1
|
Carvalho PS, Fonseca-Rodrigues D, Pacheco M, Almeida A, Pinto-Ribeiro F, Pereira P. Comparative neurotoxicity of dietary methylmercury and waterborne inorganic mercury in fish: Evidence of optic tectum vulnerability through morphometric and histopathological assessments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106557. [PMID: 37329637 DOI: 10.1016/j.aquatox.2023.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/05/2023] [Accepted: 05/09/2023] [Indexed: 06/19/2023]
Abstract
This work investigated the effects of inorganic mercury (iHg) and methylmercury (MeHg) on the fish optic tectum morphology, viz. in relation to: (i) vulnerability of specific optic tectum layers; (ii) preferential targeting of Hg forms to neurons or glial cells; (iii) comparative toxicity of iHg and MeHg in this brain area that is in the maintenance of several fish behaviors. Two experiments exposing juvenile white seabream (Diplodus sargus) to waterborne iHg [HgCl2 (2 μg L-1)] and dietary MeHg (8.7 μg g-1) were performed, comprising both exposure (7 and 14 days; E7 and E14, respectively) and post-exposure (28 days; PE28) periods. Morphometric assessments were performed using stereological methods where the layers of the optic tectum were outlined, while its area and the number of neurons and glial cells were estimated. A histopathological assessment was also performed per section and per layer of optic tectum. iHg exposure did not trigger the loss of neurons during the exposure periods, while a decrease of glial cells was detected in a single layer of the optic tectum at E14. Differently, upon MeHg exposure, a decrease on the number of neurons and glial cells was found in several layers of optic tectum. In the post-exposure, both Hg forms triggered the loss of neurons, while only MeHg exposure led to a decrease on the number of glia cells. The histopathological assessment pointed out a higher toxicity of MeHg in the optic tectum layers, particularly in the post-exposure period, while no significant alterations were found in fish exposed to iHg. Hg forms targeted preferentially neurons. iHg and MeHg are relevant neurotoxicants to fish, with MeHg exposure leading to a higher toxicity than iHg in the optic tectum. After 28 days of post-exposure, iHg and MeHg neurotoxicity remained prominent, suggesting long-term effects of these toxicants.
Collapse
Affiliation(s)
- Patrícia S Carvalho
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, University of Aveiro, Aveiro 3810-193, Portugal
| | - Diana Fonseca-Rodrigues
- School of Medicine, Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, Braga 4750-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Mário Pacheco
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, University of Aveiro, Aveiro 3810-193, Portugal
| | - Armando Almeida
- School of Medicine, Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, Braga 4750-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- School of Medicine, Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, Braga 4750-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Patrícia Pereira
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
2
|
Thallium Toxicity in Caenorhabditis elegans: Involvement of the SKN-1 Pathway and Protection by S-Allylcysteine. Neurotox Res 2020; 38:287-298. [PMID: 32468422 DOI: 10.1007/s12640-020-00220-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Monovalent thallium (Tl+) is a cation that can exert complex neurotoxic patterns in the brain by mechanisms that have yet to be completely characterized. To learn more about Tl+ toxicity, it is necessary to investigate its major effects in vivo and its ability to trigger specific signaling pathways (such as the antioxidant SKN-1 pathway) in different biological models. Caenorhabditis elegans (C. elegans) is a nematode constituting a simple in vivo biological model with a well-characterized nervous system, and high genetic homology to mammalian systems. In this study, both wild-type (N2) and skn-1 knockout (KO) mutant C. elegans strains subjected to acute and chronic exposures to Tl+ [2.5-35 μM] were evaluated for physiological stress (survival, longevity, and worm size), motor alterations (body bends), and biochemical changes (glutathione S-transferase regulation in a gst-4 fluorescence strain). While survival was affected by Tl+ in N2 and skn-1 KO (worms lacking the orthologue of mammalian Nrf2) strains in a similar manner, the longevity was more prominently decreased in the skn-1 KO strain compared with the wild-type strain. Moreover, chronic exposure led to a greater compromise in the longevity in both strains compared with acute exposure. Tl+ also induced motor alterations in both skn-1 KO and wild-type strains, as well as changes in worm size in wild-type worms. In addition, preconditioning nematodes with the well-known antioxidant S-allylcysteine (SAC) reversed the Tl+-induced decrease in survival in the N2 strain. GST fluorescent expression was also decreased by the metal in the nematode, and recovered by SAC. Our results describe and validate, for the first time, features of the toxic pattern induced by Tl+ in an in vivo biological model established with C. elegans, supporting an altered redox component in Tl+ toxicity, as previously described in mammal models. We demonstrate that the presence of the orthologous SKN-1 pathway is required for worms in evoking an efficient antioxidant defense. Therefore, the nematode represents an optimal model to reproduce mammalian Tl+ toxicity, where toxic mechanisms and novel therapeutic approaches of clinical value may be successfully pursued.
Collapse
|
3
|
Kalisinska E, Lanocha-Arendarczyk N, Kosik-Bogacka D, Budis H, Podlasinska J, Popiolek M, Pirog A, Jedrzejewska E. Brains of Native and Alien Mesocarnivores in Biomonitoring of Toxic Metals in Europe. PLoS One 2016; 11:e0159935. [PMID: 27513467 PMCID: PMC4981403 DOI: 10.1371/journal.pone.0159935] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/11/2016] [Indexed: 01/28/2023] Open
Abstract
Mercury (Hg), lead (Pb) and cadmium (Cd) are involved in mammalian brain damage. However, little is known about Pb and Cd brain levels in wildlife that reflect the geochemical background. The aims of the study include the estimation of Hg, Pb and Cd concentrations, and the determination of relationships between these elements in the brains of 94 mesocarnivores. Road-killed or hunted animals were obtained from north-western Poland near the Polish-German border. The investigation covered the native Eurasian otter Lutra lutra, badger Meles meles, pine marten Martes martes, beech marten M. foina, European polecat Mustela putorius, red fox Vulpes vulpes, and alien species: feral and ranch American mink Neovison vison, raccoon Procyon lotor and raccoon dog Nyctereutes procyonoides. Depending on the diet and environmental pollution, the carnivore brains accumulated toxic metals in varying amounts. The highest median Hg levels (in mg/kg dry weight, dw) were found in the piscivorous Eurasian otter and feral mink (2.44 and 3.96), Pb in the omnivorous raccoon (0.47), while Cd in minks (~0.06). We indicated that Pb-based ammunition is a significant source of the element in scavengers from hunting area, and we also found a significant correlation between Pb and Cd levels in the fox brain. Finally, this study is the first to suggest background levels for brain Pb and Cd in mesocarnivores (<0.50 and <0.04 mg/kg dw, respectively).
Collapse
Affiliation(s)
- Elzbieta Kalisinska
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland
| | | | - Danuta Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - Halina Budis
- Department of Health Education, University of Szczecin, Szczecin, Poland
| | - Joanna Podlasinska
- Department of Environmental Management and Protection, Western Pomeranian University of Technology, Szczecin, Poland
| | - Marcin Popiolek
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Pirog
- Department of Invertebrate Systematics and Ecology, Institute of Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | |
Collapse
|
4
|
Evans RD, Hickie B, Rouvinen-Watt K, Wang W. Partitioning and kinetics of methylmercury among organs in captive mink (Neovison vison): A stable isotope tracer study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:163-169. [PMID: 26855415 DOI: 10.1016/j.etap.2016.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
Despite the importance of methylmercury (MeHg) as a neurotoxin, we have relatively few good data on partitioning and kinetics of MeHg among organs, particularly across the blood-brain barrier, for mammals that consume large quantities of fish. The objective of this study was to determine the partition coefficients between blood and brain, liver and kidney and fur for MeHg under steady-state conditions and to measure the half-lives for MeHg in these organs. Captive mink (Neovison vison) were fed a diet enriched with two stable isotopes of Hg, Me(199)Hg and Me(201)Hg for a period of 60 days. After a period of 10 days the diet was changed to contain only Me(201)Hg so that, between days 10 and 60, we were able to measure both uptake and elimination rates from blood, brain, liver kidney and fur. Liver and kidney response was very rapid, closely following changes in blood concentrations but there was a small lag time between peak blood concentrations and peak brain concentrations. Half-lives for MeHg were 15.4, 10.2 and 13.4 days for brain, liver and kidney, respectively. There was no measurable conversion of the MeHg to inorganic Hg (IHg) in the brain over the 60 day period, unlike in liver and kidney.
Collapse
Affiliation(s)
- R Douglas Evans
- School of the Environment, Trent University, Peterborough, ON K9L 0G2, Canada; Water Quality Centre, Trent University, Peterborough, ON K9L 0G2, Canada.
| | - Brendan Hickie
- School of the Environment, Trent University, Peterborough, ON K9L 0G2, Canada
| | | | - Wei Wang
- School of the Environment, Trent University, Peterborough, ON K9L 0G2, Canada
| |
Collapse
|
5
|
Yuan Y. Methylmercury: a potential environmental risk factor contributing to epileptogenesis. Neurotoxicology 2012; 33:119-26. [PMID: 22206970 PMCID: PMC3285480 DOI: 10.1016/j.neuro.2011.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 12/29/2022]
Abstract
Epilepsy or seizure disorder is one of the most common neurological diseases in humans. Although genetic mutations in ion channels and receptors and some other risk factors such as brain injury are linked to epileptogenesis, the underlying cause for the majority of epilepsy cases remains unknown. Gene-environment interactions are thought to play a critical role in the etiology of epilepsy. Exposure to environmental chemicals is an important risk factor. Methylmercury (MeHg) is a prominent environmental neurotoxicant, which targets primarily the central nervous system (CNS). Patients or animals with acute or chronic MeHg poisoning often display epileptic seizures or show increased susceptibility to seizures, suggesting that MeHg exposure may be associated with epileptogenesis. This mini-review highlights the effects of MeHg exposure, especially developmental exposure, on the susceptibility of humans and animals to seizures, and discusses the potential role of low level MeHg exposure in epileptogenesis. This review also proposes that a preferential effect of MeHg on the inhibitory GABAergic system, leading to disinhibition of excitatory glutamatergic function, may be one of the potential mechanisms underlying MeHg-induced changes in seizure susceptibility.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|