1
|
Zhu H, Xia X, Chiang CC, Watson Levings RS, Correa J, Rocha FRG, Ghivizzani SC, Ren F, Neal D, Calderon PDS, Esquivel-Upshaw JF. Osteoblast Growth in Quaternized Silicon Carbon Nitride Coatings for Dental Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5392. [PMID: 39517666 PMCID: PMC11547877 DOI: 10.3390/ma17215392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
The demand for dental implants has increased, establishing them as the standard of care for replacing missing teeth. Several factors contribute to the success or failure of an implant post-placement. Modifications to implant surfaces can enhance the biological interactions between bone cells and the implant, promoting better outcomes. Surface coatings have been developed to electrochemically alter implant surfaces, aiming to reduce healing time, enhance bone growth, and prevent bacterial adhesion. Quaternized silicon carbon nitride (QSiCN) is a novel material with unique electrochemical and biological properties. This study aimed to assess the influence of QSiCN, silicon carbide nitride (SiCN), and silicon carbide (SiC) coatings on the viability of osteoblast cells on nanostructured titanium surfaces. The experiment utilized thirty-two titanium sheets with anodized TiO2 nanotubes featuring nanotube diameters of 50 nm and 150 nm. These sheets were divided into eight groups (n = 4): QSiCN-coated 50 nm, QSiCN-coated 150 nm, SiCN-coated 50 nm, SiCN-coated 150 nm, SiC-coated 50 nm, SiC-coated 150 nm, non-coated 50 nm, and non-coated 150 nm. Preosteoblast MC3T3-E1 Subclone 4 cells (ATCC, USA) were used to evaluate osteoblast viability. After three days of cell growth, samples were assessed using scanning electron microscopy (SEM). The results indicated that QSiCN coatings significantly increased osteoblast proliferation (p < 0.005) compared to other groups. The enhanced cell adhesion observed with QSiCN coatings is likely due to the positive surface charge imparted by N+.
Collapse
Affiliation(s)
- Haochen Zhu
- Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL 32611, USA; (H.Z.); (C.-C.C.); (F.R.)
| | - Xinyi Xia
- Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL 32611, USA; (H.Z.); (C.-C.C.); (F.R.)
| | - Chao-Ching Chiang
- Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL 32611, USA; (H.Z.); (C.-C.C.); (F.R.)
| | - Rachael S. Watson Levings
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.S.W.L.); (S.C.G.)
| | - Justin Correa
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | - Steve C. Ghivizzani
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.S.W.L.); (S.C.G.)
| | - Fan Ren
- Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL 32611, USA; (H.Z.); (C.-C.C.); (F.R.)
| | - Dan Neal
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | | | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Ozzo S, Kheirallah M. The efficiency of two different synthetic bone graft materials on alveolar ridge preservation after tooth extraction: a split-mouth study. BMC Oral Health 2024; 24:1040. [PMID: 39232718 PMCID: PMC11375842 DOI: 10.1186/s12903-024-04803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Alveolar Bone loss occurs frequently during the first six months after tooth extraction. Various studies have proposed different methods to reduce as much as possible the atrophy of the alveolar ridge after tooth extraction. Filling the socket with biomaterials after extraction can reduce the resorption of the alveolar ridge. We compared the height of the alveolar process at the mesial and distal aspects of the extraction site and the resorption rate was calculated after the application of HA/β-TCP or synthetic co-polymer polyglycolic - polylactic acid PLGA mixed with blood to prevent socket resorption immediately and after tooth extraction. METHODS The study was conducted on 24 extraction sockets of impacted mandibular third molars bilaterally, vertically, and completely covered, with a thin bony layer. HA/β-TCP was inserted into 12 of the dental sockets immediately after extraction, and the synthetic polymer PLGA was inserted into 12 of the dental sockets. All sockets were covered completely with a full-thickness envelope flap. Follow-up was performed for one year after extraction, using radiographs and stents for the vertical alveolar ridge measurements. RESULTS The mean resorption rate in the HA/β-TCP and PLGA groups was ± 1.23 mm and ± 0.1 mm, respectively. A minimal alveolar bone height reduction of HA/β-TCP was observed after 9 months, the reduction showed a slight decrease to 0.93 mm, while this rate was 0.04 mm after 9 months in the PLGA group. Moreover, the bone height was maintained after three months, indicating a good HA/β-TCP graft performance in preserving alveolar bone (1.04 mm) while this rate was (0.04 mm) for PLGA. CONCLUSION The PLGA graft demonstrated adequate safety and efficacy in dental socket preservation following tooth extraction. However, HA/β-TCP causes greater resorption at augmented sites than PLGA, which clinicians should consider during treatment planning.
Collapse
Affiliation(s)
- Sameer Ozzo
- Maxillofacial Surgery Department, College of Dentistry, Arab University for Science & Technology, Hama, Syrian Arab Republic
| | - Mouetaz Kheirallah
- Maxillofacial Surgery Department, College of Dentistry, Arab University for Science & Technology, Hama, Syrian Arab Republic.
- Maxillofacial Surgery Department, College of Dentistry, Wadi International University, Homs, Syrian Arab Republic.
| |
Collapse
|
3
|
Luo Y. Toward Fully Automated Personalized Orthopedic Treatments: Innovations and Interdisciplinary Gaps. Bioengineering (Basel) 2024; 11:817. [PMID: 39199775 PMCID: PMC11351140 DOI: 10.3390/bioengineering11080817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Personalized orthopedic devices are increasingly favored for their potential to enhance long-term treatment success. Despite significant advancements across various disciplines, the seamless integration and full automation of personalized orthopedic treatments remain elusive. This paper identifies key interdisciplinary gaps in integrating and automating advanced technologies for personalized orthopedic treatment. It begins by outlining the standard clinical practices in orthopedic treatments and the extent of personalization achievable. The paper then explores recent innovations in artificial intelligence, biomaterials, genomic and proteomic analyses, lab-on-a-chip, medical imaging, image-based biomechanical finite element modeling, biomimicry, 3D printing and bioprinting, and implantable sensors, emphasizing their contributions to personalized treatments. Tentative strategies or solutions are proposed to address the interdisciplinary gaps by utilizing innovative technologies. The key findings highlight the need for the non-invasive quantitative assessment of bone quality, patient-specific biocompatibility, and device designs that address individual biological and mechanical conditions. This comprehensive review underscores the transformative potential of these technologies and the importance of multidisciplinary collaboration to integrate and automate them into a cohesive, intelligent system for personalized orthopedic treatments.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Biomedical Engineering (Graduate Program), University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Hemmerlein E, Vorndran E, Schmitt AM, Feichtner F, Waselau AC, Meyer-Lindenberg A. In Vivo Investigation of 3D-Printed Calcium Magnesium Phosphate Wedges in Partial Load Defects. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2136. [PMID: 38730942 PMCID: PMC11085615 DOI: 10.3390/ma17092136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Bone substitutes are ideally biocompatible, osteoconductive, degradable and defect-specific and provide mechanical stability. Magnesium phosphate cements (MPCs) offer high initial stability and faster degradation compared to the well-researched calcium phosphate cements (CPCs). Calcium magnesium phosphate cements (CMPCs) should combine the properties of both and have so far shown promising results. The present study aimed to investigate and compare the degradation and osseointegration behavior of 3D powder-printed wedges of CMPC and MPC in vivo. The wedges were post-treated with phosphoric acid (CMPC) and diammonium hydrogen phosphate (MPC) and implanted in a partially loaded defect model in the proximal rabbit tibia. The evaluation included clinical, in vivo µ-CT and X-ray examinations, histology, energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) for up to 30 weeks. SEM analysis revealed a zone of unreacted material in the MPC, indicating the need to optimize the manufacturing and post-treatment process. However, all materials showed excellent biocompatibility and mechanical stability. After 24 weeks, they were almost completely degraded. The slower degradation rate of the CMPC corresponded more favorably to the bone growth rate compared to the MPC. Due to the promising results of the CMPC in this study, it should be further investigated, for example in defect models with higher load.
Collapse
Affiliation(s)
- Elke Hemmerlein
- Clinic for Small Animal Surgery and Reproduction, Ludwig Maximilians University Munich, 80539 Munich, Germany (A.-C.W.); (A.M.-L.)
| | - Elke Vorndran
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, 97070 Würzburg, Germany (A.-M.S.)
| | - Anna-Maria Schmitt
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, 97070 Würzburg, Germany (A.-M.S.)
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig Maximilians University Munich, 80539 Munich, Germany (A.-C.W.); (A.M.-L.)
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig Maximilians University Munich, 80539 Munich, Germany (A.-C.W.); (A.M.-L.)
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig Maximilians University Munich, 80539 Munich, Germany (A.-C.W.); (A.M.-L.)
| |
Collapse
|
5
|
Siroros N, Merfort R, Migliorini F, Lecouturier S, Leven S, Praster M, Hildebrand F, Eschweiler J. Evaluation of an early-stage prototype polyurethane femoral head implant for hip arthroplasty. J Orthop 2024; 50:49-57. [PMID: 38162259 PMCID: PMC10755531 DOI: 10.1016/j.jor.2023.11.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Thi study evalautes a new bone-preserving femoral head cover that mimics the articular cartilage of the femoral head. Methods A specially developed polyurethane (PU) was evaluated in biocompatibility (cytotoxicity test) and mechanical response to tensile loading. In the cytotoxicity test, steam sterilized (SS) and ethylene oxide sterilized (EtO) PU samples were incubated separately in a cell culture medium. The seeded cell line MG-63 was then added to these sample-incubated cell culture mediums. One negative control group and one positive control group were also evaluated. The cells in each group were cultured for seven days before being quantified using the alamarBlue assay. In the mechanical test, the femoral head cover implants were separated into three groups of three samples. Each group represented a different implant insertion idea: direct insertion (uc sample) and another two insertion modes (is and ss samples) representing implants with enclosure mechanisms. The test consisted of distance-controlled cyclic tensile loadings followed by a failure test. Results The cytotoxicity test results show no significant difference in fluorescence intensity between the negative control, the three SS groups, and one EtO group (P > 0.05). However, the other two EtO groups exhibit significantly lower fluorescence intensity compared with the negative control (P < 0.05). In the mechanical test, the is samples have the highest cyclic loading force at 559.50 ± 51.41 N, while the uc samples exhibit the highest force in the failure test at 632.16 ± 50.55 N. There are no significant differences (P > 0.05) among the uc, is, and ss groups in terms of stiffness. Conclusion The cytotoxicity test and the mechanical experiment provide initial assessments of the proposed PU femoral head cover implant. The evaluation outcomes of this study could serve as a foundation for developing more functional design and testing methods, utilizing numerical simulations, and developing animal/clinical trials in the future.
Collapse
Affiliation(s)
- Nad Siroros
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Medical Center RWTH Aachen, Germany
- Biomedical Engineering Institute, Chiang Mai University, Thailand
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Thailand
| | - Ricarda Merfort
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Medical Center RWTH Aachen, Germany
| | - Filippo Migliorini
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Medical Center RWTH Aachen, Germany
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical University, 39100, Bolzano, Italy
| | - Sophie Lecouturier
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Medical Center RWTH Aachen, Germany
| | - Sophia Leven
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Medical Center RWTH Aachen, Germany
| | - Maximilian Praster
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Medical Center RWTH Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Medical Center RWTH Aachen, Germany
| | - Jörg Eschweiler
- Department of Trauma and Reconstructive Surgery, BG Hospital Bergmannstrost, Halle (Saale), Germany
| |
Collapse
|
6
|
Yin TJ, Steyl SK, Howard J, Carlson K, Jeyapalina S, Naleway SE. Freeze casting of hydroxyapatite-titania composites for bone substitutes. J Biomed Mater Res A 2024; 112:473-483. [PMID: 37962005 DOI: 10.1002/jbm.a.37645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Hydroxyapatite (HA) is commonly used as a bone substitute material, but it lacks mechanical strength when compared to native bone tissues. To improve the efficacy of HA as a bone substitute by improving the mechanical strength and cell growth attributes, porous composite scaffolds of HA and titania (HA-TiO2 ) were fabricated through a freeze-casting process. Three different compositions by weight percent, 25-75 HA-TiO2 , 50-50 HA-TiO2 , and 75-25 HA-TiO2 , were custom-made for testing. After sintering at 1250°C, these composite scaffolds exhibited improved mechanical properties compared to porous HA scaffolds. Substrate mixing was observed, which helped reduce crystal size and introduced new phases such as β-TCP and CaTiO3 , which also led to improved mechanical properties. The composition of 50-50 HA-TiO2 had the highest ultimate compressive strength of 3.12 ± 0.36 MPa and elastic modulus 63.29 ± 28.75 MPa. Human osteoblast cell proliferation assay also increased on all three different compositions when compared to porous HA at 14 days. These results highlight the potential of freeze casting composites for the fabrication of bone substitutes, which provide enhanced mechanical strength and biocompatibility while maintaining porosity.
Collapse
Affiliation(s)
- Tony J Yin
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Samantha K Steyl
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Jerry Howard
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Krista Carlson
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Sujee Jeyapalina
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Steven E Naleway
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Schröter L, Kaiser F, Küppers O, Stein S, Krüger B, Wohlfahrt P, Geroneit I, Stahlhut P, Gbureck U, Ignatius A. Improving bone defect healing using magnesium phosphate granules with tailored degradation characteristics. Dent Mater 2024; 40:508-519. [PMID: 38199893 DOI: 10.1016/j.dental.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVES Dental implant placement frequently requires preceding bone augmentation, for example, with hydroxyapatite (HA) or β-tricalcium phosphate (β-TCP) granules. However, HA is degraded very slowly in vivo and for β-TCP inconsistent degradation profiles from too rapid to rather slow are reported. To shorten the healing time before implant placement, rapidly resorbing synthetic materials are of great interest. In this study, we investigated the potential of magnesium phosphates in granular form as bone replacement materials. METHODS Spherical granules of four different materials were prepared via an emulsion process and investigated in trabecular bone defects in sheep: struvite (MgNH4PO4·6H2O), K-struvite (MgKPO4·6H2O), farringtonite (Mg3(PO4)2) and β-TCP. RESULTS All materials except K-struvite exhibited promising support of bone regeneration, biomechanical properties and degradation. Struvite and β-TCP granules degraded at a similar rate, with a relative granules area of 29% and 30% of the defect area 4 months after implantation, respectively, whereas 18% was found for farringtonite. Only the K-struvite granules degraded too rapidly, with a relative granules area of 2% remaining, resulting in initial fibrous tissue formation and intermediate impairment of biomechanical properties. SIGNIFICANCE We demonstrated that the magnesium phosphates struvite and farringtonite have a comparable or even improved degradation behavior in vivo compared to β-TCP. This emphasizes that magnesium phosphates may be a promising alternative to established calcium phosphate bone substitute materials.
Collapse
Affiliation(s)
- Lena Schröter
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstraße 14, D-89081 Ulm, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Oliver Küppers
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstraße 14, D-89081 Ulm, Germany
| | - Svenja Stein
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstraße 14, D-89081 Ulm, Germany
| | - Benjamin Krüger
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstraße 14, D-89081 Ulm, Germany
| | - Philipp Wohlfahrt
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Isabel Geroneit
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany.
| | - Anita Ignatius
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstraße 14, D-89081 Ulm, Germany
| |
Collapse
|
8
|
Kim K, Su Y, Kucine AJ, Cheng K, Zhu D. Guided Bone Regeneration Using Barrier Membrane in Dental Applications. ACS Biomater Sci Eng 2023; 9:5457-5478. [PMID: 37650638 DOI: 10.1021/acsbiomaterials.3c00690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Guided bone regeneration (GBR) is a widely used technique in preclinical and clinical studies due to its predictability. Its main purpose is to prevent the migration of soft tissue into the osseous wound space, while allowing osseous cells to migrate to the site. GBR is classified into two main categories: resorbable and non-resorbable membranes. Resorbable membranes do not require a second surgery but tend to have a short resorption period. Conversely, non-resorbable membranes maintain their mechanical strength and prevent collapse. However, they require removal and are susceptible to membrane exposure. GBR is often used with bone substitute graft materials to fill the defect space and protect the bone graft. The membrane can also undergo various modifications, such as surface modification and biological factor loading, to improve barrier functions and bone regeneration. In addition, bone regeneration is largely related to osteoimmunology, a new field that focuses on the interactions between bone and the immune system. Understanding these interactions can help in developing new treatments for bone diseases and injuries. Overall, GBR has the potential to be a powerful tool in promoting bone regeneration. Further research in this area could lead to advancements in the field of bone healing. This review will highlight resorbable and non-resorbable membranes with cellular responses during bone regeneration, provide insights into immunological response during bone remodeling, and discuss antibacterial features.
Collapse
Affiliation(s)
- Kakyung Kim
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Allan J Kucine
- Department of Oral and Maxillofacial Surgery, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
9
|
Čandrlić M, Tomas M, Matijević M, Kačarević ŽP, Bićanić M, Udiljak Ž, Butorac Prpić I, Miškulin I, Čandrlić S, Včev A. Regeneration of Buccal Wall Defects after Tooth Extraction with Biphasic Calcium Phosphate in Injectable Form vs. Bovine Xenograft: A Randomized Controlled Clinical Trial. Dent J (Basel) 2023; 11:223. [PMID: 37754343 PMCID: PMC10528832 DOI: 10.3390/dj11090223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Bone healing after tooth extraction may be affected by defects of the alveolus buccal wall, such as fenestrations and dehiscences. Therefore, to minimize dimensional changes it is advisable to perform alveolar ridge preservation after tooth extractions. Different biomaterials are used for this purpose. The aim of this study was to investigate the qualitative and quantitative histological changes in human biopsies taken after 6 months of healing of extraction sockets with buccal wall defects. For this purpose, the defects of 36 patients (18 per group) were treated with injectable biphasic calcium phosphate (I-BCP) or bovine xenograft (BX) after extraction. After six months of healing, biopsies were taken and proceeded to the histology laboratory. No evidence of an inflammatory response of the tissue was observed in the biopsies of either group, and the newly formed bone (NB) was in close contact with the remaining biomaterial (BM). The histomorphometric results showed that there was no statistically significant difference between the groups in the mean percentage of NB (p = 0.854), BM (p = 0.129), and soft tissue (p = 0.094). To conclude, both biomaterials exhibited osteoconductivity and biocompatibility and achieved satisfactory bone regeneration of buccal wall defects after tooth extraction.
Collapse
Affiliation(s)
- Marija Čandrlić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia; (M.Č.); (M.T.); (M.B.); (Ž.U.); (I.B.P.)
| | - Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia; (M.Č.); (M.T.); (M.B.); (Ž.U.); (I.B.P.)
| | - Marko Matijević
- Community Healthcare Center of Osijek-Baranja County, 31 000 Osijek, Croatia;
| | - Željka Perić Kačarević
- Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia;
- Botiss Biomaterials GmbH, 15806 Zossen, Germany
| | - Marijana Bićanić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia; (M.Č.); (M.T.); (M.B.); (Ž.U.); (I.B.P.)
| | - Žarko Udiljak
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia; (M.Č.); (M.T.); (M.B.); (Ž.U.); (I.B.P.)
| | - Ivana Butorac Prpić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia; (M.Č.); (M.T.); (M.B.); (Ž.U.); (I.B.P.)
| | - Ivan Miškulin
- Department of Public Health, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Slavko Čandrlić
- Department of Interdisciplinary Areas, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31 000 Osijek, Croatia;
| | - Aleksandar Včev
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31 000 Osijek, Croatia
| |
Collapse
|
10
|
Talebian S, Mendes B, Conniot J, Farajikhah S, Dehghani F, Li Z, Bitoque D, Silva G, Naficy S, Conde J, Wallace GG. Biopolymeric Coatings for Local Release of Therapeutics from Biomedical Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207603. [PMID: 36782094 PMCID: PMC10131825 DOI: 10.1002/advs.202207603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 06/18/2023]
Abstract
The deployment of structures that enable localized release of bioactive molecules can result in more efficacious treatment of disease and better integration of implantable bionic devices. The strategic design of a biopolymeric coating can be used to engineer the optimal release profile depending on the task at hand. As illustrative examples, here advances in delivery of drugs from bone, brain, ocular, and cardiovascular implants are reviewed. These areas are focused to highlight that both hard and soft tissue implants can benefit from controlled localized delivery. The composition of biopolymers used to achieve appropriate delivery to the selected tissue types, and their corresponding outcomes are brought to the fore. To conclude, key factors in designing drug-loaded biopolymeric coatings for biomedical implants are highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Bárbara Mendes
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - João Conniot
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Syamak Farajikhah
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Zhongyan Li
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Diogo Bitoque
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Gabriela Silva
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Sina Naficy
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - João Conde
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Gordon G. Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongSydneyNSW2522Australia
| |
Collapse
|
11
|
Fadeeva IS, Teterina AY, Minaychev VV, Senotov AS, Smirnov IV, Fadeev RS, Smirnova PV, Menukhov VO, Lomovskaya YV, Akatov VS, Barinov SM, Komlev VS. Biomimetic Remineralized Three-Dimensional Collagen Bone Matrices with an Enhanced Osteostimulating Effect. Biomimetics (Basel) 2023; 8:biomimetics8010091. [PMID: 36975321 PMCID: PMC10046016 DOI: 10.3390/biomimetics8010091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Bone grafts with a high potential for osseointegration, capable of providing a complete and effective regeneration of bone tissue, remain an urgent and unresolved issue. The presented work proposes an approach to develop composite biomimetic bone material for reconstructive surgery by deposition (remineralization) on the surface of high-purity, demineralized bone collagen matrix calcium phosphate layers. Histological and elemental analysis have shown reproduction of the bone tissue matrix architectonics, and a high-purity degree of the obtained collagen scaffolds; the cell culture and confocal microscopy have demonstrated a high biocompatibility of the materials obtained. Adsorption spectroscopy, scanning electron microscopy, microcomputed tomography (microCT) and infrared spectroscopy, and X-ray diffraction have proven the efficiency of the deposition of calcium phosphates on the surface of bone collagen scaffolds. Cell culture and confocal microscopy methods have shown high biocompatibility of both demineralized and remineralized bone matrices. In the model of heterotopic implantation in rats, at the term of seven weeks, an intensive intratrabecular infiltration of calcium phosphate precipitates, and a pronounced synthetic activity of osteoblast remodeling and rebuilding implanted materials, were revealed in remineralized bone collagen matrices in contrast to demineralized ones. Thus, remineralization of highly purified demineralized bone matrices significantly enhanced their osteostimulating ability. The data obtained are of interest for the creation of new highly effective osteoplastic materials for bone tissue regeneration and augmentation.
Collapse
Affiliation(s)
- Irina S. Fadeeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, Moscow 117334, Russia
- Correspondence: (I.S.F.); (A.Y.T.); (V.S.K.)
| | - Anastasia Yu. Teterina
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, Moscow 117334, Russia
- Correspondence: (I.S.F.); (A.Y.T.); (V.S.K.)
| | - Vladislav V. Minaychev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, Moscow 117334, Russia
| | - Anatoliy S. Senotov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Igor V. Smirnov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, Moscow 117334, Russia
| | - Roman S. Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Polina V. Smirnova
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, Moscow 117334, Russia
| | - Vladislav O. Menukhov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Yana V. Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir S. Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Sergey M. Barinov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, Moscow 117334, Russia
| | - Vladimir S. Komlev
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, Moscow 117334, Russia
- Correspondence: (I.S.F.); (A.Y.T.); (V.S.K.)
| |
Collapse
|
12
|
Mehdi-Sefiani H, Perez-Puyana V, Ostos FJ, Sepúlveda R, Romero A, Rafii-El-Idrissi Benhnia M, Chicardi E. Type-A Gelatin-Based Hydrogel Infiltration and Degradation in Titanium Foams as a Potential Method for Localised Drug Delivery. Polymers (Basel) 2023; 15:275. [PMID: 36679157 PMCID: PMC9866200 DOI: 10.3390/polym15020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
A gelatin-based hydrogel was infiltrated and degraded-released in two different titanium foams with porosities of 30 and 60 vol.% (Ti30 and Ti60 foams) and fabricated by the space holder technique to evaluate its potential to act as an innovative, alternative, and localised method to introduce both active pharmaceutical ingredients, such as antibiotics and non-steroidal anti-inflammatory drugs, and growth factors, such as morphogens, required after bone-tissue replacement surgeries. In addition, the kinetic behaviour was studied for both infiltration and degradation-release processes. A higher infiltration rate was observed in the Ti60 foam. The maximum infiltration hydrogel was achieved for the Ti30 and Ti60 foams after 120 min and 75 min, respectively. Further, both processes followed a Lucas-Washburn theoretical behaviour, typical for the infiltration of a fluid by capillarity in porous channels. Regarding the subsequent degradation-release process, both systems showed similar exponential degradation performance, with the full release from Ti60 foam (80 min), versus 45 min for Ti30, due to the greater interconnected porosity open to the surface of the Ti60 foam in comparison with the Ti30 foam. In addition, the optimal biocompatibility of the hydrogel was confirmed, with the total absence of cytotoxicity and the promotion of cell growth in the fibroblast cells evaluated.
Collapse
Affiliation(s)
- Hanaa Mehdi-Sefiani
- Department of Engineering and Materials Science and Transportation, University of Seville, 41012 Seville, Spain
| | - Víctor Perez-Puyana
- Department of Chemical Engineering, Faculty of Chemistry, University of Seville, 41012 Seville, Spain
| | - Francisco José Ostos
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41012 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41012 Seville, Spain
| | - Ranier Sepúlveda
- Department of Engineering and Materials Science and Transportation, University of Seville, 41012 Seville, Spain
| | - Alberto Romero
- Department of Chemical Engineering, Faculty of Chemistry, University of Seville, 41012 Seville, Spain
| | - Mohammed Rafii-El-Idrissi Benhnia
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41012 Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41012 Seville, Spain
| | - Ernesto Chicardi
- Department of Engineering and Materials Science and Transportation, University of Seville, 41012 Seville, Spain
| |
Collapse
|
13
|
Demir-Oğuz Ö, Boccaccini AR, Loca D. Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring? Bioact Mater 2023; 19:217-236. [PMID: 35510175 PMCID: PMC9048153 DOI: 10.1016/j.bioactmat.2022.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Out of the wide range of calcium phosphate (CaP) biomaterials, calcium phosphate bone cements (CPCs) have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivity, osteoconductivity, injectability, hardening ability through a low-temperature setting reaction and moldability. Thereafter numerous researches have been performed to enhance the properties of CPCs. Nonetheless, low mechanical performance of CPCs limits their clinical application in load bearing regions of bone. Also, the in vivo resorption and replacement of CPC with new bone tissue is still controversial, thus further improvements of high clinical importance are required. Bioactive glasses (BGs) are biocompatible and able to bond to bone, stimulating new bone growth while dissolving over time. In the last decades extensive research has been performed analyzing the role of BGs in combination with different CaPs. Thus, the focal point of this review paper is to summarize the available research data on how injectable CPC properties could be improved or affected by the addition of BG as a secondary powder phase. It was found that despite the variances of setting time and compressive strength results, desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs. The published data also revealed that the degradation rate of CPCs is significantly improved by BG addition. Moreover, the presence of BG in CPCs improves the in vitro osteogenic differentiation and cell response as well as the tissue-material interaction in vivo. Properties of injectable calcium phosphate bone cements and bioactive glasses are discussed. Benefits that BG addition to CPC could bring are highlighted. Desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs. The presence of BG in CPC advances in vitro and in vivo response of the composites. Future research direction of BG containing injectable CPC composites are provided.
Collapse
|
14
|
Nanohydroxyapatite/Titanate Nanotube Composites for Bone Tissue Regeneration. J Funct Biomater 2022; 13:jfb13040306. [PMID: 36547566 PMCID: PMC9786793 DOI: 10.3390/jfb13040306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Strategies for the production of new nanocomposites that promote bone tissue regeneration are important, particularly those that enhance the osteoinduction of hydroxyapatite in situ. Here, we studied and report the synthesis of nanohydroxyapatite and titanate nanotube (nHAp/TiNT) composites formulated at different concentrations (1, 2, 3, and 10 wt % TiNT) by means of a wet aqueous chemical reaction. The addition of TiNT affects the morphology of the nanocomposites, decreasing the average crystallite size from 54 nm (nHAp) to 34 nm (nHAp/TiNT10%), while confirming its interaction with the nanocomposite. The crystallinity index (CI) calculated by Raman spectroscopy and XRD showed that the values decreased according to the increase in TiNT concentration, which confirmed their addition to the structure of the nanocomposite. SEM images showed the presence of TiNTs in the nanocomposite. We further verified the potential cytotoxicity of murine fibroblast cell line L929, revealing that there was no remarkable cell death at any of the concentrations tested. In vivo regenerative activity was performed using oophorectomized animal (rat) models organized into seven groups containing five animals each over two experimental periods (15 and 30 days), with bone regeneration occurring in all groups tested within 30 days; however, the nHAp/TiNT10% group showed statistically greater tissue repair, compared to the untreated control group. Thus, the results of this study demonstrate that the presently formulated nHAp/TiNT nanocomposites are promising for numerous improved bone tissue regeneration applications.
Collapse
|
15
|
Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022; 10:1051678. [PMID: 36518978 PMCID: PMC9742444 DOI: 10.3389/fchem.2022.1051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Over the past few decades, various bioactive material-based scaffolds were investigated and researchers across the globe are actively involved in establishing a potential state-of-the-art for bone tissue engineering applications, wherein several disciplines like clinical medicine, materials science, and biotechnology are involved. The present review article's main aim is to focus on repairing and restoring bone tissue defects by enhancing the bioactivity of fabricated bone tissue scaffolds and providing a suitable microenvironment for the bone cells to fasten the healing process. It deals with the various surface modification strategies and smart composite materials development that are involved in the treatment of bone tissue defects. Orthopaedic researchers and clinicians constantly focus on developing strategies that can naturally imitate not only the bone tissue architecture but also its functional properties to modulate cellular behaviour to facilitate bridging, callus formation and osteogenesis at critical bone defects. This review summarizes the currently available polymeric composite matrices and the methods to improve their bioactivity for bone tissue regeneration effectively.
Collapse
Affiliation(s)
- Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Soumya Katiyar
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Darshna
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Aditya Anand
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | | |
Collapse
|
16
|
Calderon PDS, Rocha FRG, Xia X, Camargo SEA, Pascoal ALDB, Chiu CW, Ren F, Ghivizzani S, Esquivel-Upshaw JF. Effect of Silicon Carbide Coating on Osteoblast Mineralization of Anodized Titanium Surfaces. J Funct Biomater 2022; 13:247. [PMID: 36412888 PMCID: PMC9680417 DOI: 10.3390/jfb13040247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to evaluate the influence of the titanium nanotube diameter and the effect of silicon carbide (SiC) coating on the proliferation and mineralization of pre-osteoblasts on titanium nanostructured surfaces. Anodized titanium sheets with nanotube diameters of 50 and 100 nm were used. The following four groups were tested in the study: (1) non-coated 50 nm nanotubes; (2) SiC-coated 50 nm titanium nanotubes; (3) non-coated 100 nm nanotubes and (4) SiC-coated 100 nm nanotubes. The biocompatibility and cytotoxicity of pre-osteoblasts were evaluated using a CellTiter-BlueCell Viability assay after 1, 2, and 3 days. After 3 days, cells attached to the surface were observed by SEM. Pre-osteoblast mineralization was determined using Alizarin-Red staining solution after 21 days of cultivation. Data were analyzed by a Kruskal−Wallis test at a p-value of 0.05. The results evidenced biocompatibility and non-cytotoxicity of both 50 and 100 nm diameter coated and non-coated surfaces after 1, 2 and 3 days. The statistical analysis indicates a statistically significant higher cell growth at 3 days (p < 0.05). SEM images after 3 days demonstrated flattened-shaped cells without any noticeable difference in the phenotypes between different diameters or surface treatments. After 21 days of induced osteogenic differentiation, the statistical analysis indicates significantly higher osteoblast calcification on coated groups of both diameters when compared with non-coated groups (p < 0.05). Based on these results, we can conclude that the titanium nanotube diameter did not play any role on cell viability or mineralization of pre-osteoblasts on SiC-coated or non-coated titanium nanotube sheets. The SiC coating demonstrated biocompatibility and non-cytotoxicity and contributed to an increase in osteoblast mineralization on titanium nanostructured surfaces when compared to non-coated groups.
Collapse
Affiliation(s)
| | | | - Xinyi Xia
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Samira Esteves Afonso Camargo
- Department of Comprehensive Oral Healthy, Adams Dental School, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Chan-Wen Chiu
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Steve Ghivizzani
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL 32607, USA
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Wight C, Phillips DM, Whyne C. Wear reduction of orthopaedic implants through Cryogenic Thermal Cycling. J Mech Behav Biomed Mater 2022; 135:105420. [DOI: 10.1016/j.jmbbm.2022.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 10/31/2022]
|
18
|
Sun R, Bai L, Yang Y, Ding Y, Zhuang J, Cui J. Nervous System-Driven Osseointegration. Int J Mol Sci 2022; 23:ijms23168893. [PMID: 36012155 PMCID: PMC9408825 DOI: 10.3390/ijms23168893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Implants are essential therapeutic tools for treating bone fractures and joint replacements. Despite the in-depth study of osseointegration for more than fifty years, poor osseointegration caused by aseptic loosening remains one of the leading causes of late implant failures. Osseointegration is a highly sophisticated and spatiotemporal process in vivo involving the immune response, angiogenesis, and osteogenesis. It has been unraveled that the nervous system plays a pivotal role in skeletal health via manipulating neurotrophins, neuropeptides, and nerve cells. Herein, the research related to nervous system-driven osseointegration was systematically analyzed and reviewed, aiming to demonstrate the prominent role of neuromodulation in osseointegration. Additionally, it is indicated that the implant design considering the role of neuromodulation might be a promising way to prevent aseptic loosening.
Collapse
Affiliation(s)
- Ruoyue Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanshu Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyuan Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| |
Collapse
|
19
|
Augustin J, Feichtner F, Waselau AC, Julmi S, Klose C, Wriggers P, Maier HJ, Meyer-Lindenberg A. Effect of pore size on tissue ingrowth and osteoconductivity in biodegradable Mg alloy scaffolds. J Appl Biomater Funct Mater 2022; 20:22808000221078168. [PMID: 35189733 DOI: 10.1177/22808000221078168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Magnesium has mechanical properties similar to those of bone and is being considered as a potential bone substitute. In the present study, two different pore sized scaffolds of the Mg alloy LAE442, coated with magnesium fluoride, were compared. The scaffolds had interconnecting pores of either 400 (p400) or 500 µm (p500). ß-TCP served as control. Ten scaffolds per time group (6, 12, 24, 36 weeks) were implanted in the trochanter major of rabbits. Histological analyses, µCT scans, and SEM/EDX were performed. The scaffolds showed slow volume decreases (week 36 p400: 9.9%; p500: 7.5%), which were accompanied by uncritical gas releases. In contrast, ß-TCP showed accelerated resorption (78.5%) and significantly more new bone inside (18.19 ± 1.47 mm3). Bone fragments grew into p400 (0.17 ± 0.19 mm3) and p500 (0.36 ± 0.26 mm3), reaching the centrally located pores within p500 more frequently. In particular, p400 displayed a more uneven and progressively larger surface area (week 36 p400: 253.22 ± 19.44; p500: 219.19 ± 4.76 mm2). A better osseointegration of p500 was indicated by significantly more trabecular contacts and a 200 µm wide bone matrix being in the process of mineralization and in permanent contact with the scaffold. The number of macrophages and foreign body giant cells were at an acceptable level concerning resorbable biomaterials. In terms of ingrown bone and integrative properties, LAE442 scaffolds could not achieve the results of ß-TCP. In this long-term study, p500 appears to be a biocompatible and more osteoconductive pore size for the Mg alloy LAE442.
Collapse
Affiliation(s)
- Julia Augustin
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Garbsen, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
20
|
Divakarla SK, Das T, Chatterjee C, Ionescu M, Pastuovic Z, Jang JH, Al-Khoury H, Loppnow H, Yamaguchi S, Groth T, Chrzanowski W. Antimicrobial and Anti-inflammatory Gallium-Defensin Surface Coatings for Implantable Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9685-9696. [PMID: 35133137 DOI: 10.1021/acsami.1c19579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Emerging and re-emerging infections are a global threat driven by the development of antimicrobial resistance due to overuse of antimicrobial agents and poor infection control practices. Implantable devices are particularly susceptible to such infections due to the formation of microbial biofilms. Furthermore, the introduction of implants into the body often results in inflammation and foreign body reactions. The antimicrobial and anti-inflammatory properties of gallium (Ga) have been recognized but not yet utilized effectively to improve implantable device integration. Furthermore, defensin (De, hBD-1) has potent antimicrobial activity in vivo as part of the innate immune system; however, this has not been demonstrated as successfully when used in vitro. Here, we combined Ga and De to impart antimicrobial activity and anti-inflammatory properties to polymer-based implantable devices. We fabricated polylactic acid films, which were modified using Ga implantation and subsequently functionalized with De. Ga-ion implantation increased surface roughness and increased stiffness. Ga implantation and defensin immobilization both independently and synergistically introduced antimicrobial activity to the surfaces, significantly reducing total live bacterial biomass. We demonstrated, for the first time, that the antimicrobial effects of De were unlocked by its surface immobilization. Ga implantation of the surface also resulted in reduced foreign body giant cell formation and expression of proinflammatory cytokine IL-1β. Cumulatively, the treated surfaces were able to kill bacteria and reduce inflammation in comparison to the untreated control. These innovative surfaces have the potential to prevent biofilm formation without inducing cellular toxicity or inflammation, which is highly desired for implantable device integration.
Collapse
Affiliation(s)
- Shiva Kamini Divakarla
- Sydney Nano, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney 2006, Australia
| | - Theerthankar Das
- Infection, Immunity and Inflammation, Charles Perkins Centre, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Chandralekha Chatterjee
- Biomedical Materials Group, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Mihail Ionescu
- Centre for Accelerator Science, Australian Nuclear Science and Technology Organisation, 1 New Illawarra Rd, Lucas Heights 2234, Australia
| | - Zeljko Pastuovic
- Centre for Accelerator Science, Australian Nuclear Science and Technology Organisation, 1 New Illawarra Rd, Lucas Heights 2234, Australia
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Nam-gu, Incheon 22212, Korea
| | - Hala Al-Khoury
- Biomedical Materials Group, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Harald Loppnow
- Internal Medicine III, Department of Internal Medicine, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Wojciech Chrzanowski
- Sydney Nano, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
21
|
Schmidt M, Waselau AC, Feichtner F, Julmi S, Klose C, Maier HJ, Wriggers P, Meyer-Lindenberg A. In vivo investigation of open-pored magnesium scaffolds LAE442 with different coatings in an open wedge defect. J Appl Biomater Funct Mater 2022; 20:22808000221142679. [PMID: 36545893 DOI: 10.1177/22808000221142679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The magnesium alloy LAE442 showed promising results as a bone substitute in numerous studies in non-weight bearing bone defects. This study aimed to investigate the in vivo behavior of wedge-shaped open-pored LAE442 scaffolds modified with two different coatings (magnesium fluoride (MgF2, group 1)) or magnesium fluoride/calcium phosphate (MgF2/CaP, group 2)) in a partial weight-bearing rabbit tibia defect model. The implantation of the scaffolds was performed as an open wedge corrective osteotomy in the tibia of 40 rabbits and followed for observation periods of 6, 12, 24, and 36 weeks. Radiological and microcomputed tomographic examinations were performed in vivo. X-ray microscopic, histological, histomorphometric, and SEM/EDS analyses were performed at the end of each time period. µCT measurements and X-ray microscopy showed a slight decrease in volume and density of the scaffolds of both coatings. Histologically, endosteal and periosteal callus formation with good bridging and stabilization of the osteotomy gap and ingrowth of bone into the scaffold was seen. The MgF2 coating favored better bridging of the osteotomy gap and more bone-scaffold contacts, especially at later examination time points. Overall, the scaffolds of both coatings met the requirement to withstand the loads after an open wedge corrective osteotomy of the proximal rabbit tibia. However, in addition to the inhomogeneous degradation behavior of individual scaffolds, an accumulation of gas appeared, so the scaffold material should be revised again regarding size dimension and composition.
Collapse
Affiliation(s)
- Marlene Schmidt
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anja-Christina Waselau
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Feichtner
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
22
|
Huzum B, Puha B, Necoara RM, Gheorghevici S, Puha G, Filip A, Sirbu PD, Alexa O. Biocompatibility assessment of biomaterials used in orthopedic devices: An overview (Review). Exp Ther Med 2021; 22:1315. [PMID: 34630669 PMCID: PMC8461597 DOI: 10.3892/etm.2021.10750] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022] Open
Abstract
Biocompatibility is one of the mandatory requirements for the clinical use of biomaterials in orthopedics. It refers to the ability of a biomaterial to perform its function without eliciting toxic or injurious effects on biological systems but producing an appropriate host response in a specific case. Today, the biocompatibility concept includes not only bio-inertia, but also biofunctionality and biostability. High biocompatibility and functional properties are highly desirable for new biomaterials. The chemical, mechanical, structural properties of biomaterials, their interaction with biological environment or even the methodology of assessment can influence the biocompatibility. The biological evaluation of biomaterials includes a broad spectrum of in vitro and in vivo tests related to the cytocompatibility, genotoxicity, sensitization, irritation, acute and chronic toxicity, hemocompatibility, reproductive and developmental toxicitity, carcinogenicity, implantation and degradation as specified in different international standards. A brief review of the main assays used in the biocompatibility testing of orthopedic biomaterials is presented. In addition, their main biocompatibility issues are overviewed.
Collapse
Affiliation(s)
- Bogdan Huzum
- Department of Physiology, Faculty of Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania.,Orthopaedic and Traumatology Clinic, 'Sf. Spiridon' Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Bogdan Puha
- Orthopaedic and Traumatology Clinic, 'Sf. Spiridon' Clinical Emergency Hospital, 700111 Iasi, Romania.,Department of Orthopaedic and Traumatology, Faculty of Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Riana Maria Necoara
- Radiology-Imaging Clinic, 'Sf. Spiridon' Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Stefan Gheorghevici
- Orthopaedic and Traumatology Clinic, 'Sf. Spiridon' Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Gabriela Puha
- Orthopaedic and Traumatology Clinic, 'Sf. Spiridon' Clinical Emergency Hospital, 700111 Iasi, Romania.,Department of Internal Medicine and Toxicology, Faculty of Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Alexandru Filip
- Department of Orthopaedic and Traumatology, Faculty of Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Paul Dan Sirbu
- Department of Orthopaedic and Traumatology, Faculty of Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Ovidiu Alexa
- Orthopaedic and Traumatology Clinic, 'Sf. Spiridon' Clinical Emergency Hospital, 700111 Iasi, Romania.,Department of Orthopaedic and Traumatology, Faculty of Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
23
|
Liu W, Yu M, Chen F, Wang L, Ye C, Chen Q, Zhu Q, Xie D, Shao M, Yang L. A novel delivery nanobiotechnology: engineered miR-181b exosomes improved osteointegration by regulating macrophage polarization. J Nanobiotechnology 2021; 19:269. [PMID: 34493305 PMCID: PMC8424816 DOI: 10.1186/s12951-021-01015-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Background Many patients suffer from implant loosening after the implantation of titanium alloy caused by immune response to the foreign bodies and this could inhibit the following osteogenesis, which could possibly give rise to aseptic loosening and poor osteointegration while there is currently no appropriate solution in clinical practice. Exosome (Exo) carrying miRNA has been proven to be a suitable nanocarrier for solving this problem. In this study, we explored whether exosomes overexpressing miR-181b (Exo-181b) could exert beneficial effect on promoting M2 macrophage polarization, thus inhibiting inflammation as well as promoting osteogenesis and elaborated the underlying mechanism in vitro. Furthermore, we aimed to find whether Exo-181b could enhance osteointegration. Results In vitro, we firstly verified that Exo-181b significantly enhanced M2 polarization and inhibited inflammation by suppressing PRKCD and activating p-AKT. Then, in vivo, we verified that Exo-181b enhanced M2 polarization, reduced the inflammatory response and enhanced osteointegration. Also, we verified that the enhanced M2 polarization could indirectly promote the migration and osteogenic differentiation by secreting VEGF and BMP-2 in vitro. Conclusions Exo-181b could suppress inflammatory response by promoting M2 polarization via activating PRKCD/AKT signaling pathway, which further promoting osteogenesis in vitro and promote osteointegration in vivo. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01015-y.
Collapse
Affiliation(s)
- Wei Liu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Muyu Yu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Medical Centre of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Clinic Centre of Metabolism Disease, Shanghai Institute for Diabetes, Shanghai, China
| | - Feng Chen
- Department of Orthopaedics, Shanghai Fengxian Central Hospital, Branch of the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 201400, People's Republic of China.,College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Longqing Wang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Cheng Ye
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Qing Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Qi Zhu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Dong Xie
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Mingzhe Shao
- Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China.
| |
Collapse
|
24
|
Pereira AR, Lipphaus A, Ergin M, Salehi S, Gehweiler D, Rudert M, Hansmann J, Herrmann M. Modeling of the Human Bone Environment: Mechanical Stimuli Guide Mesenchymal Stem Cell-Extracellular Matrix Interactions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4431. [PMID: 34442954 PMCID: PMC8398413 DOI: 10.3390/ma14164431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
In bone tissue engineering, the design of in vitro models able to recreate both the chemical composition, the structural architecture, and the overall mechanical environment of the native tissue is still often neglected. In this study, we apply a bioreactor system where human bone-marrow hMSCs are seeded in human femoral head-derived decellularized bone scaffolds and subjected to dynamic culture, i.e., shear stress induced by continuous cell culture medium perfusion at 1.7 mL/min flow rate and compressive stress by 10% uniaxial load at 1 Hz for 1 h per day. In silico modeling revealed that continuous medium flow generates a mean shear stress of 8.5 mPa sensed by hMSCs seeded on 3D bone scaffolds. Experimentally, both dynamic conditions improved cell repopulation within the scaffold and boosted ECM production compared with static controls. Early response of hMSCs to mechanical stimuli comprises evident cell shape changes and stronger integrin-mediated adhesion to the matrix. Stress-induced Col6 and SPP1 gene expression suggests an early hMSC commitment towards osteogenic lineage independent of Runx2 signaling. This study provides a foundation for exploring the early effects of external mechanical stimuli on hMSC behavior in a biologically meaningful in vitro environment, opening new opportunities to study bone development, remodeling, and pathologies.
Collapse
Affiliation(s)
- Ana Rita Pereira
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Andreas Lipphaus
- Biomechanics Research Group, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Mert Ergin
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Department of Biomaterials, Center of Energy Technology und Materials Science (TAO), University of Bayreuth, 95447 Bayreuth, Germany;
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science (TAO), University of Bayreuth, 95447 Bayreuth, Germany;
| | | | - Maximilian Rudert
- Department of Orthopedic Surgery, Koenig-Ludwig-Haus, University of Wuerzburg, 97074 Wuerzburg, Germany;
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research, Translational Center for Regenerative Therapies, 97082 Wuerzburg, Germany;
| | - Marietta Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97074 Wuerzburg, Germany
| |
Collapse
|
25
|
Yin TJ, Jeyapalina S, Naleway SE. Characterization of porous fluorohydroxyapatite bone-scaffolds fabricated using freeze casting. J Mech Behav Biomed Mater 2021; 123:104717. [PMID: 34352488 DOI: 10.1016/j.jmbbm.2021.104717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Abstract
With the increasing demand for orthopedic and dental reconstruction surgeries, there comes a shortage of viable bone substitutes. This study was therefore designed to assess the efficacy of porous fluorohydroxyapatite (FHA) as a potential bone substitute. For this, porous FHA scaffolds were fabricated using the freeze casting technique. They were then sintered at 1250, 1350 and, 1450 °C, and microstructural, mechanical, and in vitro properties were analyzed. The microstructure analyses revealed the porosity remained constant within the temperature range. However, the pore size decreased with increasing sintering temperature. The greatest compressive strength and elastic modulus were obtained at 1450 °C, which were 13.5 ± 4.0 MPa and 379 ± 182 MPa, respectively. These are comparable values to human trabecular bone and other porous scaffolds made using hydroxyapatite. This analysis has thus helped to attain an understanding of the mechanical and material properties of freeze-cast FHA scaffolds that have not been presented before. In vitro studies revealed an increasing rate of human osteoblast cell proliferation on freeze-cast FHA scaffolds with increasing sintering temperature, suggesting improved osteogenic properties. Additionally, osteoblasts cells were also shown to proliferate into the interior pores of all freeze-cast FHA scaffolds. These results indicate the potential of porous FHA scaffolds fabricated using the freeze-casting technique to be utilized clinically as bone substitutes.
Collapse
Affiliation(s)
- Tony J Yin
- Department of Mechanical Engineering, University of Utah, USA
| | - Sujee Jeyapalina
- Division of Plastic Surgery, Department of Surgery, University of Utah Health, USA; Research, Department of Veterans Affairs Salt Lake City Health Care System, USA
| | | |
Collapse
|
26
|
Coppola GA, Onsea J, Moriarty TF, Nehrbass D, Constant C, Zeiter S, Aktan MK, Braem A, Van der Eycken EV, Steenackers HP, Metsemakers WJ. An Improved 2-Aminoimidazole Based Anti-Biofilm Coating for Orthopedic Implants: Activity, Stability, and in vivo Biocompatibility. Front Microbiol 2021; 12:658521. [PMID: 33967997 PMCID: PMC8097006 DOI: 10.3389/fmicb.2021.658521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
Orthopedic device-related infections remain a serious challenge to treat. Central to these infections are bacterial biofilms that form on the orthopedic implant itself. These biofilms shield the bacteria from the host immune system and most common antibiotic drugs, which renders them essentially antibiotic-tolerant. There is an urgent clinical need for novel strategies to prevent these serious infections that do not involve conventional antibiotics. Recently, a novel antibiofilm coating for titanium surfaces was developed based on 5-(4-bromophenyl)-N-cyclopentyl-1-octyl-1H-imidazol-2-amine as an active biofilm inhibitor. In the current study we present an optimized coating protocol that allowed for a 5-fold higher load of this active compound, whilst shortening the manufacturing process. When applied to titanium disks, the newly optimized coating was resilient to the most common sterilization procedures and it induced a 1 log reduction in biofilm cells of a clinical Staphylococcus aureus isolate (JAR060131) in vitro, without affecting the planktonic phase. Moreover, the antibiofilm effect of the coating in combination with the antibiotic cefuroxime was higher than cefuroxime treatment alone. Furthermore, the coating was successfully applied to a human-scale fracture fixation device resulting in a loading that was comparable to the titanium disk model. Finally, an in vivo biocompatibility and healing study in a rabbit osteotomy model indicated that these coated implants did not negatively affect fracture healing or osteointegration. These findings put our technology one step closer to clinical trials, confirming its potential in fighting orthopedic infections without compromising healing.
Collapse
Affiliation(s)
- Guglielmo Attilio Coppola
- KU Leuven - Department of Chemistry, Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven, Belgium.,KU Leuven - Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), Leuven, Belgium
| | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.,KU Leuven - Department of Development and Regeneration, Leuven, Belgium
| | | | | | | | | | - Merve Kübra Aktan
- KU Leuven - Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering Research Group, Leuven, Belgium
| | - Annabel Braem
- KU Leuven - Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering Research Group, Leuven, Belgium
| | - Erik V Van der Eycken
- KU Leuven - Department of Chemistry, Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven, Belgium.,Peoples' Friendship University of Russia, Moscow, Russia
| | - Hans P Steenackers
- KU Leuven - Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), Leuven, Belgium
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.,KU Leuven - Department of Development and Regeneration, Leuven, Belgium
| |
Collapse
|
27
|
Kleer-Reiter N, Julmi S, Feichtner F, Waselau AC, Klose C, Wriggers P, Maier HJ, Meyer-Lindenberg A. Biocompatibility and degradation of the open-pored magnesium scaffolds LAE442 and La2. Biomed Mater 2021; 16. [PMID: 33827052 DOI: 10.1088/1748-605x/abf5c5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/07/2021] [Indexed: 11/11/2022]
Abstract
Porous magnesium implants are of particular interest for application as resorbable bone substitutes, due to their mechanical strength and a Young's modulus similar to bone. The objective of the present study was to compare the biocompatibility, bone and tissue ingrowth, and the degradation behaviour of scaffolds made from the magnesium alloys LAE442 (n= 40) and Mg-La2 (n= 40)in vivo. For this purpose, cylindrical magnesium scaffolds (diameter 4 mm, length 5 mm) with defined, interconnecting pores were produced by investment casting and coated with MgF2. The scaffolds were inserted into the cancellous part of the greater trochanter ossis femoris of rabbits. After implantation periods of 6, 12, 24 and 36 weeks, the bone-scaffold compounds were evaluated usingex vivo µCT80 images, histological examinations and energy dispersive x-ray spectroscopy analysis. The La2 scaffolds showed inhomogeneous and rapid degradation, with inferior osseointegration as compared to LAE442. For the early observation times, no bone and tissue could be observed in the pores of La2. Furthermore, the excessive amount of foreign body cells and fibrous capsule formation indicates insufficient biocompatibility of the La2 scaffolds. In contrast, the LAE442 scaffolds showed slow degradation and better osseointegration. Good vascularization, a moderate cellular response, bone and osteoid-like bone matrix at all implantation periods were observed in the pores of LAE442. In summary, porous LAE442 showed promise as a degradable scaffold for bone defect repair, based on its degradation behaviour and biocompatibility. However, further studies are needed to show it would have the necessary mechanical properties required over time for weight-bearing bone defects.
Collapse
Affiliation(s)
- N Kleer-Reiter
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| | - S Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, Garbsen 30823, Germany
| | - F Feichtner
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| | - A-C Waselau
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| | - C Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, Garbsen 30823, Germany
| | - P Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstr. 11, Hannover 30167, Germany
| | - H J Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, Garbsen 30823, Germany
| | - A Meyer-Lindenberg
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| |
Collapse
|
28
|
Gurau C, Gurau G, Mitran V, Dan A, Cimpean A. The Influence of Severe Plastic Deformation on Microstructure and In Vitro Biocompatibility of the New Ti-Nb-Zr-Ta-Fe-O Alloy Composition. MATERIALS 2020; 13:ma13214853. [PMID: 33138165 PMCID: PMC7663053 DOI: 10.3390/ma13214853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
In this work, severe plastic deformation (SPD) of the newly designed Ti-Nb-Zr-Ta-Fe-O GUM metal was successfully conducted at room temperature using high speed high pressure torsion (HSHPT) followed by cold rolling (CR) to exploit the suitability of the processed alloy for bone staples. The Ti-31.5Nb-3.1Zr-3.1Ta-0.9Fe-0.16O GUM alloy was fabricated in a levitation melting furnace using a cold crucible and argon protective atmosphere. The as-cast specimens were subjected to SPD, specifically HSHPT, and then processed by the CR method to take the advantages of both grain refinement and larger dimensions. This approach creates the opportunity to obtain temporary orthopedic implants nanostructured by SPD. The changes induced by HSHPT technology from the coarse dendrite directly into the ultrafine grained structure were examined by optical microscopy, scanning electron microscopy and X-ray diffraction. The structural investigations showed that by increasing the deformation, a high density of grain boundaries is accumulated, leading gradually to fine grain size. In addition, the in vitro biocompatibility studies were conducted in parallel on the GUM alloy specimens in the as-cast state, and after HSHPT- and HSHPT+CR- processing. For comparative purposes, in vitro behavior of the bone-derived MC3T3-E1 cells on the commercially pure titanium has also been investigated regarding the viability and proliferation, morphology and osteogenic differentiation. The results obtained support the appropriateness of the HSHPT technology for developing compression staples able to ensure a better fixation of bone fragments.
Collapse
Affiliation(s)
- Carmela Gurau
- Faculty of Engineering, “Dunărea de Jos” University of Galati, Domnească Street 47, 800008 Galati, Romania; (C.G.); (G.G.)
| | - Gheorghe Gurau
- Faculty of Engineering, “Dunărea de Jos” University of Galati, Domnească Street 47, 800008 Galati, Romania; (C.G.); (G.G.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Alexandru Dan
- R&D Consultanta si Servicii, 45 Maria Ghiculeasa, 020943 Bucharest, Romania;
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
- Correspondence: ; Tel.: +40-21-318-1575 (ext. 106)
| |
Collapse
|
29
|
Zhuang Z, John JV, Liao H, Luo J, Rubery P, Mesfin A, Boda SK, Xie J, Zhang X. Periosteum Mimetic Coating on Structural Bone Allografts via Electrospray Deposition Enhances Repair and Reconstruction of Segmental Defects. ACS Biomater Sci Eng 2020; 6:6241-6252. [PMID: 33449646 DOI: 10.1021/acsbiomaterials.0c00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structural bone allograft transplantation remains one of the common strategies for repair and reconstruction of large bone defects. Due to the loss of periosteum that covers the outer surface of the cortical bone, the healing and incorporation of allografts is extremely slow and limited. To enhance the biological performance of allografts, herein, we report a novel and simple approach for engineering a periosteum mimetic coating on the surface of structural bone allografts via polymer-mediated electrospray deposition. This approach enables the coating on allografts with precisely controlled composition and thickness. In addition, the periosteum mimetic coating can be tailored to achieve desired drug release profiles by making use of an appropriate biodegradable polymer or polymer blend. The efficacy study in a murine segmental femoral bone defect model demonstrates that the allograft coating composed of poly(lactic-co-glycolic acid) and bone morphogenetic protein-2 mimicking peptide significantly improves allograft healing as evidenced by decreased fibrotic tissue formation, increased periosteal bone formation, and enhanced osseointegration. Taken together, this study provides a platform technology for engineering a periosteum mimetic coating which can greatly promote bone allograft healing. This technology could eventually result in an off-the-shelf and multifunctional structural bone allograft for highly effective repair and reconstruction of large segmental bone defects. The technology can also be used to ameliorate the performance of other medical implants by modifying their surfaces.
Collapse
Affiliation(s)
- Zhou Zhuang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14621, United States
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Haofu Liao
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Jiebo Luo
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Paul Rubery
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Addisu Mesfin
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| |
Collapse
|
30
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
31
|
Abstract
The topic of titanium alloys for dental implants has been reviewed. The basis of the review was a search using PubMed, with the large number of references identified being reduced to a manageable number by concentrating on more recent articles and reports of biocompatibility and of implant durability. Implants made mainly from titanium have been used for the fabrication of dental implants since around 1981. The main alloys are so-called commercially pure titanium (cpTi) and Ti-6Al-4V, both of which give clinical success rates of up to 99% at 10 years. Both alloys are biocompatible in contact with bone and the gingival tissues, and are capable of undergoing osseointegration. Investigations of novel titanium alloys developed for orthopaedics show that they offer few advantages as dental implants. The main findings of this review are that the alloys cpTi and Ti-6Al-4V are highly satisfactory materials, and that there is little scope for improvement as far as dentistry is concerned. The conclusion is that these materials will continue to be used for dental implants well into the foreseeable future.
Collapse
|
32
|
Mott R, Priefer R. Multilayering as a solution to medical device failure. Colloids Surf B Biointerfaces 2020; 193:111154. [PMID: 32485578 DOI: 10.1016/j.colsurfb.2020.111154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 11/29/2022]
Abstract
There are three main problems associated with medical device implants: biofilm, wear and corrosion, and bio rejection. A potential solution to these problems is multilayering. Polyelectrolyte multilayered films composed of polyallylamine hydrochloride and poly(4-vinylphenol) have been demonstrated to inhibit Staphylococcus epidermidis growth. Another study examined the wear behavior of polyelectrolyte multilayer coated orthopedic surfaces composed of poly(acrylic acid) and poly(allylamine hydrochloride) and found coated systems resulted in 33 % less wear than uncoated systems. Additionally, a heparin/collagen anti-CD34 antibody ((HEP/COL)5-CD34) multilayer system provided accelerated adhesion of endothelial cells with a significant number of endothelial cells attaching in the first 5 min. This allowed for re-endothelialization to occur possibly reducing cardiac stent bio rejection. This review explores various ways multilayering has been utilized to prolong medical device use and decrease the number of complications associated with them.
Collapse
Affiliation(s)
- Renee Mott
- Massachusetts College of Pharmacy and Health Sciences University, BOSTON, MA, United States
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, BOSTON, MA, United States.
| |
Collapse
|
33
|
Brito Barrera Y, Hause G, Menzel M, Schmelzer C, Lehner E, Mäder K, Wölk C, Groth T. Engineering osteogenic microenvironments by combination of multilayers from collagen type I and chondroitin sulfate with novel cationic liposomes. Mater Today Bio 2020; 7:100071. [PMID: 32924006 PMCID: PMC7476072 DOI: 10.1016/j.mtbio.2020.100071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/28/2022] Open
Abstract
Cationic liposomes composed of a novel lipid (N-{6-amino-1-[N-(9Z) -octadec9-enylamino] -1-oxohexan-(2S) -2-yl} -N'- {2- [N, N-bis(2-aminoethyl) amino] ethyl} -2-hexadecylpropandiamide) (OO4) and dioleoylphosphatidylethanolamine (DOPE) possess high amounts of amino groups and are promising systems for lipofection. Moreover, these cationic liposomes can also be used as a polycationic entity in multilayer formation using layer-by-layer technique (LbL), which is a method to fabricate surface coatings by alternating adsorption of polyanions and polycations. Since liposomes are suitable for endocytosis by or fusion with cells, controlled release of their cargo on site is possible. Here, a polyelectrolyte multilayer (PEM) system was designed of chondroitin sulfate (CS) and collagen type I (Col I) by LbL technique with OO4/DOPE liposomes embedded in the terminal layers to create an osteogenic microenvironment. Both, the composition of PEM and cargo of the liposomes were used to promote osteogenic differentiation of C2C12 myoblasts as in vitro model. The internalization of cargo-loaded liposomes from the PEM into C2C12 cells was studied using lipophilic (Rhodamine-DOPE conjugate) and hydrophilic (Texas Red-labeled dextran) model compounds. Besides, the use of Col I and CS should mimic the extracellular matrix of bone for future applications such as bone replacement therapies. Physicochemical studies of PEM were done to characterize the layer growth, thickness, and topography. The adhesion of myoblast cells was also evaluated whereby the benefit of a cover layer of CS and finally Col I above the liposome layer was demonstrated. As proof of concept, OO4/DOPE liposomes were loaded with dexamethasone, a compound that can induce osteogenic differentiation. A successful induction of osteogenic differentiation of C2C12 cells with the novel designed liposome-loaded PEM system was shown. These findings indicate that designed OH4/DOPE loaded PEMs have a high potential to be used as drug delivery or transfection system for implant coating in the field of bone regeneration and other applications.
Collapse
Key Words
- AFM, Atomic force microscopy
- C2C12 myoblasts
- CLSM, Confocal Laser Scanning Microscopy
- CS, chondroitin sulfate
- Col I, Collagen I
- DLS, Dynamic light scattering
- DMEM, Dulbecco’s modified Eagle’s medium
- DOPE, dioleoylphosphatidylethanolamine
- Dex, Dexamethasone
- ECM, Extracellular matrix
- GAG, Glycosaminoglycan
- LbL, Layer-by-Layer technique
- OO4, (N-{6-amino-1-[N-(9Z) -octadec9-enylamino] -1-oxohexan-(2S) -2-yl} -N’- {2- [N, N-bis(2-aminoethyl) amino] ethyl} -2-hexadecylpropandiamide)
- PBS, Phosphate-buffered saline
- PEI, Polyethylenimine
- PEM, Polyelectrolyte multilayer
- SEM, Scanning electron microscopy
- SPR, Surface plasmon resonance
- TEM, Transmission electron microscopy
- WCA, Water contact angle
- cationic lipids
- chondroitin sulfate
- collagen I
- internalization
- osteogenic differentiation
- polyelectrolyte multilayer system
Collapse
Affiliation(s)
- Y.A. Brito Barrera
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle−Wittenberg, Heinrich Damerow Strasse 4, 06120, Halle (Saale), Germany
| | - G. Hause
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - M. Menzel
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), Walter-Hülse-Strasse 1, 06120, Halle (Saale), Germany
| | - C.E.H. Schmelzer
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), Walter-Hülse-Strasse 1, 06120, Halle (Saale), Germany
| | - E. Lehner
- Department Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle−Wittenberg, Kurt-Mothes Straße 3, 06120, Halle (Saale), Germany
| | - K. Mäder
- Department Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle−Wittenberg, Kurt-Mothes Straße 3, 06120, Halle (Saale), Germany
| | - C. Wölk
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317, Leipzig, Germany
| | - T. Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle−Wittenberg, Heinrich Damerow Strasse 4, 06120, Halle (Saale), Germany
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, D-06099, Halle (Saale), Germany
| |
Collapse
|
34
|
Augustin J, Feichtner F, Waselau AC, Julmi S, Klose C, Wriggers P, Maier HJ, Meyer-Lindenberg A. Comparison of two pore sizes of LAE442 scaffolds and their effect on degradation and osseointegration behavior in the rabbit model. J Biomed Mater Res B Appl Biomater 2020; 108:2776-2788. [PMID: 32170913 DOI: 10.1002/jbm.b.34607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 11/09/2022]
Abstract
The magnesium alloy LAE442 emerged as a possible bioresorbable bone substitute over a decade ago. In the present study, using the investment casting process, scaffolds of the Magnesium (Mg) alloy LAE442 with two different and defined pore sizes, which had on average a diameter of 400 μm (p400) and 500 μm (p500), were investigated to evaluate degradation and osseointegration in comparison to a ß-TCP control group. Open-pored scaffolds were implanted in both greater trochanter of rabbits. Ten scaffolds per time group (6, 12, 24, and 36 weeks) and type were analyzed by clinical, radiographic and μ-CT examinations (2D and 3D). None of the scaffolds caused adverse reactions. LAE442 p400 and p500 developed moderate gas accumulation due to the Mg associated in vivo corrosion, which decreased from week 20 for both pore sizes. After 36 weeks, p400 and p500 showed volume decreases of 15.9 and 11.1%, respectively, with homogeneous degradation, whereas ß-TCP lost 74.6% of its initial volume. Compared to p400, osseointegration for p500 was significantly better at week 2 postsurgery due to more frequent bone-scaffold contacts, higher number of trabeculae and higher bone volume in the surrounding area. No further significant differences between the two pore sizes became apparent. However, p500 was close to the values of ß-TCP in terms of bone volume and trabecular number in the scaffold environment, suggesting better osseointegration for the larger pore size.
Collapse
Affiliation(s)
- Julia Augustin
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Hannover, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
35
|
Kohli N, Sawadkar P, Ho S, Sharma V, Snow M, Powell S, Woodruff MA, Hook L, García-Gareta E. Pre-screening the intrinsic angiogenic capacity of biomaterials in an optimised ex ovo chorioallantoic membrane model. J Tissue Eng 2020; 11:2041731420901621. [PMID: 32110373 PMCID: PMC7000866 DOI: 10.1177/2041731420901621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Biomaterial development for clinical applications is currently on the rise. This necessitates adequate in vitro testing, where the structure and composition of biomaterials must be specifically tailored to withstand in situ repair and regeneration responses for a successful clinical outcome. The chorioallantoic membrane of chicken embryos has been previously used to study angiogenesis, a prerequisite for most tissue repair and regeneration. In this study, we report an optimised ex ovo method using a glass-cling film set-up that yields increased embryo survival rates and has an improved protocol for harvesting biomaterials. Furthermore, we used this method to examine the intrinsic angiogenic capacity of a variety of biomaterials categorised as natural, synthetic, natural/synthetic and natural/natural composites with varying porosities. We detected significant differences in biomaterials' angiogenesis with natural polymers and polymers with a high overall porosity showing a greater vascularisation compared to synthetic polymers. Therefore, our proposed ex ovo chorioallantoic membrane method can be effectively used to pre-screen biomaterials intended for clinical application.
Collapse
Affiliation(s)
- Nupur Kohli
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
- Department of Mechanical Engineering,
Imperial College London, London, UK
| | - Prasad Sawadkar
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Sonia Ho
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| | - Martyn Snow
- Royal Orthopaedic Hospital NHS
Foundation Trust, Birmingham, UK
| | - Sean Powell
- Institute of Health and Biomedical
Innovation, Queensland University of Technology, Brisbane, Australia
| | - Maria A Woodruff
- Institute of Health and Biomedical
Innovation, Queensland University of Technology, Brisbane, Australia
| | - Lilian Hook
- Smart Matrix Limited, Leopold Muller
Building, Mount Vernon Hospital, Northwood, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT
Institute, Mount Vernon Hospital, Northwood, UK
| |
Collapse
|
36
|
Wu P, Huang J, Zheng Y, Yang Y, Zhang Y, He F, Chen H, Quan G, Yan J, Li T, Gao B. Environmental occurrences, fate, and impacts of microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109612. [PMID: 31476450 DOI: 10.1016/j.ecoenv.2019.109612] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 05/25/2023]
Abstract
Microplastics (MPs) are small plastic pieces with size less than 5 mm that have entered and polluted the environment. While many investigations including several critical reviews on MPs in the environment have been conducted, most of them are focused on their occurrences in marine environment. Current understanding on the occurrences, behaviors, and impacts of MPs in the terrestrial environment is far from complete. A systematic review of the literature was thus conducted to promote the research on MPs in the environment. This work is designed to provide a comprehensive overview that summarizes current knowledge and research findings on environmental occurrences, fate and transport, and impacts of MPs. In addition to discussing the occurrences, characteristics, and sources of MPs in the ocean, freshwater, sediments, soils, and atmosphere, the review also summarizes both the experimental and modeling data of the environmental fate and transport of MPs. Research findings on the toxic effects, bioaccumulation, and bioavailability of MPs in the environment are also covered in this critical review. Future perspectives are discussed as well.
Collapse
Affiliation(s)
- Panfeng Wu
- Jiangsu Nantong Environmental Monitoring Center, Nantong, Jiangsu, 226006, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Jinsheng Huang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Yuling Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Yicheng Yang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Yue Zhang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, AR, 71601, United States
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Tiantian Li
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States.
| |
Collapse
|
37
|
Albulescu R, Popa AC, Enciu AM, Albulescu L, Dudau M, Popescu ID, Mihai S, Codrici E, Pop S, Lupu AR, Stan GE, Manda G, Tanase C. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications. MATERIALS 2019; 12:ma12223704. [PMID: 31717621 PMCID: PMC6888321 DOI: 10.3390/ma12223704] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Recently, a large spectrum of biomaterials emerged, with emphasis on various pure, blended, or doped calcium phosphates (CaPs). Although basic cytocompatibility testing protocols are referred by International Organization for Standardization (ISO) 10993 (parts 1-22), rigorous in vitro testing using cutting-edge technologies should be carried out in order to fully understand the behavior of various biomaterials (whether in bulk or low-dimensional object form) and to better gauge their outcome when implanted. In this review, current molecular techniques are assessed for the in-depth characterization of angiogenic potential, osteogenic capability, and the modulation of oxidative stress and inflammation properties of CaPs and their cation- and/or anion-substituted derivatives. Using such techniques, mechanisms of action of these compounds can be deciphered, highlighting the signaling pathway activation, cross-talk, and modulation by microRNA expression, which in turn can safely pave the road toward a better filtering of the truly functional, application-ready innovative therapeutic bioceramic-based solutions.
Collapse
Affiliation(s)
- Radu Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department Pharmaceutical Biotechnology, National Institute for Chemical-Pharmaceutical R&D, 031299, Bucharest, Romania
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
- Army Centre for Medical Research, 010195 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Lucian Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Maria Dudau
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Simona Mihai
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Elena Codrici
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Andreea-Roxana Lupu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
| | - Gina Manda
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cajal Institute, Titu Maiorescu University, 004051 Bucharest, Romania
- Correspondence:
| |
Collapse
|
38
|
Bassous NJ, Jones CL, Webster TJ. 3-D printed Ti-6Al-4V scaffolds for supporting osteoblast and restricting bacterial functions without using drugs: Predictive equations and experiments. Acta Biomater 2019; 96:662-673. [PMID: 31279162 DOI: 10.1016/j.actbio.2019.06.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022]
Abstract
Conditions resulting from musculoskeletal deficiencies (MSDs) are wide-ranging and retain the likelihood for restricting motion or producing pain, especially in the lower back, neck, and upper limbs. Engineered scaffold devices are being produced to replace antiquated modalities that suffer from structural and mechanical deficiencies in the treatment of MSDs. Here, as-fabricated Ti-6Al-4V-based Hive™ interbody fusion scaffolds, commercialized by HD Lifesciences LLC, were assayed for their osteogenicity and antibacterial potential using a series of characterization and in vitro tests, as well as by quantitative analyses. A topographical assessment of the Hive™ meshes indicated that the elementally pure substrates are microscopically porous and rough, in addition to displaying structural heterogeneity. Roughness estimations and static contact angle measurements recommended the use of the as-fabricated Ti-6Al-4V substrates for supporting osteoblast attachment, especially, due to the improved surface roughness and wettability values of these scaffolds relative to the unembellished Ti-6Al-4V surfaces. Quantitative correlations relating the surface properties of roughness and energy were applied to predict cellular behaviors. Cell growth suppositions were experimentally corroborated. Critical in vitro data indicated the competencies of the Hive™ scaffolds for promoting the adhesion and proliferation of human fetal osteoblasts (hFOBs), accumulating substantial calcium deposition from metabolizing hFOBs, and restricting the attachment of bacteria. The model system that investigated the pre-adsorption of casein proteins along the Hive™ test substrates additionally furthered the notion that bacterial attachment may be restricted, with short-scale adhesion dynamics serving as the theoretical basis for this hypothesis. In this manner, this study showed that through predictive models and experiments, these novel 3D printed Ti-based scaffolds can increase bone cell while decreasing bacteria functions without using drugs. STATEMENT OF SIGNIFICANCE: Sintered Ti-6Al-4V spinal fusion devices (Hive™) manufactured and marketed by HD Lifesciences LLC were assessed for their biocompatibility and antibacterial performance. A mixed methods approach was employed, whereby quantitative measures were used to predict the ability for Hive™ substrates to adsorb specialized proteins and to restrict bacterial surface colonization. In vitro tests that evaluated bone cell and bacterial adhesion, calcium deposition, and protein adsorption supported quantitative predictions. The data herein presented demonstrate the following: (1) surface energy is an important predictor of implant-cell interactions, (2) strong correlations exist between surface energy and surface roughness, (3) mathematical models can be used to improve and predict implant device perofrmance, and (4) porous, rough, 3D-printed materials perform well in terms of biocompatibility and antimicrobial efficacy.
Collapse
|
39
|
Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:844-862. [PMID: 31147056 DOI: 10.1016/j.msec.2019.04.064] [Citation(s) in RCA: 411] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 04/20/2019] [Indexed: 02/07/2023]
Abstract
Variety of implant materials have been employed in various disciplines of medical science depending on the requirement of a particular application. Metals, alloys, ceramics, and polymers are the commonly used biomaterials. The main focus of this study is to review the various structural and microstructural properties of titanium and titanium based alloys used as orthopaedic implants. Orthopaedic implants need to possess certain important qualities to ensure their safe and effective use. These properties like the biocompatibility, relevant mechanical properties, high corrosion and wear resistance and osseointegration are summarized in this review. Various attempts to improve upon these properties like different processing routes, surface modifications have also been inculcated in the paper to provide an insight into the extent of research and effort that has been put into developing a highly superior titanium orthopaedic implant.
Collapse
Affiliation(s)
- Manmeet Kaur
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - K Singh
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
40
|
Suryavanshi A, Khanna K, Sindhu KR, Bellare J, Srivastava R. Development of bone screw using novel biodegradable composite orthopedic biomaterial: from material design to
in vitro
biomechanical and
in vivo
biocompatibility evaluation. Biomed Mater 2019; 14:045020. [DOI: 10.1088/1748-605x/ab16be] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Gabbai-Armelin PR, Wilian Kido H, Fernandes KR, Fortulan CA, Muniz Renno AC. Effects of bio-inspired bioglass/collagen/magnesium composites on bone repair. J Biomater Appl 2019; 34:261-272. [PMID: 31027447 DOI: 10.1177/0885328219845594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Paulo Roberto Gabbai-Armelin
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| | - Hueliton Wilian Kido
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| | - Kelly Rossetti Fernandes
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| | - Carlos Alberto Fortulan
- 2 Department of Mechanical Engineering, University of São Paulo (USP), Trabalhador São Carlense, São Carlos, Brazil
| | - Ana Claudia Muniz Renno
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| |
Collapse
|
42
|
Barbeck M, Perić-Kačarević Ž, Kavehei F, Rider P, Najman S, Stojanović S, Rimashevskiy D, Wenisch S, Schnettler R. THE EFFECT OF TEMPERATURE TREATMENT OF XENOGENEIC BONE SUBSTITUTE ON THE TISSUE RESPONSE –A MINI REVIEW. ACTA MEDICA MEDIANAE 2019. [DOI: 10.5633/amm.2019.0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
43
|
Parisi JR, Fernandes KR, Avanzi IR, Dorileo BP, Santana AF, Andrade AL, Gabbai-Armelin PR, Fortulan CA, Trichês ES, Granito RN, Renno ACM. Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:30-37. [PMID: 30218326 DOI: 10.1007/s10126-018-9855-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Biomaterial-based bone grafts have an important role in the field of bone tissue engineering. One of the most promising classes of biomaterials is collagen, including the ones from marine biodiversity (in general, called spongin (SPG)). Also, hydroxyapatite (HA) has an important role in stimulating bone metabolism. Therefore, this work investigated the association of HA and SPG composites in order to evaluate their physico-chemical and morphological characteristics and their in vitro biological performance. For this, pre-set composite disks were evaluated by means of mass loss after incubation, pH, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and "in vitro" cell viability. pH measurements showed no statistical difference between groups. Moreover, a higher mass loss was observed for HA/SPG70/30 compared to the other groups for all experimental periods. Moreover, SEM representative micrographs showed the degradation of the samples with and without immersion. FTIR analysis demonstrated the absorption peaks for poly(methyl methacrylate) (PMMA), HA, and SPG. A higher L292 cell viability for control and PMMA was observed compared to HA and HA/SPG 90/10. Also, HA/SPG 70/30 showed higher cell viability compared to HA and HA/SPG 90/10 on days 3 and 7 days of culture. Furthermore, HA showed a significant lower MC3T3 cell viability compared to control and HA/SPG 70/30 on day 3 and no significant difference was observed between the composites in the last experimental period. Based on our investigations, it can be concluded that the mentioned composites were successfully obtained, presenting improved biological properties, especially the one mimicking the composition of bone (with 70% of HA and 30% of SPG). Consequently, these data highlight the potential of the introduction of SPG into HA to improve the performance of the graft for bone regeneration applications. Further long-term studies should be carried out to provide additional information concerning the late stages of material degradation and bone healing in the presence of HA/SPG.
Collapse
Affiliation(s)
- J R Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), Washington Luís, km 235, São Carlos, SP, Brazil.
| | - K R Fernandes
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), Washington Luís, km 235, São Carlos, SP, Brazil
| | - I R Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - B P Dorileo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - A F Santana
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - A L Andrade
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), Washington Luís, km 235, São Carlos, SP, Brazil
| | - P R Gabbai-Armelin
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - C A Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering São Carlos, São Carlos, SP, Brazil
| | - E S Trichês
- Department of Mechanical Engineering, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - R N Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - A C M Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| |
Collapse
|
44
|
Marycz K, Smieszek A, Trynda J, Sobierajska P, Targonska S, Grosman L, Wiglusz RJ. Nanocrystalline Hydroxyapatite Loaded with Resveratrol in Colloidal Suspension Improves Viability, Metabolic Activity and Mitochondrial Potential in Human Adipose-Derived Mesenchymal Stromal Stem Cells (hASCs). Polymers (Basel) 2019; 11:E92. [PMID: 30960076 PMCID: PMC6402024 DOI: 10.3390/polym11010092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/22/2022] Open
Abstract
In response to the demand for new multifunctional materials characterized by high biocompatibility, hydrogel (HG) nanocomposites as a platform for bioactive compound delivery have been developed and fabricated. A specific crosslinking/copolymerization chemistry was used to construct hydrogels with a controlled network organization. The hydrogels were prepared using 3,6-anhydro-α-l-galacto-β-d-galactan (galactose hydrogel) together with resveratrol (trans-3,5,4'-trihydroxystilbene) and calcium hydroxyapatite nanoparticles. The resveratrol was introduced in three different concentrations of 0.1, 0.5, and 1 mM. Nanosized calcium hydroxyapatite was synthesized by a microwave-assisted hydrothermal technique, annealed at 500 °C for 3 h, and introduced at a concentration 10% (m/v). The morphology and structural properties of Ca10(PO₄)₆(OH)₂ and its composite were determined by using XRPD (X-ray powder diffraction) techniques, as well as the absorption and IR (infrared) spectroscopy. The average nanoparticle size was 35 nm. The water affinity, morphology, organic compound release profile, and cytocompatibility of the obtained materials were studied in detail. The designed hydrogels were shown to be materials of biological relevance and of great pharmacological potential as carriers for bioactive compound delivery. Their cytocompatibility was tested using a model of human multipotent stromal cells isolated from adipose tissue (hASCs). The biomaterials increased the proliferative activity and viability of hASCs, as well as reduced markers of oxidative stress. In light of the obtained results, it has been thought that the designed materials meet the requirements of the tissue engineering triad, and may find application in regenerative medicine, especially for personalized therapies.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Agnieszka Smieszek
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland.
| | - Justyna Trynda
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland.
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
| | - Lukasz Grosman
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
- Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wroclaw, Poland.
| |
Collapse
|
45
|
Toth Z, Roi M, Evans E, Watson JT, Nicolaou D, McBride-Gagyi S. Masquelet Technique: Effects of Spacer Material and Micro-topography on Factor Expression and Bone Regeneration. Ann Biomed Eng 2019; 47:174-189. [PMID: 30259220 PMCID: PMC6318020 DOI: 10.1007/s10439-018-02137-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
We and others have shown that changing surface characteristics of the spacer implanted during the first Masquelet stage alters some aspects of membrane development. Previously we demonstrated that titanium (TI) spacers create membranes that are better barriers to movement of solutes > 70 kDa in size than polymethyl methacrylate (PMMA) induced-membranes, and roughening creates more mechanically compliant membranes. However, it is unclear if these alterations affect the membrane's biochemical environment or bone regeneration during the second stage. Ten-week-old, male Sprague-Dawley rats underwent an initial surgery to create an externally stabilized 6 mm femoral defect. PMMA or TI spacers with smooth (~ 1 μm) or roughened (~ 8 μm) surfaces were implanted. Four weeks later, rats were either euthanized for membrane harvest or underwent the second Masquelet surgery. TI spacers induced thicker membranes that were similar in structure and biochemical expression. All membranes were bilayered with the inner layer having increased factor expression [bone morphogenetic protein 2 (BMP2), transforming growth factor beta (TGFβ), interleukin 6 (IL6), and vascular endothelial growth factor (VEGF)]. Roughening increased overall IL6 levels. Ten-weeks post-engraftment, PMMA-smooth induced membranes better supported bone regeneration (60% union). The other groups only had 1 or 2 that united (9-22%). There were no significant differences in any micro computed tomography or dynamic histology outcome. In conclusion, this study suggests that the membrane's important function in the Masquelet technique is not simply as a barrier. There is likely a critical biochemical, cellular, or vascular component as well.
Collapse
Affiliation(s)
- Zacharie Toth
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO, 63104, USA
| | - Matt Roi
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO, 63104, USA
| | - Emily Evans
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO, 63104, USA
| | - J Tracy Watson
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO, 63104, USA
| | - Daemeon Nicolaou
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO, 63104, USA
| | - Sarah McBride-Gagyi
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO, 63104, USA.
| |
Collapse
|
46
|
P R GA, H M C, D F S, M A C, A M P M, K R F, A C M R. Association of Bioglass/Collagen/Magnesium composites and low level irradiation: effects on bone healing in a model of tibial defect in rats. Laser Ther 2018; 27:271-282. [PMID: 31182902 DOI: 10.5978/islsm.27_18-or-25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022]
Abstract
Background and Aims Bioglass (BG) and Magnesium (Mg) composites have been used for bone tissue engineering proposes due to its osteogenic activity and increased mechanical properties respectively. The introduction of Collagen (Col) is a common and efficient approach for bone tissue engineering applications toward cell proliferation. Recently, studies demonstrated that BG/Col/Mg composites presented proper mechanical properties and were non-cytotoxic. Although the osteogenic potential of BG/Col/Mg composites, in specific situations, biomaterials may not be capable of stimulating bone tissue. Therefore, combining biomaterial matrices and effective post-operative therapies (such as low level lasertherapy; LLLT) may be necessary to appropriately stimulate bone tissue. In this context, the aim of this study was to develop intra- and extra-operatively bone regenerative therapeutical strategies, based on the association of Col-enriched BG/Mg composites with LLLT. Materials and Methods Thereby, an in vivo study, using tibial defect in Wistar rats, was performed in order to investigate the bone regenerative capacity. LLLT treatment (Ga-Al-As laser 808 nm, 30 mW, 2.8 J, 94 s) was performed 3 times a week, in non-consecutive days. Histology, histomorphometry, immunohistochemical analysis and mechanical test were done after 15 and 45 days post-implantation. Results The results showed that Col could be successfully introduced into BG/Mg and the association of BG/Mg/Col and LLLT constituted an optimized treatment for accelerating material degradation and increasing bone deposition. Additionally, mechanical tests showed an increased maximal load for BG/Mg + LLLT compared to other groups. Conclusions These results lead us to conclude that the Col enriched BG/Mg composites irradiated with LLLT presented superior biological and mechanical properties, demonstrating to be a promising bone graft.
Collapse
Affiliation(s)
- Gabbai-Armelin P R
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Caliari H M
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Silva D F
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Cruz M A
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Magri A M P
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Fernandes K R
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Renno A C M
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| |
Collapse
|
47
|
Campos JM, Sousa AC, Caseiro AR, Pedrosa SS, Pinto PO, Branquinho MV, Amorim I, Santos JD, Pereira T, Mendonça CM, Afonso A, Atayde LM, Maurício AC. Dental pulp stem cells and Bonelike ® for bone regeneration in ovine model. Regen Biomater 2018; 6:49-59. [PMID: 30740242 PMCID: PMC6362823 DOI: 10.1093/rb/rby025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Development of synthetic bone substitutes has arisen as a major research interest in the need to find an alternative to autologous bone grafts. Using an ovine model, the present pre-clinical study presents a synthetic bone graft (Bonelike®) in combination with a cellular system as an alternative for the regeneration of non-critical defects. The association of biomaterials and cell-based therapies is a promising strategy for bone tissue engineering. Mesenchymal stem cells (MSCs) from human dental pulp have demonstrated both in vitro and in vivo to interact with diverse biomaterial systems and promote mineral deposition, aiming at the reconstruction of osseous defects. Moreover, these cells can be found and isolated from many species. Non-critical bone defects were treated with Bonelike® with or without MSCs obtained from the human dental pulp. Results showed that Bonelike® and MSCs treated defects showed improved bone regeneration compared with the defects treated with Bonelike® alone. Also, it was observed that the biomaterial matrix was reabsorbed and gradually replaced by new bone during the healing process. We therefore propose this combination as an efficient binomial strategy that promotes bone growth and vascularization in non-critical bone defects.
Collapse
Affiliation(s)
- J M Campos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra (HVUC), Campo Universitário - Bloco B, Lordemão, Coimbra, Portugal
| | - A C Sousa
- REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, Porto, Portugal
| | - A R Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal
| | - S S Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - P O Pinto
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra (HVUC), Campo Universitário - Bloco B, Lordemão, Coimbra, Portugal
| | - M V Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - I Amorim
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - J D Santos
- REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, Porto, Portugal
| | - T Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - C M Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - A Afonso
- Faculdade de Medicina Dentária da Universidade do Porto (FMDUP), Porto, Portugal
| | - L M Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - A C Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| |
Collapse
|
48
|
Kohli N, Ho S, Brown SJ, Sawadkar P, Sharma V, Snow M, García-Gareta E. Bone remodelling in vitro: Where are we headed?: -A review on the current understanding of physiological bone remodelling and inflammation and the strategies for testing biomaterials in vitro. Bone 2018; 110:38-46. [PMID: 29355746 DOI: 10.1016/j.bone.2018.01.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
Abstract
Bone remodelling is a dynamic process required for the maintenance of bone architecture in response to the changing mechanical needs. It is also a vital process during the repair of bone tissue following injury. Clinical intervention in terms of autografting or allografting is often required to heal bone injuries where physiological healing fails. The use of biomaterials as alternatives to autografts and allografts has spurred a significant research interest into further development of biomaterials for better clinical outcomes. Unfortunately, many biomaterials fail to make it to the clinic or fail after implantation due to the inconsistencies observed between in vitro and in vivo studies. It is therefore important to mimic the in vivo situation as closely as possible in an in vitro setting for testing biomaterials. The current in vitro models focus mostly on investigating the behaviour of osteoblast progenitors with the biomaterial under development as well as assessing the behaviour of osteoclasts, endothelial cells etc. However, the sequence of events that take place during bone healing or remodelling are not incorporated into the current in vitro models. This review highlights our current understanding of the physiological bone remodelling and the bone healing process followed by strategies to incorporate both the physiological and pathophysiological events into an in vitro environment. Here, we propose three strategies for the assessment of biomaterials for bone, which includes; (1) testing biomaterials in the presence of immune cells, (2) testing biomaterials for osteogenesis, and (3) testing biomaterials in the presence of osteoclasts followed by osteoblasts to recapitulate the physiological events of bone resorption prior to bone formation. The focus of this review is to discuss the third strategy in details as the first two strategies are currently incorporated into a majority of in vitro experiments.
Collapse
Affiliation(s)
- Nupur Kohli
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| | - Sonia Ho
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - Stuart J Brown
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - Prasad Sawadkar
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - Martyn Snow
- Royal Orthopaedic Hospital, Bristol Road, Birmingham B31 2AP, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT Institute, Leopold Muller Building, Mount Vernon Hospital, Northwood HA6 2RN, UK
| |
Collapse
|
49
|
Gaio N, Martino A, Toth Z, Watson JT, Nicolaou D, McBride-Gagyi S. Masquelet technique: The effect of altering implant material and topography on membrane matrix composition, mechanical and barrier properties in a rat defect model. J Biomech 2018; 72:53-62. [PMID: 29510858 PMCID: PMC5895482 DOI: 10.1016/j.jbiomech.2018.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 12/26/2022]
Abstract
The Masquelet technique is a surgical procedure to regenerate segmental bone defects. The two-phase treatment relies on the production of a vascularized foreign-body membrane to support bone grafts over three times larger than the traditional maximum. Historically, the procedure has always utilized a bone cement spacer to evoke membrane production. However, membrane formation can easily be effected by implant surface properties such as material and topology. This study sought to determine if the membrane's mechanical or barrier properties are affected by changing the spacer material to titanium or roughening the surface finish. Ten-week-old, male Sprague Dawley rats were given an externally stabilized, 6 mm femur defect which was filled with a pre-made spacer of bone cement (PMMA) or titanium (TI) with a smooth (∼1 μm) or roughened (∼8 μm) finish. After 4 weeks of implantation, the membranes were harvested, and the matrix composition, tensile mechanics, shrinkage, and barrier function was assessed. Roughening the spacers resulted in significantly more compliant membranes. TI spacers created membranes that inhibited solute transport more. There were no differences between groups in collagen or elastin distribution. This suggests that different membrane characteristics can be created by altering the spacer surface properties. Surgeons may unknowingly effecting membrane formation via bone cement preparation techniques.
Collapse
Affiliation(s)
- Natalie Gaio
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA
| | - Alice Martino
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA
| | - Zacharie Toth
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA
| | - J Tracy Watson
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA
| | - Daemeon Nicolaou
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA
| | - Sarah McBride-Gagyi
- Department of Orthopaedic Surgery, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Schwitalla Hall M176, St. Louis, MO 63132, USA.
| |
Collapse
|
50
|
Keremidarska-Markova M, Radeva E, Mitev D, Hristova-Panusheva K, Paull B, Nesterenko P, Šepitka J, Junkar I, Iglič A, Krasteva N. Increased elastic modulus of plasma polymer coatings reinforced with detonation nanodiamond particles improves osteogenic differentiation of mesenchymal stem cells. Turk J Biol 2018; 42:195-203. [PMID: 30814881 PMCID: PMC6353295 DOI: 10.3906/biy-1711-26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the present study we demonstrated that composite PPHMDS/DND coatings with elastic moduli close to those of mature bone tissue (0.2-2.8 GPa) stimulated growth and osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs). Composite coatings were prepared by a method of plasma polymerization (PP) where detonation nanodiamond (DND) particles in different amounts (0.1, 0.5, and 1 mg/mL) were added to hexamethyldisiloxane (HMDS) before plasma deposition. This method allows variation only in the reduced elastic modulus (Er´) with increase in the particle concentration, while the other surface properties, including surface wettability and topography, did not change. The response of hAD-MSCs to the increasing stifness showed an effect on adhesion and osteogenic differentiation but not on cell proliferation. Matrix mineralization and cell spreading were maximized on PPHMDS/DND coatings with the highest elastic modulus (2.826 GPa), while the differences in proliferation rates among the samples were negligible. In general, PPHMDS/DND coatings provide better conditions for growth and osteogenic differentiation of hAD-MSCs in comparison to glass coverslips, confirming their suitability for osteo-integration applications. Additionally, our findings support the hypothesis that biomaterials with elasticity similar to that of the native tissue can improve the differentiation potential of mesenchymal stem cells.
Collapse
Affiliation(s)
| | - Ekaterina Radeva
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Dimitar Mitev
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | | | | | | | - Joseph Šepitka
- Faculty of Mechanical Engineering, Czech Technical University in Prague , Prague , Czech Republic
| | - Ita Junkar
- Jozef Stefan Institute , Ljubljana , Slovenia
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana , Ljubljana , Slovenia
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Sofia , Bulgaria
| |
Collapse
|