1
|
Gómez-Archila LG, Palomino-Schätzlein M, Zapata-Builes W, Rugeles MT, Galeano E. Plasma metabolomics by nuclear magnetic resonance reveals biomarkers and metabolic pathways associated with the control of HIV-1 infection/progression. Front Mol Biosci 2023; 10:1204273. [PMID: 37457832 PMCID: PMC10339029 DOI: 10.3389/fmolb.2023.1204273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
How the human body reacts to the exposure of HIV-1 is an important research goal. Frequently, HIV exposure leads to infection, but some individuals show natural resistance to this infection; they are known as HIV-1-exposed but seronegative (HESN). Others, although infected but without antiretroviral therapy, control HIV-1 replication and progression to AIDS; they are named controllers, maintaining low viral levels and an adequate count of CD4+ T lymphocytes. Biological mechanisms explaining these phenomena are not precise. In this context, metabolomics emerges as a method to find metabolites in response to pathophysiological stimuli, which can help to establish mechanisms of natural resistance to HIV-1 infection and its progression. We conducted a cross-sectional study including 30 HESN, 14 HIV-1 progressors, 14 controllers and 30 healthy controls. Plasma samples (directly and deproteinized) were analyzed through Nuclear Magnetic Resonance (NMR) metabolomics to find biomarkers and altered metabolic pathways. The metabolic profile analysis of progressors, controllers and HESN demonstrated significant differences with healthy controls when a discriminant analysis (PLS-DA) was applied. In the discriminant models, 13 metabolites associated with HESN, 14 with progressors and 12 with controllers were identified, which presented statistically significant mean differences with healthy controls. In progressors, the metabolites were related to high energy expenditure (creatinine), mood disorders (tyrosine) and immune activation (lipoproteins), phenomena typical of the natural course of the infection. In controllers, they were related to an inflammation-modulating profile (glutamate and pyruvate) and a better adaptive immune system response (acetate) associated with resistance to progression. In the HESN group, with anti-inflammatory (lactate and phosphocholine) and virucidal (lactate) effects which constitute a protective profile in the sexual transmission of HIV. Concerning the significant metabolites of each group, we identified 24 genes involved in HIV-1 replication or virus proteins that were all altered in progressors but only partially in controllers and HESN. In summary, our results indicate that exposure to HIV-1 in HESN, as well as infection in progressors and controllers, affects the metabolism of individuals and that this affectation can be determined using NMR metabolomics.
Collapse
Affiliation(s)
- León Gabriel Gómez-Archila
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo de Investigación en Ciencias Farmacéuticas ICIF-CES, Facultad de Ciencias y Biotecnología, Universidad CES, Medellín, Colombia
| | | | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
2
|
Verma MK, Shakya S. Genetic variation in the chemokine receptor 5 gene and course of HIV infection; review on genetics and immunological aspect. Genes Dis 2020; 8:475-483. [PMID: 34179311 PMCID: PMC8209322 DOI: 10.1016/j.gendis.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/04/2020] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
Chemokines are small protein molecules associated with various physiological events precisely in immune modulation via chemokine receptors. The chemokine receptors are G-protein coupled receptors express mainly on the cell surface of immune cells. Retroviruses, including HIV in the early stage of infection, primarily target chemokines receptors and get internalized easily into immune cells; T cell and escape from immune surveillance. HIV glycoprotein selectively develops an affinity for the extracellular domain of chemokines receptors and allows the pathogen to internalize via CCR-5. Now, CCR-5 remains a crucial signaling pathway that can be translated into the therapeutic target by changing the receptor protein environment. Many populations have a mutation in coding and promoter regions of CCR-5, tuning a resistance for HIV infection. Natively, there are several mechanisms where the human genome remains in the dynamic state by changing its composition and acquiring variations. Single nucleotide polymorphism is spontaneous phenomenon responsible for precise and point mutation at the genome. Several studies have demonstrated that European and African American populations are enriched in significant CCR5 promoter SNP (CCR5Δ32) in the coding and promoter region as well. Now, such SNP can be an early-stage biomarker in studying HIV and other similar infections. Here, in this study, we have elucidated the role of SNP (both the promoter and coding region) and the fate of HIV infections. We also empathized with the genetics of such SNPs, mostly frequency and its immunological impact.
Collapse
Affiliation(s)
- M K Verma
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - S Shakya
- Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
3
|
Serna-Ortega PA, Aguilar-Jimenez W, Florez-Álvarez L, Trabattoni D, Rugeles MT, Biasin M. IL-21 is associated with natural resistance to HIV-1 infection in a Colombian HIV exposed seronegative cohort. Microbes Infect 2019; 22:371-374. [PMID: 31816393 DOI: 10.1016/j.micinf.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
Abstract
Higher IL-21 levels were associated with natural resistance to HIV infection in an Italian cohort. Thus we wanted to confirm such association in HIV exposed seronegative individuals (HESN) from Colombia. Cells from HESN were less susceptible to infection and expressed higher IL-21 mRNA levels than healthy controls at both baseline and 7-days post-infection; similar results were observed for IL-6, perforin, and granzyme. These results suggest that IL-21/IL-6 increase may be a distinctive quality in the profile of HIV-1 resistance, at least during sexual exposure. However, further studies are necessary to confirm the specific protective mechanisms of these cytokines.
Collapse
Affiliation(s)
- Paula Andrea Serna-Ortega
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy; Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Lizdany Florez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - Maria Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Dhamanage AS, Thakar MR, Paranjape RS. HIV-1-Mediated Suppression of IFN-α Production Is Associated with Inhibition of IRF-7 Translocation and PI3K/akt Pathway in Plasmacytoid Dendritic Cells. AIDS Res Hum Retroviruses 2019; 35:40-48. [PMID: 30073840 DOI: 10.1089/aid.2018.0136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interferon-α (IFN-α) plays a vital role in combating viral infections especially in the early control after infection. However, the HIV infection has shown substantial level of suppression of IFN-α secretion during initial phase of infection. The reasons behind this impairment are still obscure. As plasmacytoid dendritic cells (pDCs) are the major producers of this cytokine, the mechanisms of HIV-1-mediated suppression of IFN-α production by pDCs using the primary pDCs were explored. The nuclear translocation of the interferon regulatory factor (IRF)-7, a transcription factor for IFN-α genes, is essential for the initiation of IFN-α production in pDCs. The HIV-1-exposed pDCs did not show the translocation of IRF-7 into the nucleus in our experiments. Furthermore, it was also observed that HIV-1 inhibited AKT phosphorylation of PI3K/akt pathway in pDCs, an important step for IRF-7 translocation to nucleus. HIV-1-induced inhibition of AKT phosphorylation and IRF-7 translocation was evident even in the presence of Toll-like receptor-7 agonist stimulation and correlated with IFN-α suppression. The findings suggest that HIV-1 may alter AKT phosphorylation to inhibit the translocation of IRF-7 into pDC nucleus, leading to IFN-α suppression, and this may be the reason for IFN-α abrogation observed in recently infected HIV patients. Understanding of interactions between HIV-1 and signaling pathways leading to IFN-α secretion may provide targets for immune intervention.
Collapse
Affiliation(s)
| | - Madhuri R. Thakar
- Department of Immunology, National AIDS Research Institute, Pune, India
| | | |
Collapse
|
5
|
Kaur G, Grover V, Bhaskar N, Kaur RK, Jain A. Periodontal Infectogenomics. Inflamm Regen 2018; 38:8. [PMID: 29760828 PMCID: PMC5937045 DOI: 10.1186/s41232-018-0065-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
Periodontal diseases are chronic infectious disease in which the pathogenic bacteria initiate the host immune response leading to the destruction of tooth supporting tissue and eventually result in the tooth loss. It has multifactorial etiological factors including local, systemic, environmental and genetic factors. The effect of genetic factors on periodontal disease is already under extensive research and has explained the role of polymorphisms of immune mediators affecting disease response. The role genetic factors in pathogens colonisation is emerged as a new field of research as "infectogenomics". It is a rapidly evolving and high-priority research area now days. It further elaborates the role of genetic factors in disease pathogenesis and help in the treatment, control and early prevention of infection. The aim of this review is to summarise the contemporary evidence available in the field of periodontal infectogenomics to draw some valuable conclusions to further elaborate its role in disease pathogenesis and its application in the clinical practice. This will open up opportunity for more extensive research in this field.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Department of Periodontology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, India
| | - Vishakha Grover
- Department of Periodontology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, India
| | - Nandini Bhaskar
- Department of Periodontology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, India
| | - Rose Kanwaljeet Kaur
- Department of Periodontology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, India
| | - Ashish Jain
- Department of Periodontology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Sector-25, Chandigarh, India
| |
Collapse
|
6
|
Gonzalez SM, Taborda NA, Rugeles MT. Role of Different Subpopulations of CD8 + T Cells during HIV Exposure and Infection. Front Immunol 2017; 8:936. [PMID: 28824656 PMCID: PMC5545716 DOI: 10.3389/fimmu.2017.00936] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/21/2017] [Indexed: 01/12/2023] Open
Abstract
During HIV infection, specific responses exhibited by CD8+ T cells are crucial to establish an early, effective, and sustained viral control, preventing severe immune alterations and organ dysfunction. Several CD8+ T cells subsets have been identified, exhibiting differences in terms of activation, functional profile, and ability to limit HIV replication. Some of the most important CD8+ T cells subsets associated with viral control, production of potent antiviral molecules, and strong polyfunctional responses include Th1-like cytokine pattern and Tc17 cells. In addition, the expression of specific activation markers has been also associated with a more effective response of CD8+ T cells, as evidenced in HLA-DR+ CD38− cells. CD8+ T cells in both, peripheral blood and gut mucosa, are particularly important in individuals with a resistant phenotype, including HIV-exposed seronegative individuals (HESNs), long-term non-progressors (LTNPs) and HIV-controllers. Although the role of CD8+ T cells has been extensively explored in the context of an established HIV-1 infection, the presence of HIV-specific cells with effector abilities and a defined functional profile in HESNs, remain poorly understood. Here, we reviewed studies carried out on different subpopulations of CD8+ T cells in relation with natural resistance to HIV infection and progression.
Collapse
Affiliation(s)
- Sandra Milena Gonzalez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Natalia Andrea Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
7
|
Aguilar-Jimenez W, Saulle I, Trabattoni D, Vichi F, Lo Caputo S, Mazzotta F, Rugeles MT, Clerici M, Biasin M. High Expression of Antiviral and Vitamin D Pathway Genes Are a Natural Characteristic of a Small Cohort of HIV-1-Exposed Seronegative Individuals. Front Immunol 2017; 8:136. [PMID: 28243241 PMCID: PMC5303892 DOI: 10.3389/fimmu.2017.00136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
Natural resistance to HIV-1 infection is influenced by genetics, viral-exposure, and endogenous immunomodulators such as vitamin D (VitD), being a multifactorial phenomenon that characterizes HIV-1-exposed seronegative individuals (HESNs). We compared mRNA expression of 10 antivirals, 5 immunoregulators, and 3 VitD pathway genes by qRT-PCR in cells of a small cohort of 11 HESNs, 16 healthy-controls (HCs), and 11 seropositives (SPs) at baseline, in response to calcidiol (VitD precursor) and/or aldithriol-2-(AT2)-inactivated HIV-1. In addition, the expression of TIM-3 on T and NK cells of six HCs after calcidiol and calcitriol (active VitD) treatments was evaluated by flow cytometry. Calcidiol increased the mRNA expression of HAVCR2 (TIM-3; Th1-cells inhibitor) in HCs and HESNs. AT2-HIV-1 increased the mRNA expression of the activating VitD enzyme CYP27B1, of the endogenous antiviral proteins MX2, TRIM22, APOBEC3G, and of immunoregulators ERAP2 and HAVCR2, but reduced the mRNA expression of VitD receptor (VDR) and antiviral peptides PI3 and CAMP in all groups. Remarkably, higher mRNA levels of VDR, CYP27B1, PI3, CAMP, SLPI, and of ERAP2 were found in HESNs compared to HCs either at baseline or after stimuli. Furthermore, calcitriol increases the percentage of CD4+ T cells expressing TIM-3 protein compared to EtOH controls. These results suggest that high mRNA expression of antiviral and VitD pathway genes could be genetically determined in HESNs more than viral-induced at least in peripheral blood mononuclear cells. Moreover, the virus could potentiate bio-activation and use of VitD, maintaining the homeostasis of the immune system. Interestingly, VitD-induced TIM-3 on T cells, a T cell inhibitory and anti-HIV-1 molecule, requires further studies to analyze the functional outcomes during HIV-1 infection.
Collapse
Affiliation(s)
- Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia; Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano, Milan, Italy
| | - Irma Saulle
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| | - Daria Trabattoni
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| | | | | | | | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín , Colombia
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy; Fondazione Don C. Gnocchi, IRCCS, Milan, Italy
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche-Luigi Sacco, Università Degli Studi di Milano , Milan , Italy
| |
Collapse
|
8
|
Omollo K, Boily-Larouche G, Lajoie J, Kimani M, Cheruiyot J, Kimani J, Oyugi J, Fowke KR. The Impact of Sex Work Interruption on Blood-Derived T Cells in Sex Workers from Nairobi, Kenya. AIDS Res Hum Retroviruses 2016; 32:1072-1078. [PMID: 26879184 PMCID: PMC5067831 DOI: 10.1089/aid.2015.0332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Unprotected sexual intercourse exposes the female genital tract (FGT) to semen-derived antigens, which leads to a proinflammatory response. Studies have shown that this postcoital inflammatory response can lead to recruitment of activated T cells to the FGT, thereby increasing risk of HIV infection. OBJECTIVE The purpose of this study was to evaluate the impact of sex work on activation and memory phenotypes of peripheral T cells among female sex workers (FSW) from Nairobi, Kenya. SUBJECTS Thirty FSW were recruited from the Pumwani Sex Workers Cohort, 10 in each of the following groups: HIV-exposed seronegative (at least 7 years in active sex work), HIV positive, and New Negative (HIV negative, less than 3 years in active sex work). Blood was obtained at three different phases (active sex work, abstinence from sex work-sex break, and following resumption of sex work). Peripheral blood mononuclear cells were isolated and stained for phenotypic markers (CD3, CD4, CD8, and CD161), memory phenotype markers (CD45RA and CCR7), activation markers (CD69, HLA-DR, and CD95), and the HIV coreceptor (CCR5). T-cell populations were compared between groups. RESULTS In HIV-positive women, CD8+CCR5+ T cells declined at the sex break period, while CD4+CD161+ T cells increased when returning to sex work. All groups showed no significant changes in systemic T-cell activation markers following the interruption of sex work, however, significant reductions in naive CD8+ T cells were noted. For each of the study points, HIV positives had higher effector memory and CD8+CD95+ T cells and lower naive CD8+ T cells than the HIV-uninfected groups. CONCLUSIONS Interruption of sex work had subtle effects on systemic T-cell memory phenotypes.
Collapse
Affiliation(s)
- Kenneth Omollo
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | | | - Julie Lajoie
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Makobu Kimani
- Kenyan AIDS Control Program, University of Nairobi, Nairobi, Kenya
| | | | - Joshua Kimani
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Kenyan AIDS Control Program, University of Nairobi, Nairobi, Kenya
| | - Julius Oyugi
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Kenyan AIDS Control Program, University of Nairobi, Nairobi, Kenya
| | - Keith Raymond Fowke
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Chin'ombe N, Ruhanya V. HIV/AIDS vaccines for Africa: scientific opportunities, challenges and strategies. Pan Afr Med J 2015; 20:386. [PMID: 26185576 PMCID: PMC4499268 DOI: 10.11604/pamj.2015.20.386.4660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
More than decades have already elapsed since human immunodeficiency virus (HIV) was identified as the causative agent of acquired immunodeficiency syndrome (AIDS). The HIV has since spread to all parts of the world with devastating effects. In sub-saharan Africa, the HIV/AIDS epidemic has reached unprecedented proportions. Safe, effective and affordable HIV/AIDS vaccines for Africans are therefore urgently needed to contain this public health problem. Although, there are challenges, there are also scientific opportunities and strategies that can be exploited in the development of HIV/AIDS vaccines for Africa. The recent RV144 Phase III trial in Thailand has demonstrated that it is possible to develop a vaccine that can potentially elicit modest protective immunity against HIV infection. The main objective of this review is to outline the key scientific opportunities, challenges and strategies in HIV/AIDS vaccine development in Africa.
Collapse
Affiliation(s)
- Nyasha Chin'ombe
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P O Box A178, Avondale, Harare, Zimbabwe
| | - Vurayai Ruhanya
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P O Box A178, Avondale, Harare, Zimbabwe
| |
Collapse
|
10
|
Wood LF, Chahroudi A, Chen HL, Jaspan HB, Sodora DL. The oral mucosa immune environment and oral transmission of HIV/SIV. Immunol Rev 2014; 254:34-53. [PMID: 23772613 DOI: 10.1111/imr.12078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The global spread of human immunodeficiency virus (HIV) is dependent on the ability of this virus to efficiently cross from one host to the next by traversing a mucosal membrane. Unraveling how mucosal exposure of HIV results in systemic infection is critical for the development of effective therapeutic strategies. This review focuses on understanding the immune events associated with the oral route of transmission (via breastfeeding or sexual oral intercourse), which occurs across the oral and/or gastrointestinal mucosa. Studies in both humans and simian immunodeficiency virus (SIV) monkey models have identified viral changes and immune events associated with oral HIV/SIV exposure. This review covers our current knowledge of HIV oral transmission in both infants and adults, the use of SIV models in understanding early immune events, oral immune factors that modulate HIV/SIV susceptibility (including mucosal inflammation), and interventions that may impact oral HIV transmission rates. Understanding the factors that influence oral HIV transmission will provide the foundation for developing immune therapeutic and vaccine strategies that can protect both infants and adults from oral HIV transmission.
Collapse
Affiliation(s)
- Lianna F Wood
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
11
|
Aguilar-Jiménez W, Zapata W, Caruz A, Rugeles MT. High transcript levels of vitamin D receptor are correlated with higher mRNA expression of human beta defensins and IL-10 in mucosa of HIV-1-exposed seronegative individuals. PLoS One 2013; 8:e82717. [PMID: 24349345 PMCID: PMC3857805 DOI: 10.1371/journal.pone.0082717] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/28/2013] [Indexed: 11/21/2022] Open
Abstract
Vitamin D (VitD) is an endogenous immunomodulator that could protect from HIV-1 infection reducing immune activation and inducing the expression of anti-HIV-1 peptides. To establish a correlation between VitD and natural resistance to HIV-1 infection, a case-control study using blood and mucosa samples of 58 HIV-1-exposed but seronegative (HESN) individuals, 43 HIV-1 seropositives (SPs) and 59 non-exposed healthy controls (HCs) was carried out. The VitD concentration in plasma was determined by ELISA, and mRNA relative units (RU) of VDR, IL-10, TGF-β, TNF-α and IL-1β in peripheral blood mononuclear cells (PBMCs), oral and genital mucosa was quantified by qRT-PCR. mRNA levels of human beta-defensin (HBD) -2 and -3 were previously reported and used for correlations. Significantly higher levels of VitD were found in plasma as well as higher mRNA RU of VDR in PBMCs, and in genital mucosa from HESN compared to HCs. In addition, higher mRNA RU of TNF-α, IL-1β and IL-10, and lower mRNA RU of TGF-β were found in PBMC from HESNs compared to HCs. We also observed higher IL-10 mRNA RU in genital mucosa of HESNs compared to HCs, and the mRNA levels of TNF-α in oral and genital mucosa of SPs were higher compared to HESNs. Furthermore, positive correlations between VDR and IL-10 mRNA RU in PBMCs and genital mucosa of HESNs were found. Finally, HBD-2 and HBD-3 mRNA RU were positively correlated with VDR mRNA expression in oral mucosa from HESNs. These results suggest that high levels of VitD and its receptor are associated with natural resistance to HIV-1 infection. Up-regulation of the anti-inflammatory IL-10, and the induction of anti-HIV-1 defensins in mucosa might be part of the mechanisms involved in this association. However, further studies are required to define causal associations.
Collapse
Affiliation(s)
- Wbeimar Aguilar-Jiménez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wildeman Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Antonio Caruz
- Unidad de Inmunogenética, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, España
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- * E-mail:
| |
Collapse
|
12
|
Taniwaki SA, Figueiredo AS, Araujo JP. Virus-host interaction in feline immunodeficiency virus (FIV) infection. Comp Immunol Microbiol Infect Dis 2013; 36:549-57. [PMID: 23910598 PMCID: PMC7112627 DOI: 10.1016/j.cimid.2013.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 12/17/2022]
Abstract
Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections.
Collapse
Affiliation(s)
- Sueli Akemi Taniwaki
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, São Paulo, Brazil.
| | | | | |
Collapse
|
13
|
da Silva RC, Bedin E, Mangano A, Aulicino P, Pontillo A, Brandão L, Guimarães R, Arraes LC, Sen L, Crovella S. HIV mother-to-child transmission: a complex genetic puzzle tackled by Brazil and Argentina research teams. INFECTION GENETICS AND EVOLUTION 2013; 19:312-22. [PMID: 23524206 DOI: 10.1016/j.meegid.2013.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 11/24/2022]
Abstract
Human immunodeficiency virus (HIV) mother-to-child transmission is a complex event, depending upon environmental factors and is affected by host genetic factors from mother and child, as well as viral genetic elements. The integration of multiple parameters (CD4 cell count, virus load, HIV subtype, and host genetic markers) could account for the susceptibility to HIV infection, a multifactorial trait. The goal of this manuscript is to analyze the immunogenetic factors associated to HIV mother-to-child transmission, trying to unravel the genetic puzzle of HIV mother-to-child transmission and considering the experience in this topic of two research groups from Brazil and Argentina.
Collapse
Affiliation(s)
- R Celerino da Silva
- Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n°, CEP 50.670-420, Cidade Universitária, Recife, Pernambuco, Brazil; Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n°, CEP 50.670-420, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Surasombatpattana P, Patramool S, Luplertlop N, Yssel H, Missé D. Aedes aegypti saliva enhances dengue virus infection of human keratinocytes by suppressing innate immune responses. J Invest Dermatol 2012; 132:2103-5. [PMID: 22475758 DOI: 10.1038/jid.2012.76] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|