1
|
Barghouth M, Ye Y, Karagiannopoulos A, Ma Y, Cowan E, Wu R, Eliasson L, Renström E, Luan C, Zhang E. The T-type calcium channel Ca V3.2 regulates insulin secretion in the pancreatic β-cell. Cell Calcium 2022; 108:102669. [PMID: 36347081 DOI: 10.1016/j.ceca.2022.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Voltage-gated Ca2+ (CaV) channel dysfunction leads to impaired glucose-stimulated insulin secretion in pancreatic β-cells and contributes to the development of type-2 diabetes (T2D). The role of the low-voltage gated T-type CaV channels in β-cells remains obscure. Here we have measured the global expression of T-type CaV3.2 channels in human islets and found that gene expression of CACNA1H, encoding CaV3.2, is negatively correlated with HbA1c in human donors, and positively correlated with islet insulin gene expression as well as secretion capacity in isolated human islets. Silencing or pharmacological blockade of CaV3.2 attenuates glucose-stimulated cytosolic Ca2+ signaling, membrane potential, and insulin release. Moreover, the endoplasmic reticulum (ER) Ca2+ store depletion is also impaired in CaV3.2-silenced β-cells. The linkage between T-type (CaV3.2) and L-type CaV channels is further identified by the finding that the intracellular Ca2+ signaling conducted by CaV3.2 is highly dependent on the activation of L-type CaV channels. In addition, CACNA1H expression is significantly associated with the islet predominant L-type CACNA1C (CaV1.2) and CACNA1D (CaV1.3) genes in human pancreatic islets. In conclusion, our data suggest the essential functions of the T-type CaV3.2 subunit as a mediator of β-cell Ca2+ signaling and membrane potential needed for insulin secretion, and in connection with L-type CaV channels.
Collapse
Affiliation(s)
- Mohammad Barghouth
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden
| | - Yingying Ye
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden.
| | - Alexandros Karagiannopoulos
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö 20502, Sweden
| | - Yunhan Ma
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden
| | - Elaine Cowan
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö 20502, Sweden
| | - Rui Wu
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden; NanoLund, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö 20502, Sweden
| | - Erik Renström
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden
| | - Cheng Luan
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden.
| | - Enming Zhang
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden; NanoLund, Lund University, P.O. Box 118, Lund 22100, Sweden.
| |
Collapse
|
2
|
Faris P, Ferulli F, Vismara M, Tanzi M, Negri S, Rumolo A, Lefkimmiatis K, Maestri M, Shekha M, Pedrazzoli P, Guidetti GF, Montagna D, Moccia F. Hydrogen Sulfide-Evoked Intracellular Ca 2+ Signals in Primary Cultures of Metastatic Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12113338. [PMID: 33187307 PMCID: PMC7696676 DOI: 10.3390/cancers12113338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the most common type of gastrointestinal cancer and the third most predominant cancer in the world. CRC is potentially curable with surgical resection of the primary tumor. The clinical problem of colorectal cancer, however, is the spread and outgrowth of metastases, which are difficult to eradicate and lead to a patient’s death. The failure of conventional treatment to significantly improved outcomes in mCRC has prompted the search for alternative molecular targets with the goal of ameliorating the prognosis of these patients. The present investigation revealed that exogenous delivery of hydrogen sulfide (H2S) suppresses proliferation in metastatic colorectal cancer cells by inducing an increase in intracellular Ca2+ concentration. H2S was effective on metastatic, but not normal, cells. Therefore, we propose that exogenous administration of H2S to patients affected by metastatic colorectal carcinoma could represent a promising therapeutic alternative. Abstract Exogenous administration of hydrogen sulfide (H2S) is emerging as an alternative anticancer treatment. H2S-releasing compounds have been shown to exert a strong anticancer effect by suppressing proliferation and/or inducing apoptosis in several cancer cell types, including colorectal carcinoma (CRC). The mechanism whereby exogenous H2S affects CRC cell proliferation is yet to be clearly elucidated, but it could involve an increase in intracellular Ca2+ concentration ([Ca2+]i). Herein, we sought to assess for the first time whether (and how) sodium hydrosulfide (NaHS), one of the most widely employed H2S donors, induced intracellular Ca2+ signals in primary cultures of human metastatic CRC (mCRC) cells. We provided the evidence that NaHS induced extracellular Ca2+ entry in mCRC cells by activating the Ca2+-permeable channel Transient Receptor Potential Vanilloid 1 (TRPV1) followed by the Na+-dependent recruitment of the reverse-mode of the Na+/Ca2+ (NCX) exchanger. In agreement with these observations, TRPV1 protein was expressed and capsaicin, a selective TRPV1 agonist, induced Ca2+ influx by engaging both TRPV1 and NCX in mCRC cells. Finally, NaHS reduced mCRC cell proliferation, but did not promote apoptosis or aberrant mitochondrial depolarization. These data support the notion that exogenous administration of H2S may prevent mCRC cell proliferation through an increase in [Ca2+]i, which is triggered by TRPV1.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Department of Biology, Cihan University-Erbil, 44001 Erbil, Iraq
| | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Mauro Vismara
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Matteo Tanzi
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
| | - Agnese Rumolo
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Kostantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35131 Padua, Italy
| | - Marcello Maestri
- Medical Surgery, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mudhir Shekha
- Faculty of Science, Department of Medical Analysis, Tishk International University-Erbil, 44001 Erbil, Iraq;
| | - Paolo Pedrazzoli
- Medical Oncology, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianni Francesco Guidetti
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
- Diagnostic and Pediatric, Department of Sciences Clinic-Surgical, University of Pavia, 27100 Pavia, Italy
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| |
Collapse
|