1
|
Al-Hammadi M, Güngörmüşler M. New insights into Chlorella vulgaris applications. Biotechnol Bioeng 2024; 121:1486-1502. [PMID: 38343183 DOI: 10.1002/bit.28666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 04/14/2024]
Abstract
Environmental pollution is a big challenge that has been faced by humans in contemporary life. In this context, fossil fuel, cement production, and plastic waste pose a direct threat to the environment and biodiversity. One of the prominent solutions is the use of renewable sources, and different organisms to valorize wastes into green energy and bioplastics such as polylactic acid. Chlorella vulgaris, a microalgae, is a promising candidate to resolve these issues due to its ease of cultivation, fast growth, carbon dioxide uptake, and oxygen production during its growth on wastewater along with biofuels, and other productions. Thus, in this article, we focused on the potential of Chlorella vulgaris to be used in wastewater treatment, biohydrogen, biocement, biopolymer, food additives, and preservation, biodiesel which is seen to be the most promising for industrial scale, and related biorefineries with the most recent applications with a brief review of Chlorella and polylactic acid market size to realize the technical/nontechnical reasons behind the cost and obstacles that hinder the industrial production for the mentioned applications. We believe that our findings are important for those who are interested in scientific/financial research about microalgae.
Collapse
Affiliation(s)
- Mohammed Al-Hammadi
- Division of Bioengineering, Graduate School, Izmir University of Economics, Izmir, Türkiye
| | - Mine Güngörmüşler
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Izmir, Türkiye
| |
Collapse
|
2
|
Abdel-Khalek AE, El-Maghraby MM, Elbialy ZI, Al wakeel RA, Almadaly EA, Shukry M, El-Badawy AA, Zaghloul HK, Assar DH. Mitigation of endogenous oxidative stress and improving growth, hemato-biochemical parameters, and reproductive performance of Zaraibi goat bucks by dietary supplementation with Chlorella vulgaris or/and vitamin C. Trop Anim Health Prod 2023; 55:267. [PMID: 37442841 PMCID: PMC10345023 DOI: 10.1007/s11250-023-03657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023]
Abstract
This study was conducted to explore the effects of dietary inclusion of Chlorella vulgaris (CV) or/and vitamin C (VC) on growth, hemato-biochemical parameters, oxidative and antioxidant status, reproductive hormones, and semen quality variables, and scrotal-testicular dimensions of Zaraibi goat bucks. Twenty sexually mature bucks (41.49 ± 0.91 kg BW) were randomly divided into 4 groups (5 bucks/group). The control group was fed the control diet, while the other three groups received a diet supplemented with VC (2 g/animal /day), CV (5 g/animal/day), and CV plus VC (the same levels), respectively, for 8 weeks (treatment period), and then semen was collected for 8 weeks. Results showed that dietary supplementation with CV-VC combination significantly increased the final body weight, weight gain, packed cell volume, hemoglobin, red blood cells, white blood cells, and lymphocytes; elevated serum total protein, globulin, testosterone, estradiol, superoxide dismutase, glutathione peroxidase with a significant reduction in Malondialdehyde in serum and seminal plasma. Also, the CV-VC combination significantly improved the ejaculate volume, total sperm output, sperm concentration, and live sperm, and reduced reaction time and sperm abnormality of bucks. Either CV or VC given separately or in combination, at the chosen levels, had no detrimental effects on animal physiological responses with normal hepatic and renal functions. Therefore, the CV-VC combination could be safely utilized as a dietary supplement in buck's diets to improve antioxidant defenses, scavenge free radicals, and potentiate buck's reproductive activities under normal conditions.
Collapse
Affiliation(s)
- A. E. Abdel-Khalek
- Animal Production Department, Faculty of Agriculture, Mansoura University, Al-Mansoura, Egypt
| | - M. M. El-Maghraby
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Zizy I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, El-Geish Street, Kafrelsheikh, 33516 Egypt
| | - Rasha A. Al wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh, 33516 Egypt
| | - E. A. Almadaly
- Department of Theriogenology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh, 33516 Egypt
| | - M. Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh, 33516 Egypt
| | - A. A. El-Badawy
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - H. K. Zaghloul
- High Institute for Agricultural Co-Operation, Shoubra, Egypt
| | - Doaa H. Assar
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh, 33516 Egypt
| |
Collapse
|
3
|
Quintieri L, Nitride C, De Angelis E, Lamonaca A, Pilolli R, Russo F, Monaci L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023; 15:nu15061509. [PMID: 36986239 PMCID: PMC10054669 DOI: 10.3390/nu15061509] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing size of the human population and the shortage of highly valuable proteinaceous ingredients has prompted the international community to scout for new, sustainable, and natural protein resources from invertebrates (e.g., insects) and underutilized legume crops, unexploited terrestrial and aquatic weeds, and fungi. Insect proteins are known for their nutritional value, being rich in proteins with a good balance of essential amino acids and being a valuable source of essential fatty acids and trace elements. Unconventional legume crops were found rich in nutritional, phytochemical, and therapeutic properties, showing excellent abilities to survive extreme environmental conditions. This review evaluates the recent state of underutilized legume crops, aquatic weeds, fungi, and insects intended as alternative protein sources, from ingredient production to their incorporation in food products, including their food formulations and the functional characteristics of alternative plant-based proteins and edible insect proteins as novel foods. Emphasis is also placed on safety issues due to the presence of anti-nutritional factors and allergenic proteins in insects and/or underutilized legumes. The functional and biological activities of protein hydrolysates from different protein sources are reviewed, along with bioactive peptides displaying antihypertensive, antioxidant, antidiabetic, and/or antimicrobial activity. Due to the healthy properties of these foods for the high abundance of bioactive peptides and phytochemicals, more consumers are expected to turn to vegetarianism or veganism in the future, and the increasing demand for such products will be a challenge for the future.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
4
|
Simple Method for Fatty Acids Determination in Food, Superfood and Spice Samples by GC-MS Technique. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
The aim of the study was to modify and adapt to other matrices the fast and simple method for determining total lipid content expressed as fatty acid methyl esters (FAME) by performing the in situ transesterification. The primary method was published as a technical report for the FAME analysis in algae dry mass. Our modifications included the use of less toxic solvents, the use of an internal triglyceride standard and FAME determination by the gas chromatography technique coupled with the mass spectrometry technique in the Single Ion Monitoring mode (SIM). The modified method was validated for 37 fatty acids (saturated, monounsaturated and polyunsaturated) containing from four to twenty-four carbons in the carbon chain (C4-C24), and was adapted to five food matrices: three solids (yeast, yeast flakes, biscuits), and two liquids (milk thistle (Silybum marianum (L.) Gaertner) oil and olive oil). Additionally, 14 samples of spices and superfood samples, rich in unsaturated oils were analyzed. The validation parameters: linearity, precision, recovery, limits of detections and quantifications, were assessed and additionally Certified Reference Material of olive oil was analyzed.
Collapse
|
5
|
Ahmad A, W Hassan S, Banat F. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered 2022; 13:9521-9547. [PMID: 35387561 PMCID: PMC9161971 DOI: 10.1080/21655979.2022.2061148] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sustainable management of natural resources is critical to food security. The shrimp feed and fishery sector is expanding rapidly, necessitating the development of alternative sustainable components. Several factors necessitate the exploration of a new source of environmentally friendly and nutrient-rich fish feed ingredients. Microalgal biomass has the potential to support the growth of fish and shrimp aquaculture for global food security in the bio-economy. Algal biorefineries must valorize the whole crop to develop a viable microalgae-based economy. Microalgae have the potential to replace fish meal and fish oil in aquaculture and ensure sustainability standards. Microalgae biomasses provide essential amino acids, valuable triglycerides such as lipids, vitamins, and pigments, making them suitable as nutritional supplements in livestock feed formulations. Fish and microalgae have similar nutritional profiles, and digestibility is a critical aspect of the aquafeed formulation. A highly digestible feed reduces production costs, feed waste, and the risk of eutrophication. Due to low input costs, low carbon footprint, wastewater treatment benefits, and carbon credits from industrial CO2 conversion, microalgae-based fish and shrimp feeds have the potential to provide significant economic benefits. However, several challenges must be addressed before microalgal biomass and bioproducts may be used as fish feeds, including heavy metal bioaccumulation, poor algal biomass digestion, and antinutrient effects. Knowledge of biochemical composition is limited and diverse, and information on nutritional value is scattered or contradictory. This review article presents alternative approaches that could be used in aquaculture to make microalgal biomass a viable alternative to fish meal.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hassan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Wang M, Zhou J, Tavares J, Pinto CA, Saraiva JA, Prieto MA, Cao H, Xiao J, Simal-Gandara J, Barba FJ. Applications of algae to obtain healthier meat products: A critical review on nutrients, acceptability and quality. Crit Rev Food Sci Nutr 2022; 63:8357-8374. [PMID: 35357258 DOI: 10.1080/10408398.2022.2054939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Meat constitutes one the main protein sources worldwide. However, ethical and health concerns have limited its consumption over the last years. To overcome this negative impact, new ingredients from natural sources are being applied to meat products to obtain healthier proteinaceous meat products. Algae is a good source of unsaturated fatty acids, proteins, essential amino acids, and vitamins, which can nutritionally enrich several foods. On this basis, algae have been applied to meat products as a functional ingredient to obtain healthier meat-based products. This paper mainly reviews the bioactive compounds in algae and their application in meat products. The bioactive ingredients present in algae can give meat products functional properties such as antioxidant, neuroprotective, antigenotoxic, resulting in healthier foods. At the same time, algae addition to foods can also contribute to delay microbial spoilage extending shelf-life. Additionally, other algae-based applications such as for packaging materials for meat products are being explored. However, consumers' acceptance for new products (particularly in Western countries), namely those containing algae, not only depends on their knowledge, but also on their eating habits. Therefore, it is necessary to further explore the nutritional properties of algae-containing meat products to overcome the gap between new meat products and traditional products, so that healthier algae-containing meat can occupy a significant place in the market.
Collapse
Affiliation(s)
- Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Jéssica Tavares
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
7
|
Abstract
The efficient use of natural resources is essential for the planet’s sustainability and ensuring food security. Colombia’s large availability of water resources in combination with its climatic characteristics allows for the development of many microalgae species. The use of microalgae can potentially contribute to sustainable production in support of the agri-food sector. The nutritional composition (proteins, carbohydrates, fatty acids, vitamins, pigments, and antioxidants) of microalgae along with the ease of producing high biomass yields make them an excellent choice for human and animal nutrition and agriculture. Several species of microalgae have been studied seeking to develop food supplements for pigs, ruminants, poultry, fish, crustaceans, rabbits, and even bees. Important benefits to animal health, production, and improved bromatological and organoleptic characteristics of milk, meat, and eggs have been observed. Based on the functional properties of some microalgae species, foods and supplements have also been developed for human nutrition. Moreover, because microalgae contain essential nutrients, they can be utilized as biofertilizers by replacing chemical fertilizers, which are detrimental to the environment. In view of the above, the study of microalgae is a promising research area for the development of biotechnology and bioeconomy in Colombia.
Collapse
|
8
|
Kusmayadi A, Leong YK, Yen HW, Huang CY, Chang JS. Microalgae as sustainable food and feed sources for animals and humans - Biotechnological and environmental aspects. CHEMOSPHERE 2021; 271:129800. [PMID: 33736224 DOI: 10.1016/j.chemosphere.2021.129800] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Offering a potential solution for global food security and mitigating environmental issues caused by the expansion of land-based food production, the carbon-hunger and nutrient-rich microalgae emerged as a sustainable food source for both humans and animals. Other than as an alternative source for protein, microalgae offer its most valuable nutrients, omega-3 and 6 long-chain polyunsaturated fatty acids where the content can compete with that of marine fish with lower chemicals contamination and higher purity. Furthermore, the colorful pigments of microalgae can act as antioxidants together with many other health-improving properties as well as a natural colorant. In addition, the supplementation of algae as animal feed provides plentiful benefits, such as improved growth and body weight, reduced feed intake, enhanced immune response and durability towards illness, antibacterial and antiviral action as well as enrichment of livestock products with bioactive compounds. The significant breakthrough in algal biotechnology has made algae a powerful "cell factory" for food production and lead to the rapid growth of the algal bioeconomy in the food and feed industry. The first overview of this review was to present the general of microalgae and its potential capability. Subsequently, the nutritional compositions of microalgae were discussed together with its applications in human foods and animal feeds, followed by the exploration of their economic feasibility and sustainability as well as market trends. Lastly, both challenges and future perspectives were also discussed.
Collapse
Affiliation(s)
- Adi Kusmayadi
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Yoong Kit Leong
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Chi-Yu Huang
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Eissa MM, Ahmed MM, Abd Eldaim MA, Orabi SH, Elbaz HT, Mohamed MA, Elweza AE, Mousa AA. Methanolic extract of Chlorella vulgaris protects against sodium nitrite-induced reproductive toxicity in male rats. Andrologia 2020; 52:e13811. [PMID: 32897594 DOI: 10.1111/and.13811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/13/2020] [Accepted: 07/26/2020] [Indexed: 11/29/2022] Open
Abstract
The current study aimed to investigate the protective potential of Chlorella Vulgaris (CV) extract against the reproductive dysfunction induced by sodium nitrite toxicity. Forty-five male Wistar albino rats were assigned into five groups (n = 9). Control group received normal saline orally for 3 months, CV-treated: administered CV extract (70 mg/kg.BW) orally for 3 months, sodium nitrite-treated: received sodium nitrite (80 mg/kg.BW) orally for 3 months, co-treated: simultaneously received CV along with sodium nitrite treatment, orally, daily for 3 months, and CV-pre-treated: pre-treated with CV extract for 4 weeks followed by simultaneous treatment with sodium nitrite and CV extract for additional 8 weeks. Treatment with sodium nitrite significantly decreased serum testosterone and follicle-stimulating hormone concentrations, sperm count, motility, and viability. Besides, it decreased testicular superoxide dismutase and glutathione peroxidase activities while increased malondialdehyde concentration. This effect of sodium nitrite was associated with degenerative, necrotic, vascular, and inflammatory changes in testicular tissues. Treatment of sodium nitrite-intoxicated rats with CV in co-treated and pre-treated groups significantly prevented sodium nitrite-induced alterations of sperm parameters, hormonal concentrations, testicular oxidative-antioxidant status, and histological architecture. This study indicates that CV extract ameliorates the reproductive dysfunction induced by sodium nitrite toxicity via improving reproductive hormonal levels and testicular antioxidant activities.
Collapse
Affiliation(s)
- Mai M Eissa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed M Ahmed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mabrouk A Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom, Egypt
| | - Sahar H Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Hamed T Elbaz
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mostafa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom, Egypt
| | - Ahmed E Elweza
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed A Mousa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
10
|
Osama E, Galal AAA, Abdalla H, El-Sheikh SMA. Chlorella vulgaris
ameliorates testicular toxicity induced by deltamethrin in male rats via modulating oxidative stress. Andrologia 2018; 51:e13214. [DOI: 10.1111/and.13214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/21/2018] [Accepted: 11/01/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Eman Osama
- Department of Pharmacology, Faculty of Veterinary Medicine; Zagazig University; Zagazig Egypt
| | - Azza A. A. Galal
- Department of Pharmacology, Faculty of Veterinary Medicine; Zagazig University; Zagazig Egypt
| | - Hany Abdalla
- Department of Theriogenology, Faculty of Veterinary Medicine; Zagazig University; Zagazig Egypt
| | - Sawsan M. A. El-Sheikh
- Department of Pharmacology, Faculty of Veterinary Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|