1
|
Pulmonary non-tuberculous mycobacteria in colonisation and disease in The Gambia. Sci Rep 2022; 12:19523. [PMID: 36376401 PMCID: PMC9663703 DOI: 10.1038/s41598-022-22777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The clinical relevance of pulmonary non-tuberculous mycobacteria (PNTM) in The Gambia is unknown. The aim of this study was to estimate the prevalence of non-tuberculous mycobacteria (NTM) in colonisation, and the burden of clinically relevant pulmonary NTM (PNTM) disease in The Gambia. This was a cross-sectional study of the prevalence of NTM in participants aged ≥ 15 years, in a nationwide tuberculosis (TB) prevalence survey between December 2011 and January 2013. We enrolled 903 participants with suspected NTM and NTM cultures were confirmed by 16S rRNA gene sequencing analyses. We applied the American Thoracic Society/Infectious Disease Society of America (ATS/IDSA) diagnostic criteria to determine clinical relevance of NTM. A total of 575 participants had acid-fast bacilli (AFB) positive Mycobacterial Growth Indicator Tube (MGIT) cultures and 229 (39.8%) were NTM. M. avium complex was by far the most isolated NTM (71.0%), followed by M. fortuitum (9.5%) and M. nonchromogenicum (2.9%). Older participants (> 24 years old) were four times more likely to have NTM in their sputa. Only 20.5% (9/44) NTM cases met the ATS/IDSA criteria for NTM disease. This study provides important data on the prevalence of NTM in pulmonary samples of suspected TB cases with AFB positive cultures from a nationally representative population in The Gambia. Enhanced PNTM surveillance is recommended to better understand the contribution of NTM to pulmonary disease.
Collapse
|
2
|
Roussel C, De Paepe K, Galia W, de Bodt J, Chalancon S, Denis S, Leriche F, Vandekerkove P, Ballet N, Blanquet-Diot S, Van de Wiele T. Multi-targeted properties of the probiotic saccharomyces cerevisiae CNCM I-3856 against enterotoxigenic escherichia coli (ETEC) H10407 pathogenesis across human gut models. Gut Microbes 2021; 13:1953246. [PMID: 34432600 PMCID: PMC8405159 DOI: 10.1080/19490976.2021.1953246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of acute traveler's diarrhea. Adhesins and enterotoxins constitute the major ETEC virulence traits. With the dramatic increase in antibiotic resistance, probiotics are considered a wholesome alternative to prevent or treat ETEC infections. Here, we examined the antimicrobial properties of the probiotic Saccharomyces cerevisiae CNCM I-3856 against ETEC H10407 pathogenesis upon co-administration in the TNO gastrointestinal Model (TIM-1), simulating the physicochemical and enzymatic conditions of the human upper digestive tract and preventive treatment in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), integrating microbial populations of the ileum and ascending colon. Interindividual variability was assessed by separate M-SHIME experiments with microbiota from six human individuals. The probiotic did not affect ETEC survival along the digestive tract. However, ETEC pathogenicity was significantly reduced: enterotoxin encoding virulence genes were repressed, especially in the TIM-1 system, and a lower enterotoxin production was noted. M-SHIME experiments revealed that 18-days probiotic treatment stimulate the growth of Bifidobacterium and Lactobacillus in different gut regions (mucosal and luminal, ileum and ascending colon) while a stronger metabolic activity was noted in terms of short-chain fatty acids (acetate, propionate, and butyrate) and ethanol production. Moreover, the probiotic pre-treated microbiota displayed a higher robustness in composition following ETEC challenge compared to the control condition. We thus demonstrated the multi-inhibitory properties of the probiotic S. cerevisiae CNCM I-3856 against ETEC in the overall simulated human digestive tract, regardless of the inherent variability across individuals in the M-SHIME.
Collapse
Affiliation(s)
- Charlène Roussel
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France,CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kim De Paepe
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wessam Galia
- UMR 5557 Microbial Ecology, Research Group On Bacterial Opportunistic Pathogens And Environment, CNRS, VetAgro Sup, Lyon, France
| | - Jana de Bodt
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sandrine Chalancon
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | - Sylvain Denis
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | | | | | - Nathalie Ballet
- Lesaffre International, Lesaffre Group, Marcq-en-Baroeul, France
| | - Stéphanie Blanquet-Diot
- CONTACT Stéphanie Blanquet-Diot Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | - Tom Van de Wiele
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
ISOLATION AND ANTIMICROBIAL SUSCEPTIBILITIES OF NONTUBERCULOUS MYCOBACTERIA FROM WILDLIFE IN JAPAN. J Wildl Dis 2021; 56:851-862. [PMID: 32402237 DOI: 10.7589/2019-10-261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/25/2020] [Indexed: 11/20/2022]
Abstract
Nontuberculous mycobacteria (NTM) are opportunistic pathogens of humans and animals and are transmitted among the environment, wildlife, livestock, and humans. The aim of this study was to investigate the rate of isolation and antimicrobial susceptibility of NTM in wildlife. In total, 178 samples of feces (n=131) and tissues (n=47) were collected from 11 wildlife species in Gifu Prefecture and Mie Prefecture, Japan, between June 2016 and October 2018. We isolated NTM from 15.3% (20/ 131) of fecal samples using Ogawa medium, and isolates were identified by sequencing the rpoB and hsp65 genes. The rpoB sequences were compared with those from other strains of human and environmental origin. The NTM isolates were obtained from sika deer (Cervus nippon), wild boar (Sus scrofa), Japanese monkey (Macaca fuscata), raccoon dog (Nyctereutes procyonoides), masked palm civet (Paguma larvata), and Japanese weasel (Mustela itatsi) and were classified as rapidly growing mycobacteria (RGM) and slowly growing mycobacteria (SGM). The 12 RGM identified were Mycolicibacterium peregrinum (n=5), Mycolicibacterium fortuitum (n=3), Mycolicibacterium septicum (n=3), and Mycolicibacterium thermoresistibile (n=1), and the eight SGM were Mycobacterium paraense (n=4), Mycolicibacter arupensis (n=2), Mycolicibacter virginiensis (n=1), and Mycobacterium nebraskense (n=1). The NTM from wildlife showed ≥99% similarity with strains from different sources including humans. The RGM were susceptible to the antimicrobial agents tested except for M. fortuitum, which was resistant to azithromycin and clarithromycin. The SGM showed multiple drug resistance qualities but were susceptible to amikacin, clarithromycin, and rifabutin. These results indicate that wildlife may be reservoir hosts of NTM in Japan. The presence of antimicrobial-resistant NTM in wildlife suggests that the trends of NTM antimicrobial susceptibility in wildlife should be monitored.
Collapse
|
4
|
Greif G, Coitinho C, van Ingen J, Robello C. Species Distribution and Isolation Frequency of Nontuberculous Mycobacteria, Uruguay. Emerg Infect Dis 2020; 26:1014-1018. [PMID: 32310057 PMCID: PMC7181928 DOI: 10.3201/eid2605.191631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) increasingly are recognized as opportunistic pathogens of humans. NTM species distribution is well documented in Europe and North America, but data from other regions are scarce. We assessed NTM isolation frequency and species distribution in Uruguay during 2006–2018.
Collapse
|
5
|
van der Heijden EMDL, Cooper DV, Rutten VPMG, Michel AL. Mycobacterium bovis prevalence affects the performance of a commercial serological assay for bovine tuberculosis in African buffaloes. Comp Immunol Microbiol Infect Dis 2019; 70:101369. [PMID: 31718809 DOI: 10.1016/j.cimid.2019.101369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/24/2023]
Abstract
The endemic presence of bovine tuberculosis (BTB) in African buffaloes in South Africa has severe consequences for BTB control in domestic cattle, buffalo ranching and wildlife conservation, and poses a potential risk to public health. This study determined the BTB prevalence in free-ranging buffaloes in two game reserves and assessed the influence of the prevalence of mycobacterial infections on the performance of a commercial cattle-specific serological assay for BTB (TB ELISA). Buffaloes (n = 997) were tested with the tuberculin skin test and TB ELISA; a subset (n = 119) was tested longitudinally. Culture, PCR and sequencing were used to confirm infection with M. bovis and/or non-tuberculous mycobacteria (NTM). Prevalence of BTB, but not NTM, influenced the TB ELISA performance. Multiple testing did not increase test confidence. The findings strongly illustrate the need for development of novel assays that can supplement existing assays for a more comprehensive testing scheme for BTB in African buffaloes.
Collapse
Affiliation(s)
- Elisabeth M D L van der Heijden
- Department of Infectious Diseases & Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Bovine Tuberculosis and Brucellosis Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.
| | - David V Cooper
- Ezemvelo KwaZulu-Natal Wildlife, Private Bag 01, St. Lucia, 3936, South Africa
| | - Victor P M G Rutten
- Department of Infectious Diseases & Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Bovine Tuberculosis and Brucellosis Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Anita L Michel
- Bovine Tuberculosis and Brucellosis Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa; Research Associate, National Zoological Gardens of South Africa, Pretoria, South Africa
| |
Collapse
|
6
|
da Silva WMV, Duarte MH, de Carvalho LD, de Souza Caldas PC, Campos CED, Redner P, Ramos JP. Discovery of a novel Mycobacterium asiaticum PRA-hsp65 pattern. INFECTION GENETICS AND EVOLUTION 2019; 76:104040. [PMID: 31533063 DOI: 10.1016/j.meegid.2019.104040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022]
Abstract
Twenty-one pulmonary sputum samples from nine Brazilian patients were analyzed by the PRA-hsp65 method for identification of Mycobacterium species and the results were compared by sequencing. We reported a mutation at the position 381, that generates a suppression cutting site in the BstEII enzyme, thus leading to a new PRA-hsp65 pattern for M. asiaticum identification.
Collapse
Affiliation(s)
- William Marco Vicente da Silva
- National Reference Laboratory for Tuberculosis, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, RJ, Brazil.
| | - Mayara Henrique Duarte
- National Reference Laboratory for Tuberculosis, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, RJ, Brazil
| | - Luciana Distásio de Carvalho
- National Reference Laboratory for Tuberculosis, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, RJ, Brazil
| | - Paulo Cesar de Souza Caldas
- National Reference Laboratory for Tuberculosis, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, RJ, Brazil
| | - Carlos Eduardo Dias Campos
- National Reference Laboratory for Tuberculosis, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, RJ, Brazil
| | - Paulo Redner
- National Reference Laboratory for Tuberculosis, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, RJ, Brazil
| | - Jesus Pais Ramos
- National Reference Laboratory for Tuberculosis, Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública, Fiocruz, RJ, Brazil
| |
Collapse
|
7
|
Prevalence of drug-resistant tuberculosis in Zimbabwe: A health facility-based cross-sectional survey. Int J Infect Dis 2019; 87:119-125. [PMID: 31357057 PMCID: PMC9586843 DOI: 10.1016/j.ijid.2019.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 11/25/2022] Open
Abstract
Objective: To determine the prevalence of resistance to rifampicin alone; rifampicin and isoniazid, and second-line anti-TB drugs among sputum smear-positive tuberculosis patients in Zimbabwe. Design: A health facility-based cross-sectional survey. Results: In total, 1114 (87.6%) new and 158 (12.4%) retreatment TB patients were enrolled. MTB was confirmed by Xpert MTB/RIF among 1184 (93%) smear-positive sputum samples. There were 64 samples with Xpert MTB/RIF-determined rifampicin resistance. However, two were rifampicin susceptible on phenotypic drug susceptibility testing. The prevalence of RR-TB was [4.0% (95% CI, 2.9, 5.4%), n = 42/1043) and 14.2% (95% CI, 8.9, 21.1%; n = 20/141) among new and retreatment patients, respectively. The prevalence of MDR-TB was 2.0% (95% CI, 1.3, 3.1%) and 6.4% (95% CI, 2.4, 10.3%) among new and retreatment TB patients, respectively. Risk factors for RR-TB included prior TB treatment, self-reported HIV infection, travel outside Zimbabwe for ≥one month (univariate), and age <15 years. Having at least a secondary education was protective against RR-TB. Conclusion: The prevalence of MDR-TB in Zimbabwe has remained stable since the 1994 subnational survey. However, the prevalence of rifampicin mono-resistance was double that of MDR-TB.
Collapse
|
8
|
Mycobacterium avium: an overview. Tuberculosis (Edinb) 2019; 114:127-134. [PMID: 30711152 DOI: 10.1016/j.tube.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 01/15/2023]
Abstract
Mycobacterium avium is an environmental microorganism found in soil and water sources worldwide. It is the most prevalent species of nontuberculous mycobacteria that causes infectious diseases, especially in immunocompromised individuals. This review discusses and highlights key topics about M. avium, such as epidemiology, pathogenicity, glycopeptidolipids, laboratory identification, genotyping, antimicrobial therapy and antimicrobial resistance. Additionally, the main comorbidities associated with M. avium infection are discussed.
Collapse
|
9
|
Misidentification of Mycobacterium paraense as Mycobacterium avium Complex by Accuprobe. J Clin Microbiol 2017; 55:2283-2284. [PMID: 28468858 DOI: 10.1128/jcm.00663-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Gcebe N, Hlokwe TM. Non-tuberculous Mycobacteria in South African Wildlife: Neglected Pathogens and Potential Impediments for Bovine Tuberculosis Diagnosis. Front Cell Infect Microbiol 2017; 7:15. [PMID: 28194371 PMCID: PMC5276850 DOI: 10.3389/fcimb.2017.00015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/11/2017] [Indexed: 01/24/2023] Open
Abstract
Non-tuberculous mycobacteria (NTM) are not only emerging and opportunistic pathogens of both humans and animals, but from a veterinary point of view some species induce cross-reactive immune responses that hamper the diagnosis of bovine tuberculosis (bTB) in both livestock and wildlife. Little information is available about NTM species circulating in wildlife species of South Africa. In this study, we determined the diversity of NTM isolated from wildlife species from South Africa as well as Botswana. Thirty known NTM species and subspecies, as well as unidentified NTM, and NTM closely related to Mycobacterium goodii/Mycobacterium smegmatis were identified from 102 isolates cultured between the years 1998 and 2010, using a combination of molecular assays viz PCR and sequencing of different Mycobacterial house-keeping genes as well as single nucleotide polymorphism (SNP) analysis. The NTM identified in this study include the following species which were isolated from tissue with tuberculosis- like lesions in the absence of Mycobacterium tuberculosis complex (MTBC) implying their potential role as pathogens of animals: Mycobacterium abscessus subsp. bolletii, Mycobacterium gastri, Mycobacterium species closely related to Mycobacterium goodii/Mycobacterium smegmatis, Mycobacterium brasiliensis, Mycobacterium sinense JMD 601, Mycobacterium avium subsp. avium, Mycobacterium sp. GR-2007, Mycobacterium bouchedurhonense, and Mycobacterium septicum/M. peregrinum. Mycobaterium brasiliensis, Mycobacterium gastri, Mycobacterium sp. GR-2007, and a potential novel Mycobacterium species closely related to Mycobacterium goodii were found for the first time in this study to be potential pathogens of animals. Mycobacterium simiae was isolated from a sample originating from a tuberculin skin test positive reactor, demonstrating its potential to elicit inappropriate immune responses in animals that may interfere with diagnosis of tuberculosis by immunology. Mycobacterium abscessus subsp. bolletti was the most frequently detected NTM identified in 37 of the 102 isolates. Other NTM species were also isolated from animals not showing any pathological changes. Knowledge gained in this study contribute to the understanding of NTM species circulating in wild animals in South Africa and the pathogenic potential of certain species, whose role in disease causation need to be examined, as well as to a certain extent the potential of M. simiae to hamper the diagnosis of bTB.
Collapse
Affiliation(s)
- Nomakorinte Gcebe
- Tuberculosis Laboratory, Onderstepoort Veterinary Institute, Zoonotic Diseases, Agricultural Research Council Onderstepoort, South Africa
| | - Tiny M Hlokwe
- Tuberculosis Laboratory, Onderstepoort Veterinary Institute, Zoonotic Diseases, Agricultural Research Council Onderstepoort, South Africa
| |
Collapse
|