading cause of tooth loss in adults, emphasizing the need for a biomarker to improve its early detection and prevention. The association of miR-150-5p with diseases related to Fuscobacterium nucleatum implies its potential involvement in periodontitis. METHODS The expression of miR-150-5p in the saliva of patients with periodontitis (n = 77) and healthy individuals (n = 43) was assessed by PCR. Human gingival fibroblasts (HGFs) were induced with an osteogenic culture medium. The regulatory effect of miR-150-5p on the proliferation and migration of HGFs was assessed by CCK8 and transwell assays. Osteogenic differentiation was estimated based on the expression of corresponding factors through western blotting, and the inflammatory response was evaluated by measuring the levels of pro-inflammatory cytokines using ELISA. RESULTS Significant upregulation of miR-150-5p was observed in patients with periodontitis, which sensitively distinguished them and was closely associated with the severity and periodontal index of the condition. In HGFs, osteogenic induction (OI) resulted in increased miR-150-5p levels, which negatively regulated the expression of AIFM2. Silencing miR-150-5p significantly attenuated OI-induced suppression of proliferation and migration of HGFs. The silencing also alleviated inflammation and osteogenic differentiation, which was reversed upon AIFM2 knockdown. CONCLUSION Upregulated miR-150-5p in periodontitis served as a diagnostic biomarker, indicating the occurrence and aggravation of disease condition. Silencing miR-150-5p inhibited the osteogenic differentiation and inflammation of HGFs by negatively modulating AIFM2.
Collapse
Affiliation(s)
- Jing Huang
- Department of Orthodontics, Affiliated Stomatological Hospital Fujian Medical University, Fuzhou, China
| | - Yuejing Xu
- Department of Stomatology, The Second Affiliated Hospital of FMU, Quanzhou, China
| | - Pengcheng Huang
- Department of Orthodontics, Affiliated Stomatological Hospital Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Fadl A, Leask A. Hiding in Plain Sight: Human Gingival Fibroblasts as an Essential, Yet Overlooked, Tool in Regenerative Medicine. Cells 2023; 12:2021. [PMID: 37626831 PMCID: PMC10453328 DOI: 10.3390/cells12162021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Adult human gingival fibroblasts (HGFs), the most abundant cells in the oral cavity, are essential for maintaining oral homeostasis. Compared with other tissues, adult oral mucosal wounds heal regeneratively, without scarring. Relative to fibroblasts from other locations, HGFs are relatively refractory to myofibroblast differentiation, immunomodulatory, highly regenerative, readily obtained via minimally invasive procedures, easily and rapidly expanded in vitro, and highly responsive to growth factors and cytokines. Consequently, HGFs might be a superior, yet perhaps underappreciated, source of adult mesenchymal progenitor cells to use in tissue engineering and regeneration applications, including the treatment of fibrotic auto-immune connective tissue diseases such as scleroderma. Herein, we highlight in vitro and translational studies that have investigated the regenerative and differentiation potential of HGFs, with the objective of outlining current limitations and inspiring future research that could facilitate translating the regenerative potential of HGFs into the clinic.
Collapse
Affiliation(s)
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5A2, Canada;
| |
Collapse
|
5
|
Aimaijiang M, Liu Y, Zhang Z, Qin Q, Liu M, Abulikemu P, Liu L, Zhou Y. LIPUS as a potential strategy for periodontitis treatment: A review of the mechanisms. Front Bioeng Biotechnol 2023; 11:1018012. [PMID: 36911184 PMCID: PMC9992218 DOI: 10.3389/fbioe.2023.1018012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Periodontitis is a chronic inflammatory condition triggered by oral bacteria. A sustained inflammatory state in periodontitis could eventually destroy the alveolar bone. The key objective of periodontal therapy is to terminate the inflammatory process and reconstruct the periodontal tissues. The traditional Guided tissue regeneration (GTR) procedure has unstable results due to multiple factors such as the inflammatory environment, the immune response caused by the implant, and the operator's technique. Low-intensity pulsed ultrasound (LIPUS), as acoustic energy, transmits the mechanical signals to the target tissue to provide non-invasive physical stimulation. LIPUS has positive effects in promoting bone regeneration, soft-tissue regeneration, inflammation inhibition, and neuromodulation. LIPUS can maintain and regenerate alveolar bone during an inflammatory state by suppressing the expression of inflammatory factors. LIPUS also affects the cellular behavior of periodontal ligament cells (PDLCs), thereby protecting the regenerative potential of bone tissue in an inflammatory state. However, the underlying mechanisms of the LIPUS therapy are still yet to be summarized. The goal of this review is to outline the potential cellular and molecular mechanisms of periodontitis-related LIPUS therapy, as well as to explain how LIPUS manages to transmit mechanical stimulation into the signaling pathway to achieve inflammatory control and periodontal bone regeneration.
Collapse
Affiliation(s)
- Maierhaba Aimaijiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yiping Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhiying Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qiuyue Qin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Palizi Abulikemu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
6
|
de Almeida JM, Matheus HR, Fiorin LG, Furquim EMA, Gusman DJR. Influence of immunosuppression on the progression of experimental periodontitis and on healthy periodontal tissue: A rat in vivo study. J Dent Res Dent Clin Dent Prospects 2021; 15:94-99. [PMID: 34386179 PMCID: PMC8346707 DOI: 10.34172/joddd.2021.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/05/2020] [Indexed: 12/17/2022] Open
Abstract
Background. The potent anti-inflammatory and immunosuppressive properties of glucocorticoids (GCs) might influence the progression of some disorders, such as periodontitis. Hence, this study aimed to investigate the influence of dexamethasone (DEX) on the alveolar bone loss (ABL) of healthy and periodontally compromised molars in rats. Methods. Thirty male rats were randomly assigned to two groups: physiological saline solution (PSS) and DEX. The animals received subcutaneous injections of either 0.5 mL of PSS) (group PSS) or 2 mg/kg of DEX (group DEX) from one day before experimental periodontitis (EP) induction until euthanasia. EP was induced through ligature placement around the mandibular lower first molars at day 0. Contralateral molars remained unligated. Ten animals per period were euthanized on days 3, 7, and 14. Morphometric analysis was performed to access the ABL. Data were statistically analyzed with ANOVA followed by post hoc Tukey tests (P ≤ 0.05). Results. Higher ABL was observed in both groups on days 7 and 14 than on day 3 (P ≤ 0.05). Concerning periodontitis, higher ABL was observed in group DEX on days 3, 7, and 14 days than group PSS at the same time intervals (P ≤ 0.05). Also, even in the contralateral unligated molars, group DEX exhibited higher ABL on days 3, 7, and 14 days than group PSS at the same time intervals (P ≤ 0.05). Conclusions. Collectively, it can be concluded that DEX aggravates EP and induces spontaneous ABL in the healthy periodontium.
Collapse
Affiliation(s)
- Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Sao Paulo, Brazil
| | - Henrique Rinaldi Matheus
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Sao Paulo, Brazil
| | - Luiz Guilherme Fiorin
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Sao Paulo, Brazil
| | - Elisa Mara Abreu Furquim
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Sao Paulo, Brazil
| | | |
Collapse
|
7
|
Diar-Bakirly S, El-Bialy T. Human gingival fibroblasts: Isolation, characterization, and evaluation of CD146 expression. Saudi J Biol Sci 2021; 28:2518-2526. [PMID: 33911963 PMCID: PMC8071911 DOI: 10.1016/j.sjbs.2021.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/31/2020] [Accepted: 01/21/2021] [Indexed: 01/31/2023] Open
Abstract
Gingival fibroblasts (GFs) that exhibit adult stem cell-like characteristics are known as gingival mesenchymal stem cells (GMSCs). Specific mesenchymal stem cell (MSC) markers have not been identified to distinguish GMSCs from GFs. Recently, the cell surface molecule known as cluster of differentiation (CD) 146 has been identified as a potential MSC surface marker. In the present study, we investigated the differentiation potential of GMSCs based on CD146 expression. GFs were isolated by two techniques: tissue explants or enzymatic digestion. GFs were cultured and expanded then magnetically sorted according to CD146 expression. CD146low and CD146high cells were collected, expanded, and then tested for stem cell markers by flow cytometry as well as osteogenic and chondrogenic differentiation potential. The differentiation of these cells was analyzed after 21 days using histology, immunofluorescence, real-time quantitative PCR (qPCR), and glycosaminoglycan (GAG) to DNA ratio (GAG/DNA) assays. Positive histological staining indicated osteogenic differentiation of all groups regardless of the isolation techniques utilized. However, none of the groups demonstrated chondrogenic differentiation, confirmed by the lack of collagen type II in the extracellular matrix (ECM) of GF aggregates. Our data suggest that identification of gingival stem cells based solely on CD146 is not sufficient to properly carry out translational research using gingival fibroblasts for novel therapeutic methods of treating oral disease.
Collapse
Affiliation(s)
- Samira Diar-Bakirly
- Faculty of Medicine and Dentistry - University of Alberta, Mohammed Bin Rashid University of Medicine and Health Sciences, United Arab Emirates
| | - Tarek El-Bialy
- Faculty of Medicine and Dentistry, University of Alberta, 7-020D Katz Group Centre for Pharmacy and Health Research, Canada
| |
Collapse
|
8
|
Huang X, Xie M, Xie Y, Mei F, Lu X, Li X, Chen L. The roles of osteocytes in alveolar bone destruction in periodontitis. J Transl Med 2020; 18:479. [PMID: 33308247 PMCID: PMC7733264 DOI: 10.1186/s12967-020-02664-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontitis, a bacterium-induced inflammatory disease that is characterized by alveolar bone loss, is highly prevalent worldwide. Elucidating the underlying mechanisms of alveolar bone loss in periodontitis is crucial for understanding its pathogenesis. Classically, bone cells, such as osteoclasts, osteoblasts and bone marrow stromal cells, are thought to dominate the development of bone destruction in periodontitis. Recently, osteocytes, the cells embedded in the mineral matrix, have gained attention. This review demonstrates the key contributing role of osteocytes in periodontitis, especially in alveolar bone loss. Osteocytes not only initiate physiological bone remodeling but also assist in inflammation-related changes in bone remodeling. The latest evidence suggests that osteocytes are involved in regulating bone anabolism and catabolism in the progression of periodontitis. The altered secretion of receptor activator of NF-κB ligand (RANKL), sclerostin and Dickkopf-related protein 1 (DKK1) by osteocytes affects the balance of bone resorption and formation and promotes bone loss. In addition, the accumulation of prematurely senescent and apoptotic osteocytes observed in alveolar bone may exacerbate local destruction. Based on their communication with the bloodstream, it is noteworthy that osteocytes may participate in the interaction between local periodontitis lesions and systemic diseases. Overall, further investigations of osteocytes may provide vital insights that improve our understanding of the pathophysiology of periodontitis.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanling Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaoshuang Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
9
|
Alfonso García SL, Parada-Sanchez MT, Arboleda Toro D. The phenotype of gingival fibroblasts and their potential use in advanced therapies. Eur J Cell Biol 2020; 99:151123. [PMID: 33070040 DOI: 10.1016/j.ejcb.2020.151123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023] Open
Abstract
Advanced therapies in medicine use stem cells, gene editing, and tissues to treat a wide range of conditions. One of their goals is to stimulate endogenous repair of tissues and organs by manipulating stem cells and their niche, as well as to optimize the intrinsic characteristics and plasticity of differentiated cells in adult tissues. In this context, fibroblasts emerge as an alternative source to stem cells because they share phenotypic and regenerative characteristics. Specifically, fibroblasts of the oral mucosae have been shown to have improved regenerative capacity compared to other fibroblast populations. Additionally, their easy access by means of minimally invasive procedures without generating aesthetic problems, with easy and rapid in vitro expansion and with great capacity to respond to extrinsic factors, make oral fibroblasts an attractive and interesting resource for regenerative medicine. This review summarizes current concepts regarding the phenotypic and functional aspects of human Gingival Fibroblasts and their niche, differentiating them from other fibroblast populations of oral-lining mucosa and skin fibroblasts. Furthermore, some applications are presented in regenerative medicine, emphasizing on the biological potential of human Gingival Fibroblasts.
Collapse
Affiliation(s)
- Sandra Liliana Alfonso García
- Department of Integrated Basic Studies, Faculty of Dentistry, Universidad de Antioquia, Medellín, 050010, Colombia; Department of Oral Health, Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá, 111311, Colombia.
| | | | - David Arboleda Toro
- Department of Integrated Basic Studies, Faculty of Dentistry, Universidad de Antioquia, Medellín, 050010, Colombia
| |
Collapse
|
10
|
Shanbhag S, Suliman S, Bolstad AI, Stavropoulos A, Mustafa K. Xeno-Free Spheroids of Human Gingiva-Derived Progenitor Cells for Bone Tissue Engineering. Front Bioeng Biotechnol 2020; 8:968. [PMID: 32974308 PMCID: PMC7466771 DOI: 10.3389/fbioe.2020.00968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Gingiva has been identified as a minimally invasive source of multipotent progenitor cells (GPCs) for use in bone tissue engineering (BTE). To facilitate clinical translation, it is important to characterize GPCs in xeno-free cultures. Recent evidence indicates several advantages of three-dimensional (3D) spheroid cultures of mesenchymal stromal cells (MSCs) over conventional 2D monolayers. The present study aimed to characterize human GPCs in xeno-free 2D cultures, and to test their osteogenic potential in 3D cultures, in comparison to bone marrow MSCs (BMSCs). Primary GPCs and BMSCs were expanded in human platelet lysate (HPL) or fetal bovine serum (FBS) and characterized based on in vitro proliferation, immunophenotype and multi-lineage differentiation. Next, 3D spheroids of GPCs and BMSCs were formed via self-assembly and cultured in HPL. Expression of stemness- (SOX2, OCT4, NANOG) and osteogenesis-related markers (BMP2, RUNX2, OPN, OCN) was assessed at gene and protein levels in 3D and 2D cultures. The cytokine profile of 3D and 2D GPCs and BMSCs was assessed via a multiplex immunoassay. Monolayer GPCs in both HPL and FBS demonstrated a characteristic MSC-like immunophenotype and multi-lineage differentiation; osteogenic differentiation of GPCs was enhanced in HPL vs. FBS. CD271+ GPCs in HPL spontaneously acquired a neuronal phenotype and strongly expressed neuronal/glial markers. 3D spheroids of GPCs and BMSCs with high cell viability were formed in HPL media. Expression of stemness- and osteogenesis-related genes was significantly upregulated in 3D vs. 2D GPCs/BMSCs; the latter was independent of osteogenic induction. Synthesis of SOX2, BMP2 and OCN was confirmed via immunostaining, and in vitro mineralization via Alizarin red staining. Finally, secretion of several growth factors and chemokines was enhanced in GPC/BMSC spheroids, while that of pro-inflammatory cytokines was reduced, compared to monolayers. In summary, monolayer GPCs expanded in HPL demonstrate enhanced osteogenic differentiation potential, comparable to that of BMSCs. Xeno-free spheroid culture further enhances stemness- and osteogenesis-related gene expression, and cytokine secretion in GPCs, comparable to that of BMSCs.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Salwa Suliman
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anne Isine Bolstad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Regenerative Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Proanthocyanidins Promote Osteogenic Differentiation of Human Periodontal Ligament Fibroblasts in Inflammatory Environment Via Suppressing NF-κB Signal Pathway. Inflammation 2020; 43:892-902. [DOI: 10.1007/s10753-019-01175-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Ranganathan S, Balagangadharan K, Selvamurugan N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol 2019; 133:354-364. [DOI: 10.1016/j.ijbiomac.2019.04.115] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
|
13
|
Nagay BE, Dini C, Cordeiro JM, Ricomini-Filho AP, de Avila ED, Rangel EC, da Cruz NC, Barão VAR. Visible-Light-Induced Photocatalytic and Antibacterial Activity of TiO 2 Codoped with Nitrogen and Bismuth: New Perspectives to Control Implant-Biofilm-Related Diseases. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18186-18202. [PMID: 31038914 DOI: 10.1021/acsami.9b03311] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biofilm-associated diseases are one of the main causes of implant failure. Currently, the development of implant surface treatment goes beyond the osseointegration process and focuses on the creation of surfaces with antimicrobial action and with the possibility to be re-activated (i.e., light source activation). Titanium dioxide (TiO2), an excellent photocatalyst used for photocatalytic antibacterial applications, could be a great alternative, but its efficiency is limited to the ultraviolet (UV) range of the electromagnetic spectrum. Since UV radiation has carcinogenic potential, we created a functional TiO2 coating codoped with nitrogen and bismuth via the plasma electrolytic oxidation (PEO) of titanium to achieve an antibacterial effect under visible light with re-activation potential. A complex surface topography was demonstrated by scanning electron microscopy and three-dimensional confocal laser scanning microscopy. Additionally, PEO-treated surfaces showed greater hydrophilicity and albumin adsorption compared to control, untreated titanium. Bismuth incorporation shifted the band gap of TiO2 to the visible region and facilitated higher degradation of methyl orange (MO) in the dark, with a greater reduction in the concentration of MO after visible-light irradiation even after 72 h of aging. These results were consistent with the in vitro antibacterial effect, where samples with nitrogen and bismuth in their composition showed the greatest bacterial reduction after 24 h of dual-species biofilm formation ( Streptococcus sanguinis and Actinomyces naeslundii) in darkness with a superior effect at 30 min of visible-light irradiation. In addition, such a coating presents reusable photocatalytic potential and good biocompatibility by presenting a noncytotoxicity effect on human gingival fibroblast cells. Therefore, nitrogen and bismuth incorporation into TiO2 via PEO can be considered a promising alternative for dental implant application with antibacterial properties in darkness, with a stronger effect after visible-light application.
Collapse
Affiliation(s)
| | | | | | | | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara , São Paulo State University (UNESP) , R. Humaitá, 1680 , Araraquara , São Paulo 14801-903 , Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas, Institute of Science and Technology , São Paulo State University (UNESP) , Av. Três de Março, 511 , Sorocaba , São Paulo 18087-180 , Brazil
| | - Nilson C da Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology , São Paulo State University (UNESP) , Av. Três de Março, 511 , Sorocaba , São Paulo 18087-180 , Brazil
| | | |
Collapse
|
14
|
Liu G, Li Y, Yang S, Zhao Y, Lu T, Jia W, Ji X, Luo Y. DOPA-IGF-1 Coated HA/PLGA Microspheres Promoting Proliferation and Osteoclastic Differentiation of Rabbit Bone Mesenchymal Stem Cells. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9007-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Vaquette C, Saifzadeh S, Farag A, Hutmacher DW, Ivanovski S. Periodontal Tissue Engineering with a Multiphasic Construct and Cell Sheets. J Dent Res 2019; 98:673-681. [PMID: 30971166 DOI: 10.1177/0022034519837967] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This study reports on scaffold-based periodontal tissue engineering in a large preclinical animal model. A biphasic scaffold consisting of bone and periodontal ligament compartments manufactured by melt and solution electrospinning, respectively, was used for the delivery of in vitro matured cell sheets from 3 sources: gingival cells (GCs), bone marrow-derived mesenchymal stromal cells (Bm-MSCs), and periodontal ligament cells (PDLCs). The construct featured a 3-dimensional fibrous bone compartment with macroscopic pore size, while the periodontal compartment consisted of a flexible porous membrane for cell sheet delivery. The regenerative performance of the constructs was radiographically and histologically assessed in surgically created periodontal defects in sheep following 5 and 10 wk of healing. Histologic observation demonstrated that the constructs maintained their shape and volume throughout the entirety of the in vivo study and were well integrated with the surrounding tissue. There was also excellent tissue integration between the bone and periodontal ligament compartments as well as the tooth root interface, enabling the attachment of periodontal ligament fibers into newly formed cementum and bone. Bone coverage along the root surface increased between weeks 5 and 10 in the Bm-MSC and PDLC groups. At week 10, the micro-computed tomography results showed that the PDLC group had greater bone fill as compared with the empty scaffold, while the GC group had less bone than the 3 other groups (control, Bm-MSC, and PDLC). Periodontal regeneration, as measured by histologically verified new bone and cementum formation with obliquely inserted periodontal ligament fibers, increased between 5 and 10 wk for the empty, Bm-MSC, and PDLC groups, while the GC group was inferior to the Bm-MSC and PDLC groups at 10 wk. This study demonstrates that periodontal regeneration can be achieved via the utilization of a multiphasic construct, with Bm-MSCs and PDLCs obtaining superior results as compared with GC-derived cell sheets.
Collapse
Affiliation(s)
- C Vaquette
- 1 Queensland University of Technology, Brisbane, Australia.,2 Center in Regenerative Medicine, Institute of Health of Biomedical Innovation, Kelvin Grove, Australia.,3 School of Dentistry, The University of Queensland, Herston, Australia
| | - S Saifzadeh
- 1 Queensland University of Technology, Brisbane, Australia.,2 Center in Regenerative Medicine, Institute of Health of Biomedical Innovation, Kelvin Grove, Australia
| | - A Farag
- 3 School of Dentistry, The University of Queensland, Herston, Australia
| | - D W Hutmacher
- 1 Queensland University of Technology, Brisbane, Australia.,2 Center in Regenerative Medicine, Institute of Health of Biomedical Innovation, Kelvin Grove, Australia
| | - S Ivanovski
- 3 School of Dentistry, The University of Queensland, Herston, Australia
| |
Collapse
|
16
|
A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Sci Rep 2019; 9:1761. [PMID: 30741963 PMCID: PMC6370862 DOI: 10.1038/s41598-018-37981-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Human teeth contain a variety of mesenchymal stem cell populations that could be used for cell-based regenerative therapies. However, the isolation and potential use of these cells in the clinics require the extraction of functional teeth, a process that may represent a significant barrier to such treatments. Fibroblasts are highly accessible and might represent a viable alternative to dental stem cells. We thus investigated and compared the in vitro differentiation potential of human dental pulp stem cells (hDPSCs), gingival fibroblasts (hGFs) and foreskin fibroblasts (hFFs). These cell populations were cultured in osteogenic and adipogenic differentiation media, followed by Alizarin Red S and Oil Red O staining to visualize cytodifferentiation. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was performed to assess the expression of markers specific for stem cells (NANOG, OCT-4), osteogenic (RUNX2, ALP, SP7/OSX) and adipogenic (PPAR-γ2, LPL) differentiation. While fibroblasts are more prone towards adipogenic differentiation, hDPSCs exhibit a higher osteogenic potential. These results indicate that although fibroblasts possess a certain mineralization capability, hDPSCs represent the most appropriate cell population for regenerative purposes involving bone and dental tissues.
Collapse
|
17
|
Comparative differentiation analysis of distinct oral tissue-derived cells in response to osteogenic stimulation. Clin Oral Investig 2018; 23:1077-1089. [PMID: 29955966 DOI: 10.1007/s00784-018-2529-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mixed cell populations from oral tissues may be superior to pure stem cells for regenerative approaches. Therefore, the aim of the present study was to explore the osteogenic potential of mixed cells derived from oral connective tissues compared to alveolar osteoblasts. MATERIALS AND METHODS Primary cells were isolated from the alveolar bone, periodontal ligament and gingiva. Following characterization by colony formation, growth capacity and flow cytometry, all cells were subjected to osteogenic differentiation induction and screened for a large panel of osteogenic markers using western blots, qPCR arrays, and matrix mineralization and alkaline phosphatase quantification. RESULTS Non-induced mixed cells from gingiva showed higher colony formation efficiency but decreased proliferation compared to non-induced periodontal mixed cells, while both entities revealed similar surface markers tested in this setup. Following osteogenic induction, all cell populations individually expressed receptors with distinctively activated downstream effectors. Gene expression of induced periodontal mixed cells was similar to alveolar osteoblasts, but was differently modulated in gingival mixed cells. The latter failed to achieve osteogenic differentiation in terms of matrix mineralization and alkaline phosphatase activity, which was well observed in periodontal mixed cells and osteoblasts. CONCLUSION Mixed cells from periodontal ligament but not from gingiva feature an inherent osteogenic capacity in vitro. From these results, it can be concluded that periodontal cells do not require further stem cell enrichment in order to qualify for bone regeneration. CLINICAL RELEVANCE Our data contribute to the development of novel cell-based therapies using mixed cells from the periodontal ligament in regenerative periodontics.
Collapse
|
18
|
Osteogenic Differentiation Capacity of In Vitro Cultured Human Skeletal Muscle for Expedited Bone Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8619385. [PMID: 28210626 PMCID: PMC5292195 DOI: 10.1155/2017/8619385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 11/18/2022]
Abstract
Expedited bone tissue engineering employs the biological stimuli to harness the intrinsic regenerative potential of skeletal muscle to trigger the reparative process in situ to improve or replace biological functions. When genetically modified with adenovirus mediated BMP2 gene transfer, muscle biopsies from animals have demonstrated success in regenerating bone within rat bony defects. However, it is uncertain whether the human adult skeletal muscle displays an osteogenic potential in vitro when a suitable biological trigger is applied. In present study, human skeletal muscle cultured in a standard osteogenic medium supplemented with dexamethasone demonstrated significant increase in alkaline phosphatase activity approximately 24-fold over control at 2-week time point. More interestingly, measurement of mRNA levels revealed the dramatic results for osteoblast transcripts of alkaline phosphatase, bone sialoproteins, transcription factor CBFA1, collagen type I, and osteocalcin. Calcified mineral deposits were demonstrated on superficial layers of muscle discs after an extended 8-week osteogenic induction. Taken together, these are the first data supporting human skeletal muscle tissue as a promising potential target for expedited bone regeneration, which of the technologies is a valuable method for tissue repair, being not only effective but also inexpensive and clinically expeditious.
Collapse
|
19
|
Ding X, Wu C, Ha T, Wang L, Huang Y, Kang H, Zhang Y, Liu H, Fan Y. Hydroxyapatite-containing silk fibroin nanofibrous scaffolds for tissue-engineered periosteum. RSC Adv 2016. [DOI: 10.1039/c5ra26752h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A simple, one-step technology is developed to generate a hydroxyapatite (HA)-containing silk fibroin nanofibrous scaffold which has great potential as osteogenesis promoting scaffolds for constructing tissue-engineered periosteum.
Collapse
Affiliation(s)
- Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Chengqi Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Tong Ha
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Yingying Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| |
Collapse
|
20
|
Chronopoulou L, Amalfitano A, Palocci C, Nocca G, Callà C, Arcovito A. Dexamethasone-loaded biopolymeric nanoparticles promote gingival fibroblasts differentiation. Biotechnol Prog 2015; 31:1381-7. [DOI: 10.1002/btpr.2141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/04/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Laura Chronopoulou
- Dept. of Chemistry; Sapienza University of Rome; Piazzale a. Moro 5 Rome 00185 Italy
| | - Adriana Amalfitano
- Dept. of Chemistry; Sapienza University of Rome; Piazzale a. Moro 5 Rome 00185 Italy
| | - Cleofe Palocci
- Dept. of Chemistry; Sapienza University of Rome; Piazzale a. Moro 5 Rome 00185 Italy
| | - Giuseppina Nocca
- Inst. of Biochemistry and Clinical Biochemistry, Faculty of Medicine, Università Cattolica Del Sacro Cuore; L.Go F. Vito 1 Rome 00168 Italy
- Inst. of Chemistry of Molecular Recognition; C.N.R., C/O L.Go F. Vito 1 Rome 00168 Italy
| | - Cinzia Callà
- Inst. of Biochemistry and Clinical Biochemistry, Faculty of Medicine, Università Cattolica Del Sacro Cuore; L.Go F. Vito 1 Rome 00168 Italy
| | - Alessandro Arcovito
- Inst. of Biochemistry and Clinical Biochemistry, Faculty of Medicine, Università Cattolica Del Sacro Cuore; L.Go F. Vito 1 Rome 00168 Italy
- Centro Di Ricrca Sulle Biotecnologie Applicate Alla Cosmetologia (CRBA); Università Cattolica Del Sacro Cuore; L.Go F. Vito 1 Rome 00168 Italy
| |
Collapse
|
21
|
Wang WZ, Yao XD, Huang XJ, Li JQ, Xu H. Effects of TGF-β1 and alginate on the differentiation of rabbit bone marrow-derived mesenchymal stem cells into a chondrocyte cell lineage. Exp Ther Med 2015; 10:995-1002. [PMID: 26622428 DOI: 10.3892/etm.2015.2584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 05/01/2015] [Indexed: 01/21/2023] Open
Abstract
The aim of the present study was to investigate the effect of a three-dimensional (3D) culture system of sodium alginate gel on the directional differentiation induction of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes, as well as the in vitro gene transfection technique. The biological characteristics of the passage and proliferation of rabbit BMSCs were investigated under conditions of in vitro monolayer and 3D culture of sodium alginate gel. Transforming growth factor (TGF)-β1 gene recombinant adenoviral cosmid vectors and the recombinant adenoviral vector Ad.TGF-β1 were constructed, and the effect of Ad.TGF-β1 transfection on the differentiation of BMSCs into chondrocytes was investigated. The whole bone marrow rinsing method was used to obtain, separate and purify the rabbit BMSCs, and the in vitro monolayer and 3D culture of sodium alginate gel were thus successfully and stably established. A safe, stable and efficient method of constructing Ad.TGF-β1 TGF-β1 gene recombinant adenoviral vectors was established. Following TGF-β1 transfection, BMSCs were able to continuously secrete significantly increased amounts of specific extracellular matrix components of chondrocytes, such as collagen II and proteoglycans. Furthermore, the effects in the post-gene transfection 3D culture group were found to be enhanced compared with those in the monolayer culture group. In conclusion, the 3D culture system of sodium alginate gel and in vitro gene transfection exhibited significant inductive effects on differentiation, which could be used to promote BMSCs to differentiate into chondrocytes.
Collapse
Affiliation(s)
- Wan-Zong Wang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, Fujian 350025, P.R. China
| | - Xiao-Dong Yao
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, Fujian 350025, P.R. China
| | - Xiao-Jin Huang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, Fujian 350025, P.R. China
| | - Jin-Quan Li
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, Fujian 350025, P.R. China
| | - Hao Xu
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
22
|
Yan XZ, Yang F, Jansen JA, de Vries RBM, van den Beucken JJJP. Cell-Based Approaches in Periodontal Regeneration: A Systematic Review and Meta-Analysis of Periodontal Defect Models in Animal Experimental Work. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:411-26. [PMID: 25929285 DOI: 10.1089/ten.teb.2015.0049] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Various cell types have been assessed for experimental periodontal tissue regeneration in a variety of animal models. Nonetheless, the efficacy of cell-based approaches for periodontal regeneration is still controversial. Therefore, the purpose of this study was to systematically review cell-based approaches for periodontal regeneration in animal studies including a meta-analysis to obtain more clarity on their efficacy. The results of this systematic review and meta-analysis revealed that cell-based approaches have a favorable effect on periodontal tissue regeneration, as displayed by the positive effect of cell-based approaches on new bone, cementum, and periodontal ligament (PDL) formation in periodontal defects. Moreover, subgroup analysis showed a favorable effect on PDL formation by PDL-derived cells, but not by bone marrow mesenchymal stem cells (BMSCs). However, meta-analysis did not show any statistically significant differences in effect between PDL-derived cells and BMSCs. These results provide important information for the implementation of cell-based approaches in clinical practice as a routine treatment for periodontal regeneration in the future.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- 1 Radboudumc, Department of Biomaterials, Nijmegen, The Netherlands .,2 Department of Periodontology, the Affiliated Stomatology Hospital of Tongji University , Shanghai, China
| | - Fang Yang
- 1 Radboudumc, Department of Biomaterials, Nijmegen, The Netherlands
| | - John A Jansen
- 1 Radboudumc, Department of Biomaterials, Nijmegen, The Netherlands
| | - Rob B M de Vries
- 3 Radboudumc, SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) , Central Animal Laboratory, Nijmegen, The Netherlands
| | | |
Collapse
|
23
|
El-Bialy T, Alhadlaq A, Wong B, Kucharski C. Ultrasound effect on neural differentiation of gingival stem/progenitor cells. Ann Biomed Eng 2014; 42:1406-12. [PMID: 24752635 DOI: 10.1007/s10439-014-1013-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
Dental pulp loss due to caries or pulpitis can affect the longevity of teeth. Dental pulp tissue engineering necessitates the use of progenitor cells that has the potential to differentiate into neural, vascular and odontoblasts like cells. Previous reports have shown that human gingival progenitor cells (HGPCs) can be differentiated into different cell types; however neural differentiation of these cells, to the best of our knowledge, has not been reported. Low intensity pulsed ultrasound (LIPUS) has been reported to enhance cell differentiation. The aims of this study were (1) to explore the potential neural differentiation of HGPCs and (2) to investigate the effect of LIPUS on the differentiation of HGPCs when incubated under neuroinductive conditions. The HGPCs were isolated from human interdental papilla proximal to the premolar teeth that were extracted for orthodontic purpose. The HGPCs were induced to differentiate into neural lineage using a neuroinductive culture medium. HGPCs were divided into four groups; control group, neuro-induction (NI) group, ultrasound group (LIPUS), and a combined NI+LIPUS group. HGPCs were harvested for immunostaining and q-PCR after 1 day. Immunostaining for neuron specific antigens and q-PCR suggested that HGPCs can be differentiated into neural lineage and that selected neurodifferentiation markers can be enhanced by LIPUS.
Collapse
Affiliation(s)
- Tarek El-Bialy
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2N8, Canada,
| | | | | | | |
Collapse
|
24
|
Proksch S, Steinberg T, Vach K, Hellwig E, Tomakidi P. Shaping oral cell plasticity to osteogenic differentiation by human mesenchymal stem cell coculture. Cell Tissue Res 2014; 356:159-70. [PMID: 24442490 DOI: 10.1007/s00441-013-1777-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/25/2013] [Indexed: 01/08/2023]
Abstract
In the context of cell-based oral hard tissue regeneration, especially assumed plasticity of oral host tissue cells in response to human mesenchymal stem cells (hMSCs), is poorly understood. To investigate this area, we assess osteogenic features in various oral cell types during hMSC coculture, including human alveolar osteoblasts (hOAs), periodontal ligament cells (hPDLs) and gingival fibroblasts (hGFs). Interactive hMSC coculture globally enhanced the transcription of osteogenic genes, in all oral cell types under study, as revealed by qRT-PCR and did not affect oral cell proliferation compared with controls in a transwell coculture system as evaluated by 5-bromo-2'-deoxyuridine proliferation assay. 3D gel-derived hMSC cocultures exhibited an abundance of bone-related key molecules in oral cells, which followed the ranking hOAs > hGFs > hPDLs. Compared to matched controls, this hierarchy also applied for the presence of higher amounts of extracellular matrix deposits and mineralization nodules in interactive hMSC coculture. Our results show for the first time that in the context of prospective periodontal tissue regeneration strategies, hMSCs influence oral cells by gradually shaping their plasticity, particularly features associated with an osteogenic phenotype. These novel findings contribute another piece to the conceptual hMSC action puzzle and valuably support the notion that hMSCs trigger osteogenesis in the oral cell context.
Collapse
Affiliation(s)
- Susanne Proksch
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, University Medical Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany,
| | | | | | | | | |
Collapse
|
25
|
The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets. Biomaterials 2014; 35:113-22. [DOI: 10.1016/j.biomaterials.2013.09.074] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 11/23/2022]
|
26
|
Yan XZ, Yang W, Yang F, Kersten-Niessen M, Jansen JA, Both SK. Effects of continuous passaging on mineralization of MC3T3-E1 cells with improved osteogenic culture protocol. Tissue Eng Part C Methods 2013; 20:198-204. [PMID: 23898861 DOI: 10.1089/ten.tec.2012.0412] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The murine-derived MC3T3-E1 cell line provided by the American Type Culture Collection (ATCC) is a well-known osteogenic cell culture model system to test materials in vitro. However, the effect of passaging on its mineralization capacity has never been described and their culture supplements can be further optimized. Therefore, we evaluated the influence of the passage number and different osteogenic culture supplements, including ascorbic acid (AsAP) and dexamethasone (Dex) on the osteogenic capacity of MC3T3-E1 cells. This capacity was measured by the deposited calcium, the alkaline phosphatase activity, and the expression of osteogenic-related genes, including bone sialoprotein (BSP), osteocalcin (OC), and osteopontin (OPN). The results indicated that the mineralization capacity of MC3T3-E1 cells significantly decreased during passaging and got exhausted at passage 34, as assessed by measuring calcium deposition after 28 days of osteogenic induction. Moreover, the combination of AsAP and Dex triggered significantly more mineralization in MC3T3-E1 cells than the ATCC recommended addition of AsAP alone, as indicated by increased calcium deposition and higher expression of BSP and OPN. However, Dex alone could not trigger this effect, but only in combination with the AsAP, which indicates that Dex has no direct effect on mineralization. In conclusion, the passage number of MC3T3-E1 cells is of great importance and the use of cells above 30 passages should be avoided. In addition, the favored osteogenic supplements providing an improved osteogenic differentiation of MC3T3-E1 cells are the combination of AsAP and Dex.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- 1 Department of Biomaterials, Radboud University Nijmegen Medical Center , Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL, Wegst UGK, Lelkes PI. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 2012; 33:9167-78. [PMID: 23022346 DOI: 10.1016/j.biomaterials.2012.09.009] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/04/2012] [Indexed: 01/18/2023]
Abstract
Reconstruction of large bone defects remains problematic in orthopedic and craniofacial clinical practice. Autografts are limited in supply and are associated with donor site morbidity while other materials show poor integration with the host's own bone. This lack of integration is often due to the absence of periosteum, the outer layer of bone that contains osteoprogenitor cells and is critical for the growth and remodeling of bone tissue. In this study we developed a one-step platform to electrospin nanofibrous scaffolds from chitosan, which also contain hydroxyapatite nanoparticles and are crosslinked with genipin. We hypothesized that the resulting composite scaffolds represent a microenvironment that emulates the physical, mineralized structure and mechanical properties of non-weight bearing bone extracellular matrix while promoting osteoblast differentiation and maturation similar to the periosteum. The ultrastructure and physicochemical properties of the scaffolds were studied using scanning electron microscopy and spectroscopic techniques. The average fiber diameters of the electrospun scaffolds were 227 ± 154 nm as spun, and increased to 335 ± 119 nm after crosslinking with genipin. Analysis by X-ray diffraction, Fourier transformed infrared spectroscopy and energy dispersive spectroscopy confirmed the presence of characteristic features of hydroxyapatite in the composite chitosan fibers. The Young's modulus of the composite fibrous scaffolds was 142 ± 13 MPa, which is similar to that of the natural periosteum. Both pure chitosan scaffolds and composite hydroxyapatite-containing chitosan scaffolds supported adhesion, proliferation and osteogenic differentiation of mouse 7F2 osteoblast-like cells. Expression and enzymatic activity of alkaline phosphatase, an early osteogenic marker, were higher in cells cultured on the composite scaffolds as compared to pure chitosan scaffolds, reaching a significant, 2.4 fold, difference by day 14 (p < 0.05). Similarly, cells cultured on hydroxyapatite-containing scaffolds had the highest rate of osteonectin mRNA expression over 2 weeks, indicating enhanced osteoinductivity of the composite scaffolds. Our results suggest that crosslinking electrospun hydroxyapatite-containing chitosan with genipin yields bio-composite scaffolds, which combine non-weight-bearing bone mechanical properties with a periosteum-like environment. Such scaffolds will facilitate the proliferation, differentiation and maturation of osteoblast-like cells. We propose that these scaffolds might be useful for the repair and regeneration of maxillofacial defects and injuries.
Collapse
Affiliation(s)
- Michael E Frohbergh
- Drexel University, School of Biomedical Engineering, Science and Health System, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang QZ, Nguyen AL, Yu WH, Le AD. Human oral mucosa and gingiva: a unique reservoir for mesenchymal stem cells. J Dent Res 2012; 91:1011-8. [PMID: 22988012 DOI: 10.1177/0022034512461016] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a heterogeneous population of progenitor cells with self-renewal and multipotent differentiation potential. Aside from their regenerative role, extensive in vitro and in vivo studies have demonstrated that MSCs are capable of potent immunomodulatory effects on a variety of innate and adaptive immune cells. In this article, we will review recent experimental studies on the characterization of a unique population of MSCs derived from human oral mucosa and gingiva, especially their immunomodulatory and anti-inflammatory functions and their application in the treatment of several in vivo models of inflammatory diseases. The ease of isolation, accessible tissue source, and rapid ex vivo expansion, with maintenance of stable stem-cell-like phenotypes, render oral mucosa- and gingiva-derived MSCs a promising alternative cell source for MSC-based therapies.
Collapse
Affiliation(s)
- Q Z Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, Penn Dental Medicine and Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
29
|
Martinez EF, Donato TAG, Arana-Chavez VE. In vitro effects of ascorbic acid and β-glycerophosphate on human gingival fibroblast cells. Tissue Cell 2012; 44:325-31. [PMID: 22677409 DOI: 10.1016/j.tice.2012.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/03/2012] [Accepted: 04/20/2012] [Indexed: 01/09/2023]
Abstract
Ascorbic acid (AA) and β-glycerophosphate (βG) are considered in vitro osteogenic factors important to the differentiation of osteoblastic progenitor and dental pulp cells into mineralized tissue-forming cells. So, the present study investigated in vitro if these mineralizing inducible factors (AA and βG) could influence differentiation of human gingival fibroblasts when compared with human pulp cells and osteogenic cells derived from rat calvaria cultured. The expression of osteopontin (OPN) and osteoadherin (OSAD) was analyzed by indirect immunofluorescence, immunocytochemistry as well as Western-blotting. In addition, the main ultrastructural aspects were also investigated. No mineralized matrix formation occurred on gingival fibroblasts induced with AA+βG. On these cells, no expression of OPN and OSAD was observed when compared with pulp cells, pulp cells induced with AA+βG as well as osteogenic cells. Ultrastructure analysis additionally showed that gingival fibroblasts exhibited typical fibroblast morphology with no nodule formation. The present findings showed that AA and βG could not promote a mineralized cell differentiation of human gingival fibroblasts and confirm that human dental pulp cells, as the osteogenic cells, are capable to form a mineralized extracellular.
Collapse
Affiliation(s)
- Elizabeth F Martinez
- Laboratory of Oral Biology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, CEP 05508-900, São Paulo, SP, Brazil.
| | | | | |
Collapse
|