1
|
Singh A, Banerjee T, Shukla SK, Upadhyay S, Verma A. Creep in nitroimidazole inhibitory concentration among the Entamoeba histolytica isolates causing amoebic liver abscess and screening of andrographolide as a repurposing drug. Sci Rep 2023; 13:12192. [PMID: 37500681 PMCID: PMC10374660 DOI: 10.1038/s41598-023-39382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Infections by Entamoeba histolytica (E. histolytica) lead to considerable morbidity and mortality worldwide and treatment is reliant on a single class of drugs, nitroimidazoles. Treatment failures and intermittent reports of relapse from different parts of world indicate towards development of clinical drug resistance. In the present study, susceptibility testing of clinical isolates of E. histolytica was carried against metronidazole and tinidazole. Additionally, anti-amoebic property of active compounds of Andrographis paniculata was also evaluated. Prevalence of metronidazole resistance gene (nim) in patients attending hospital was also done to get comprehensive insight of present situation of drug resistance in E. histolytica. Mean inhibitory concentration 50 (IC50) value of E. histolytica isolates against metronidazole and tinidazole was 20.01 and 16.1 µM respectively. Andrographolide showed minimum mean IC50 value (3.06 µM). Significant percentage inhibition of E. histolytica isolates by andrographolide was seen as compared to metronidazole (p = 0.0495). None of E. histolytica isolates showed presence of nim gene. However, in stool samples from hospital attending population, prevalence of nimE gene was found to be 76.6% (69/90) and 62.2% (56/90) in diarrheal and non-diarrheal samples respectively. Inhibitory concentration of commonly used nitroimidazoles against clinical isolates of E. histolytica are on rise. Percentage inhibition of E. histolytica isolates by andrographolide was significantly higher than control drug metronidazole.
Collapse
Affiliation(s)
- Aradhana Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sunit Kumar Shukla
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Soumya Upadhyay
- Department of Life Sciences, Banasthali Vidyapeeth, Jaipur, 302001, India
| | - Ashish Verma
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
2
|
Sparbrod M, Gager Y, Koehler AK, Jentsch H, Stingu CS. Relationship between Phenotypic and Genotypic Resistance of Subgingival Biofilm Samples in Patients with Periodontitis. Antibiotics (Basel) 2022; 12:antibiotics12010068. [PMID: 36671269 PMCID: PMC9854985 DOI: 10.3390/antibiotics12010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The phenotypic expression of antibiotic resistance genes (ARGs) can hamper the use of antibiotics as adjuncts to subgingival instrumentation in the treatment of periodontitis patients. The aim of the study was to analyze the relationship between the phenotypic and genotypic resistance against ampicillin-sulbactam, clindamycin, doxycycline and metronidazole of subgingival biofilm samples from 19 periodontitis patients. Samples were analyzed with shotgun sequencing and cultivated anaerobically for 7 days on microbiological culture media incorporating antibiotics. All growing isolates were identified to the species level using MALDI-TOF-MS and sequence analysis of the 16S ribosomal RNA (rRNA) gene. Phenotypic resistance was determined using EUCAST-breakpoints. The genetic profile of eight patients matched completely with phenotypical resistance to the tested antibiotics. The positive predictive values varied from 1.00 for clindamycin to 0.57 for doxycycline and 0.25 for ampicillin-sulbactam. No sample contained the nimI gene. It can be concluded that antibiotic resistance may be polygenetic and genes may be silent. Every biofilm sample harboring erm genes was phenotypic resistant. The absence of cfx and tet genes correlated to 100%, respectively, to 75%, with the absence of phenotypic resistance. The absence of nimI genes leads to the assumption that constitutive resistance among several species could explain the resistance to metronidazole.
Collapse
Affiliation(s)
- Moritz Sparbrod
- Institute for Medical Microbiology and Virology, University Hospital Leipzig, 04103 Leipzig, Germany
- Correspondence: (M.S.); (C.-S.S.)
| | | | | | - Holger Jentsch
- Center of Periodontology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Catalina-Suzana Stingu
- Institute for Medical Microbiology and Virology, University Hospital Leipzig, 04103 Leipzig, Germany
- Correspondence: (M.S.); (C.-S.S.)
| |
Collapse
|
3
|
Almeida VDSM, Azevedo J, Leal HF, de Queiroz ATL, da Silva Filho HP, Reis JN. Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. PLoS One 2020; 15:e0239664. [PMID: 32991620 PMCID: PMC7523989 DOI: 10.1371/journal.pone.0239664] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES This study aims to describe the oral microbiome diversity and prevalence of ARGs in periodontal health and disease. BACKGROUND The human oral cavity harbors a complex microbial community known as the oral microbiome. These organisms are regularly exposed to selective pressures, such as the usage of antibiotics, which drive evolution and acquisition of antibiotic resistance genes (ARGs). Resistance among oral bacteria jeopardizes not only antibiotic therapy for oral infections, but also extra-oral infections caused by bacterial translocation. METHODS We carried out a cross-sectional investigation. Saliva and subgingival plaque samples were collected during a clinical exam. 16S rRNA gene sequencing was performed to assess microbial diversity. Resistance genes were identified through PCR assays. RESULTS Of the 110 participants, only 22.7% had healthy periodontium, while the majority was diagnosed with gingivitis (55.4%) and chronic periodontitis (21.8%). The composition of the oral microbiota differed from healthy and diseased samples, being Streptococcus spp. and Rothia spp. predominant in periodontal disease. Regarding ARGs, 80 (72.7%) samples were positive for at least one of genes screened, erm being the most frequent variant (58.2%), followed by blaTEM (16.4%), mecA (2.7%), pbp2b and aac(6 ') (1.8%). Neither genes coding resistance to carbapenems nor metronidazole were detected. CONCLUSIONS Our findings indicate that there are no significant differences in terms of taxonomic enrichment between healthy and diseased oral microbiomes. However, samples retrieved from healthy patients had a more diverse microbial community, whereas diseased samples have lower taxonomic diversity. We have also identified clinically relevant ARGs, providing baseline information to guide antibiotic prescription in dentistry.
Collapse
Affiliation(s)
| | - Jailton Azevedo
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Helena Ferreira Leal
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | | | | | - Joice Neves Reis
- School of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| |
Collapse
|
4
|
Distribution of Antibiotic Resistance Genes in the Saliva of Healthy Omnivores, Ovo-Lacto-Vegetarians, and Vegans. Genes (Basel) 2020; 11:genes11091088. [PMID: 32961926 PMCID: PMC7564780 DOI: 10.3390/genes11091088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Food consumption allows the entrance of bacteria and their antibiotic resistance (AR) genes into the human oral cavity. To date, very few studies have examined the influence of diet on the composition of the salivary microbiota, and even fewer investigations have specifically aimed to assess the impact of different long-term diets on the salivary resistome. In this study, the saliva of 144 healthy omnivores, ovo-lacto-vegetarians, and vegans were screened by nested PCR for the occurrence of 12 genes conferring resistance to tetracyclines, macrolide-lincosamide-streptogramin B, vancomycin, and β-lactams. The tet(W), tet(M), and erm(B) genes occurred with the highest frequencies. Overall, no effect of diet on AR gene distribution was seen. Some differences emerged at the recruiting site level, such as the higher frequency of erm(C) in the saliva of the ovo-lacto-vegetarians and omnivores from Bologna and Turin, respectively, and the higher occurrence of tet(K) in the saliva of the omnivores from Bologna. A correlation of the intake of milk and cheese with the abundance of tet(K) and erm(C) genes was seen. Finally, when the occurrence of the 12 AR genes was evaluated along with geographical location, age, and sex as sources of variability, high similarity among the 144 volunteers was seen.
Collapse
|
5
|
Dingsdag SA, Hunter N. Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms. J Antimicrob Chemother 2019; 73:265-279. [PMID: 29077920 DOI: 10.1093/jac/dkx351] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metronidazole, a nitroimidazole, remains a front-line choice for treatment of infections related to inflammatory disorders of the gastrointestinal tract including colitis linked to Clostridium difficile. Despite >60 years of research, the metabolism of metronidazole and associated cytotoxicity is not definitively characterized. Nitroimidazoles are prodrugs that are reductively activated (the nitro group is reduced) under low oxygen tension, leading to imidazole fragmentation and cytotoxicity. It remains unclear if nitroimidazole reduction (activation) contributes to the cytotoxicity profile, or whether subsequent fragmentation of the imidazole ring and formed metabolites alone mediate cytotoxicity. A molecular mechanism underpinning high level (>256 mg/L) bacterial resistance to metronidazole also remains elusive. Considering the widespread use of metronidazole and other nitroimidazoles, this review was undertaken to emphasize the structure-cytotoxicity profile of the numerous metabolites of metronidazole in human and murine models and to examine conflicting reports regarding metabolite-DNA interactions. An alternative hypothesis, that DNA synthesis and repair of existing DNA is indirectly inhibited by metronidazole is proposed. Prokaryotic metabolism of metronidazole is detailed to discuss new resistance mechanisms. Additionally, the review contextualizes the history and current use of metronidazole, rates of metronidazole resistance including metronidazole MDR as well as the biosynthesis of azomycin, the natural precursor of metronidazole. Changes in the gastrointestinal microbiome and the host after metronidazole administration are also reviewed. Finally, novel nitroimidazoles and new antibiotic strategies are discussed.
Collapse
Affiliation(s)
- Simon A Dingsdag
- Institute of Dental Research and Westmead Centre for Oral Health, Westmead, NSW 2145, Australia.,Department of Life Sciences Faculty of Dentistry, The University of Sydney, NSW 2006, Australia.,The Westmead Institute for Medical Research, The University of Sydney, NSW 2145, Australia
| | - Neil Hunter
- Institute of Dental Research and Westmead Centre for Oral Health, Westmead, NSW 2145, Australia.,Department of Life Sciences Faculty of Dentistry, The University of Sydney, NSW 2006, Australia.,The Westmead Institute for Medical Research, The University of Sydney, NSW 2145, Australia
| |
Collapse
|
6
|
Metronidazole resistance and nim genes in anaerobes: A review. Anaerobe 2019; 55:40-53. [DOI: 10.1016/j.anaerobe.2018.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
|
7
|
Jiang S, Zeng J, Zhou X, Li Y. Drug Resistance and Gene Transfer Mechanisms in Respiratory/Oral Bacteria. J Dent Res 2018; 97:1092-1099. [PMID: 29928825 DOI: 10.1177/0022034518782659] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Growing evidence suggests the existence of new antibiotic resistance mechanisms. Recent studies have revealed that quorum-quenching enzymes, such as MacQ, are involved in both antibiotic resistance and cell-cell communication. Furthermore, some small bacterial regulatory RNAs, classified into RNA attenuators and small RNAs, modulate the expression of resistance genes. For example, small RNA sprX, can shape bacterial resistance to glycopeptide antibiotics via specific downregulation of protein SpoVG. Moreover, some bacterial lipocalins capture antibiotics in the extracellular space, contributing to severe multidrug resistance. But this defense mechanism may be influenced by Agr-regulated toxins and liposoluble vitamins. Outer membrane porin proteins and efflux pumps can influence intracellular concentrations of antibiotics. Alterations in target enzymes or antibiotics prevent binding to targets, which act to confer high levels of resistance in respiratory/oral bacteria. As described recently, horizontal gene transfer, including conjugation, transduction and transformation, is common in respiratory/oral microflora. Many conjugative transposons and plasmids discovered to date encode antibiotic resistance proteins and can be transferred from donor bacteria to transient recipient bacteria. New classes of mobile genetic elements are also being identified. For example, nucleic acids that circulate in the bloodstream (circulating nucleic acids) can integrate into the host cell genome by up-regulation of DNA damage and repair pathways. With multidrug resistant bacteria on the rise, new drugs have been developed to combate bacterial antibiotic resistance, such as innate defense regulators, reactive oxygen species and microbial volatile compounds. This review summaries various aspects and mechanisms of antibiotic resistance in the respiratory/oral microbiota. A better understanding of these mechanisms will facilitate minimization of the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- S Jiang
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Zeng
- 2 Department of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - X Zhou
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Li
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Fernandes T, Bhavsar C, Sawarkar S, D’souza A. Current and novel approaches for control of dental biofilm. Int J Pharm 2018; 536:199-210. [DOI: 10.1016/j.ijpharm.2017.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
|
9
|
Mai S, Mauger MT, Niu LN, Barnes JB, Kao S, Bergeron BE, Ling JQ, Tay FR. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomater 2017; 49:16-35. [PMID: 27845274 DOI: 10.1016/j.actbio.2016.11.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 02/02/2023]
Abstract
Antimicrobial peptides (AMPs) are short cationic host-defense molecules that provide the early stage of protection against invading microbes. They also have important modulatory roles and act as a bridge between innate and acquired immunity. The types and functions of oral AMPs were reviewed and experimental reports on the use of natural AMPs and their synthetic mimics in caries and pulpal infections were discussed. Natural AMPs in the oral cavity, predominantly defensins, cathelicidins and histatins, possess antimicrobial activities against oral pathogens and biofilms. Incomplete debridement of microorganisms in root canal space may precipitate an exacerbated immune response that results in periradicular bone resorption. Because of their immunomodulatory and wound healing potentials, AMPs stimulate pro-inflammatory cytokine production, recruit host defense cells and regulate immuno-inflammatory responses in the vicinity of the pulp and periapex. Recent rapid advances in the development of synthetic AMP mimics offer exciting opportunities for new therapeutic initiatives in root canal treatment and regenerative endodontics. STATEMENT OF SIGNIFICANCE Identification of new therapeutic strategies to combat antibiotic-resistant pathogens and biofilm-associated infections continues to be one of the major challenges in modern medicine. Despite the presence of commercialization hurdles and scientific challenges, interests in using antimicrobial peptides as therapeutic alternatives and adjuvants to combat pathogenic biofilms have never been foreshortened. Not only do these cationic peptides possess rapid killing ability, their multi-modal mechanisms of action render them advantageous in targeting different biofilm sub-populations. These factors, together with adjunctive bioactive functions such as immunomodulation and wound healing enhancement, render AMPs or their synthetic mimics exciting candidates to be considered as adjuncts in the treatment of caries, infected pulps and root canals.
Collapse
|