1
|
Estradera-Bel M, La Touche R, Pro-Marín D, Cuenca-Martínez F, Paris-Alemany A, Grande-Alonso M. Exploring temporal congruence in motor imagery and movement execution in non-specific chronic low back pain. Brain Cogn 2024; 182:106227. [PMID: 39454412 DOI: 10.1016/j.bandc.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Chronic non-specific low back pain (NSCLBP) is linked to sensorimotor dysfunctions and altered motor planning, likely due to neuroplastic changes. Motor imagery (MI) and movement execution share neural pathways, but the relationship between imagined and executed movements in NSCLBP patients remains underexplored. This study aimed to assess the temporal congruence between imagined and executed movements in NSCLBP sufferers, with secondary goals of investigating group differences in movement chronometry, psychological well-being, and disability, as well as possible correlations among these factors. Fifty-six participants, including 28 NSCLBP patients and 28 asymptomatic subjects (AS), performed lumbar flexion and Timed Up and Go (TUG) tasks. NSCLBP patients showed significant temporal incongruence in both tasks, executing movements more slowly than imagined, whereas AS displayed incongruence only in the TUG task. NSCLBP patients also took longer to imagine and execute lumbar flexion movements compared to AS, with correlations observed between execution delays, higher disability, and greater fear of movement. The findings highlight a lack of temporal congruence in NSCLBP patients, especially in lumbar flexion, emphasizing the complex relationship between chronic pain, motor ability, and psychological factors. These results suggest that integrated treatment approaches addressing cognitive and emotional aspects are crucial for managing NSCLBP.
Collapse
Affiliation(s)
- Manuel Estradera-Bel
- Unidad de Trastornos Musculoesqueléticos, Instituto de Rehabilitación Funcional (IRF) La Salle, Centro Superior Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roy La Touche
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), Madrid, Spain; Departamento de Fisioterapia, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Pro-Marín
- Unidad de Trastornos Musculoesqueléticos, Instituto de Rehabilitación Funcional (IRF) La Salle, Centro Superior Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ferran Cuenca-Martínez
- Department of Physiotherapy, University of Valencia, Gascó Oliag n° 5, Valencia 46010, Spain
| | - Alba Paris-Alemany
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), Madrid, Spain; Departamento de Radiología, Rehabilitación y Fisioterapia. Facultad de Enfermería, Fisioterapia y Podología. Universidad Complutense de Madrid, Madrid, Spain.
| | - Mónica Grande-Alonso
- Universidad de Alcalá, Facultad de Medicina, Departamento de Cirugía, Ciencias Médicas y Sociales, Alcalá de Henares, Spain
| |
Collapse
|
2
|
Beccherle M, Scandola M. How pain and body representations transform each other: A narrative review. J Neuropsychol 2024. [PMID: 39233655 DOI: 10.1111/jnp.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Pain, as a multidimensional and subjective experience, intertwines with various aspects of body representation, involving sensory, affective and motivational components. This review explores the bidirectional relationship between pain and body representations, emphasizing the impact of the sense of ownership on pain perception, the transformative impact of pain on motor imagery, the effects associated with vicarious pain perception on body representations and the role of pain in the maintenance of body representations in specific clinical conditions. Literature indicates complex interactions between pain and body representations, with the sense of ownership inducing analgesic effects in some cases and hyperalgesia in others, contingent upon factors such as the appearance of the affected limb. Pain sensations inform the body on which actions might be executed without harm, and which are potentially dangerous. This information impacts on motor imagery too, showing reduced motor imagery and increased reaction times in tasks where motor imagery involves the painful body parts. Finally, contrary to the conventional view, according to which pain impairs body representation, evidence suggests that pain can serve as an informative somatosensory index, preserving or even enhancing the representation of the absent or affected body parts. This bidirectional relationship highlights the dynamic and multifaceted nature of the interplay between pain and body representations, offering insights into the adaptive nature of the central nervous system in response to perceived bodily states.
Collapse
Affiliation(s)
- Maddalena Beccherle
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Verona, Italy
| | - Michele Scandola
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Grosprêtre S. Motor imagery from brain to muscle: a commentary on Bach et al., (2022). PSYCHOLOGICAL RESEARCH 2024; 88:1805-1807. [PMID: 38285091 DOI: 10.1007/s00426-023-01923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
In a recent article entitled "Why motor imagery is not really motoric: towards a re-conceptualization in terms of effect-based action control", Bach et al. nicely renewed the concept of motor equivalence between actual movement and motor imagery (MI), i.e. the mental simulation of an action without its corresponding motor output. Their approach is largely based on behavioral studies and, to a lesser extent, on the literature using cerebral imagery. However, the literature on cortico-spinal circuitry modulation during MI can provide further, interesting aspects. Indeed, when it comes to addressing the motor system, one should consider the whole path from brain region to muscle contraction, including sub-cortical structures such as the spinal circuitry. This commentary aims at bridging this gap by providing supplemental evidence and outlining a complementary approach.
Collapse
Affiliation(s)
- Sidney Grosprêtre
- UR-4660, C3S Laboratory Culture, Sport, Health and Society, UFR STAPS, University of Franche-Comté, 31, Chemin de l'Epitaphe, 2500, Besançon, France.
- Institut Universitaire de France, IUF, Paris, France.
| |
Collapse
|
4
|
Dos Anjos T, Guillot A, Daligault S, Chamoun DM, De Sousa T, Di Rienzo F. Low-frequency sounds combined with motor imagery elicits a transient disruption of force performance: A path to neuromotor reprogramming? Neuroimage 2024; 297:120746. [PMID: 39033789 DOI: 10.1016/j.neuroimage.2024.120746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
The effectiveness of motor imagery (MI) training on sports performance is now well-documented. Recently, it has been proposed that a single session of MI combined with low frequency sound (LFS) might enhance muscle activation. However, the neural mechanisms underlying this effect remain unknown. We set up a test-retest intervention over the course of 2 consecutive days to evaluate the effect of (i) MI training (MI, n = 20), (ii) MI combined with LFS (MI + LFS, n = 20), and (iii) a control condition (CTRL, n = 20) on force torque produced across repeated maximal voluntary contractions of the quadriceps before (Pretest), after (Posttest) and at +12 h (Retention) post-intervention. We collected the integrated electromyograms of the quadriceps muscles, as well as brain electrical potentials during each experimental intervention. In the CTRL group, total force torque decreased from Pretest to Retention and from Posttest to Retention. By contrast, there was an increase between Posttest and Retention in both MI + LFS and MI groups (both ηP2 = 0.03, p < 0.05). Regression analyses further revealed a negative relationship between force performance and EEG activity in the MI + LFS group only. The data support a transient interference of LFS on cortical activity underlying the priming effects of MI practice on force performance. Findings are discussed in relation to the potential for motor reprogramming through MI combined with LFS.
Collapse
Affiliation(s)
- Typhanie Dos Anjos
- Universite Lyon 1, UCB-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité-UR 7424, F-69622, Villeurbanne Cedex, France; Allyane®, 84 quai Joseph Gillet, 69004 Lyon, France
| | - Aymeric Guillot
- Universite Lyon 1, UCB-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité-UR 7424, F-69622, Villeurbanne Cedex, France
| | - Sebastien Daligault
- Centre de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Department of Magnetoencephalography, F-69500 Bron, France
| | - Donna-Maria Chamoun
- Universite Lyon 1, UCB-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité-UR 7424, F-69622, Villeurbanne Cedex, France
| | - Thomas De Sousa
- Universite Lyon 1, UCB-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité-UR 7424, F-69622, Villeurbanne Cedex, France
| | - Franck Di Rienzo
- Universite Lyon 1, UCB-Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité-UR 7424, F-69622, Villeurbanne Cedex, France.
| |
Collapse
|
5
|
Furuta T, Morita T, Miura G, Naito E. Structural and functional features characterizing the brains of individuals with higher controllability of motor imagery. Sci Rep 2024; 14:17243. [PMID: 39060339 PMCID: PMC11282224 DOI: 10.1038/s41598-024-68425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Motor imagery is a higher-order cognitive brain function that mentally simulates movements without performing the actual physical one. Although motor imagery has attracted the interest of many researchers, and mental practice utilizing motor imagery has been widely used in sports training and post-stroke rehabilitation, neural bases that determine individual differences in motor imagery ability are not well understood. In this study, using controllability of motor imagery (CMI) test that can objectively evaluate individual ability to manipulate one's imaginary postures, we examined structural and functional features characterizing the brains of individuals with higher controllability of motor imagery, by analyzing T1-weighted structural MRI data obtained from 89 participants and functional MRI data obtained from 28 of 89 participants. The higher CMI test scorers had larger volume in the bilateral superior frontoparietal white matter regions. The CMI test activated the bilateral dorsal premotor cortex (PMD) and superior parietal lobule (SPL); specifically, the left PMD and/or the right SPL enhanced functional coupling with the visual body, somatosensory, and motor/kinesthetic areas in the higher scorers. Hence, controllability of motor imagery is higher for those who well-develop superior frontoparietal network, and for those whose this network accesses these sensory areas to predict the expected multisensory experiences during motor imagery. This study elucidated for the first time the structural and functional features characterizing the brains of individuals with higher controllability of motor imagery, and advanced understanding of individual differences in motor imagery ability.
Collapse
Affiliation(s)
- Tomoya Furuta
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Gen Miura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Lambert KJM, Chen YY, Donoff C, Elke J, Madan CR, Singhal A. Handedness effects on imagery of dominant- versus non-dominant-hand movements: An electroencephalographic investigation. Eur J Neurosci 2023; 58:3286-3298. [PMID: 37501346 DOI: 10.1111/ejn.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Mental representations of our bodies are thought to influence how we interact with our surroundings. We can examine these mental representations through motor imagery, the imagination of movement using scalp EEG recordings. The visual modality of motor imagery emphasises 'seeing' the imagined movement and is associated with increased activity in the alpha rhythm (8-14 Hz) measured over the occipital regions. The kinaesthetic modality emphasises 'feeling' the movement and is associated with decreased activity in the mu rhythm (8-14 Hz) measured over the sensorimotor cortices. These two modalities can be engaged in isolation or together. We recorded EEG activity while 37 participants (17 left-hand dominant) completed an objective hand motor imagery task. Left-handers exhibited significant activity differences between occipital and motor regions only during imagery of right-hand (non-dominant-hand) movements. This difference was primarily driven by less oscillatory activity in the mu rhythm, which may reflect a shift in imagery strategy wherein participants placed more effort into generating the kinaesthetic sensations of non-dominant-hand imagery. Spatial features of 8-14 Hz activity generated from principal component analysis (PCA) provide further support for a strategy shift. Right-handers also exhibited significant differences between alpha and mu activity during imagery of non-dominant movements. However, this difference was not primarily driven by either rhythm, and no differences were observed in the group's PCA results. Together, these findings indicate that individuals imagine movement differently when it involves their dominant versus non-dominant hand, and left-handers may be more flexible in their motor imagery strategies.
Collapse
Affiliation(s)
- Kathryn J M Lambert
- Department of Occupational Therapy, University of Alberta, Edmonton, Alberta, Canada
| | - Yvonne Y Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Donoff
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonah Elke
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Anthony Singhal
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Mao X, Huang S, Ouyang M, Xie Y, Tan X. Effect of skill proficiency on motor imagery ability between amateur dancers and non-dancers. Front Psychol 2022; 13:899724. [PMID: 36033030 PMCID: PMC9415613 DOI: 10.3389/fpsyg.2022.899724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
Evidence has shown that athletes with high motor skill proficiency possess higher motor imagery ability than those with low motor skill proficiency. However, less is known whether this superiority in motor imagery ability emerges over amateur athletes. To address the issue, the present study aimed to investigate the individual differences in motor imagery ability between amateur dancers and non-dancers. Forty participants completed a novel dance movement reproduction task and measures of the vividness of visual imagery questionnaire (VVIQ) and the vividness of motor imagery questionnaire (VMIQ). The results showed that, relative to non-dancers, amateur dancers had higher ability of motor imagery to reproduce the lower-limb and upper-limb dance movements during the dance movement reproduction task. Besides, amateur dancers displayed higher abilities of the visual motor imagery and the kinesthetic imagery, but comparable visual imagery ability as the non-dancers. These findings suggest that the mental representation of motors but not the visual is affected by the motor skill levels, due to the motor imagery practice in sports amateurs.
Collapse
Affiliation(s)
- Xiaoling Mao
- Education Center for Mental Health, Guangxi Minzu University, Nanning, China
| | - Shaoxu Huang
- Education Center for Mental Health, Guangxi Minzu University, Nanning, China
| | - Mingkun Ouyang
- School of Education Science, Guangxi Minzu University, Nanning, China
- *Correspondence: Mingkun Ouyang,
| | - Yangqiu Xie
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, China
| | - Xinhua Tan
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
8
|
Yang H, Ogawa K. Decoding of Motor Imagery Involving Whole-body Coordination. Neuroscience 2022; 501:131-142. [PMID: 35952995 DOI: 10.1016/j.neuroscience.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/08/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
The present study investigated whether different types of motor imageries can be classified based on the location of the activation peaks or the multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) and compared the difference between visual motor imagery (VI) and kinesthetic motor imagery (KI). During fMRI scanning sessions, 25 participants imagined four movements included in the Motor Imagery Questionnaire-Revised (MIQ-R): knee lift, jump, arm movement, and waist bend. These four imagined movements were then classified based on the peak location or the patterns of fMRI signal values. We divided the participants into two groups based on whether they found it easier to generate VI (VI group, n = 10) or KI (KI group, n = 15). Our results show that the imagined movements can be classified using both the location of the activation peak and the spatial activation patterns within the sensorimotor cortex, and MVPA performs better than the activation peak classification. Furthermore, our result reveals that the KI group achieved a higher MVPA decoding accuracy within the left primary somatosensory cortex than the VI group, suggesting that the modality of motor imagery differently affects the classification performance in distinct brain regions.
Collapse
Affiliation(s)
- Huixiang Yang
- Department of Psychology, Graduate School of Humanities and Human Sciences, Hokkaido University, Japan
| | - Kenji Ogawa
- Department of Psychology, Graduate School of Humanities and Human Sciences, Hokkaido University, Japan.
| |
Collapse
|
9
|
Kline A, Forkert ND, Felfeliyan B, Pittman D, Goodyear B, Ronsky J. fMRI-Informed EEG for brain mapping of imagined lower limb movement: Feasibility of a brain computer interface. J Neurosci Methods 2021; 363:109339. [PMID: 34454954 DOI: 10.1016/j.jneumeth.2021.109339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND EEG and fMRI have contributed greatly to our understanding of brain activity and its link to behaviors by helping to identify both when and where the activity occurs. This is particularly important in the development of brain-computer interfaces (BCIs), where feed forward systems gather data from imagined brain activity and then send that information to an effector. The purpose of this study was to develop and evaluate a computational approach that enables an accurate mapping of spatial brain activity (fMRI) in relation to the temporal receptors (EEG electrodes) associated with imagined lower limb movement. NEW METHOD EEG and fMRI data from 16 healthy, male participants while imagining lower limb movement were used for this purpose. A combined analysis of fMRI data and EEG electrode locations was developed to identify EEG electrodes with a high likelihood of capturing imagined lower limb movement originating from various clusters of brain activity. This novel feature selection tool was used to develop an artificial neural network model to classify right and left lower limb movement. RESULTS Results showed that left versus right lower limb imagined movement could be classified with 66.5% accuracy using this approach. Comparison with existing methods: Adopting a purely data-driven approach for feature selection to use in the right/left classification task resulted in the same accuracy (66.6%) but with reduced interpretability. CONCLUSIONS The developed fMRI-informed EEG approach could pave the way towards improved brain computer interfaces for lower limb movement while also being applicable to other systems where fMRI could be helpful to inform EEG acquisition and processing.
Collapse
Affiliation(s)
- Adrienne Kline
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.
| | - Nils D Forkert
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Banafshe Felfeliyan
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Pittman
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Bradley Goodyear
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Janet Ronsky
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Li L, Smith DM. Neural Efficiency in Athletes: A Systematic Review. Front Behav Neurosci 2021; 15:698555. [PMID: 34421553 PMCID: PMC8374331 DOI: 10.3389/fnbeh.2021.698555] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
According to the neural efficiency hypothesis (NEH), professionals have more effective cortical functions in cognitive tasks. This study is focusing on providing a systematic review of sport-related NEH studies with functional neuroimaging or brain stimulation while performing a sport-specific task, with the aim to answer the question: How does long-term specialized training change an athlete's brain and improve efficiency? A total of 28 studies (N = 829, Experimental Group n = 430) from 2001 to 2020 (Median = 2014, SD = 5.43) were analyzed and results were organized into four different sections: expert-novice samples, perceptual-cognitive tasks and neuroimaging technologies, efficiency paradox, and the cluster analysis. Researchers examined a wide range of sport-specific videos and multiple object tracking (MOT) specific to 18 different sports and utilized blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), and electroencephalogram (EEG). Expert-novice comparisons were often adopted into investigations about the variations in general about optimal-controlled performance, neurophysiology, and behavioral brain research. Experts tended to perform at faster speeds, more accurate motor behavior, and with greater efficiency than novices. Experts report lower activity levels in the sensory and motor cortex with less energy expenditure, experts will possibly be more productive. These findings generally supported the NEH across the studies reviewed. However, an efficiency paradox and proficient brain functioning were revealed as the complementary hypothesis of the NEH. The discussion concentrates on strengths and key limitations. The conclusion highlights additional concerns and recommendations for prospective researchers aiming to investigate a broader range of populations and sports.
Collapse
Affiliation(s)
- Longxi Li
- Department of Physical Education and Health Education, Springfield College, Springfield, MA, United States
| | - Daniel M Smith
- Department of Physical Education and Health Education, Springfield College, Springfield, MA, United States
| |
Collapse
|
11
|
Feasibility of motor imagery and effects of activating and relaxing practice on autonomic functions in healthy young adults: A randomised, controlled, assessor-blinded, pilot trial. PLoS One 2021; 16:e0254666. [PMID: 34255812 PMCID: PMC8277051 DOI: 10.1371/journal.pone.0254666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/13/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Motor imagery (MI) is the mental rehearsal of a motor task. Between real and imagined movements, a functional equivalence has been described regarding timing and brain activation. The primary study aim was to investigate the feasibility of MI training focusing on the autonomic function in healthy young people. Further aims were to evaluate participants’ MI abilities and compare preliminary effects of activating and relaxing MI on autonomic function and against controls. Methods A single-blinded randomised controlled pilot trial was performed. Participants were randomised to the activating MI (1), relaxing MI (2), or control (3) group. Following a MI familiarisation, they practiced home-based kinaesthetic MI for 17 minutes, 5 times/week for 2 weeks. Participants were called once for support. The primary outcome was the feasibility of a full-scale randomised controlled trial using predefined criteria. Secondary outcomes were participants’ MI ability using the Movement Imagery Questionnaire-Revised, mental chronometry tests, hand laterality judgement and semi-structured interviews, autonomic function. Results A total of 35 participants completed the study. The feasibility of a larger study was confirmed, despite 35% attrition related to the COVID-19 pandemic. Excellent MI capabilities were seen in participants, and significant correlations between MI ability measures. Interview results showed that participants accepted or liked both interventions. Seven major themes and insider recommendations for MI interventions emerged. No significant differences and negligible to medium effects were observed in MI ability or autonomic function between baseline and post-intervention measures or between groups. Conclusions Results showed that neither activating nor relaxing MI seems to change autonomic function in healthy individuals. Further adequately powered studies are required to answer open questions remaining from this study. Future studies should investigate effects of different MI types over a longer period, to rule out habituation and assess autonomic function at several time points and simultaneously with MI.
Collapse
|
12
|
Amemiya K, Morita T, Hirose S, Ikegami T, Hirashima M, Naito E. Neurological and behavioral features of locomotor imagery in the blind. Brain Imaging Behav 2021; 15:656-676. [PMID: 32240463 PMCID: PMC8032591 DOI: 10.1007/s11682-020-00275-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In people with normal sight, mental simulation (motor imagery) of an experienced action involves a multisensory (especially kinesthetic and visual) emulation process associated with the action. Here, we examined how long-term blindness influences sensory experience during motor imagery and its neuronal correlates by comparing data obtained from blind and sighted people. We scanned brain activity with functional magnetic resonance imaging (fMRI) while 16 sighted and 14 blind male volunteers imagined either walking or jogging around a circle of 2 m radius. In the training before fMRI, they performed these actions with their eyes closed. During scanning, we explicitly instructed the blindfolded participants to generate kinesthetic motor imagery. After the experimental run, they rated the degree to which their motor imagery became kinesthetic or spatio-visual. The imagery of blind people was more kinesthetic as per instructions, while that of the sighted group became more spatio-visual. The imagery of both groups commonly activated bilateral frontoparietal cortices including supplementary motor areas (SMA). Despite the lack of group differences in degree of brain activation, we observed stronger functional connectivity between the SMA and cerebellum in the blind group compared to that in the sighted group. To conclude, long-term blindness likely changes sensory emulation during motor imagery to a more kinesthetic mode, which may be associated with stronger functional coupling in kinesthetic brain networks compared with that in sighted people. This study adds valuable knowledge on motor cognition and mental imagery processes in the blind.
Collapse
Affiliation(s)
- Kaoru Amemiya
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Hirose
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Ikegami
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Hirashima
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Kline A, Gaina Ghiroaga C, Pittman D, Goodyear B, Ronsky J. EEG differentiates left and right imagined Lower Limb movement. Gait Posture 2021; 84:148-154. [PMID: 33340844 DOI: 10.1016/j.gaitpost.2020.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Identifying which EEG signals distinguish left from right leg movements in imagined lower limb movement is crucial to building an effective and efficient brain-computer interface (BCI). Past findings on this issue have been mixed, partly due to the difficulty in collecting and isolating the relevant information. The purpose of this study was to contribute to this new and important literature. RESEARCH QUESTION Can left versus right imagined stepping be differentiated using the alpha, beta, and gamma frequencies of EEG data at four electrodes (C1, C2, PO3, and PO4)? METHODS An experiment was conducted with a sample of 16 healthy male participants. They imagined left and right lower limb movements across 60 trials at two time periods separated by one week. Participants were fitted with a 64-electrode headcap, lay supine on a specially designed device and then completed the imagined task while observing a customized computer-generated image of a human walking to signify the left and right steps, respectively. RESULTS Findings showed that eight of the twelve frequency bands from 4 EEG electrodes were significant in differentiating imagined left from right lower limb movement. Using these data points, a neural network analysis resulted in an overall participant average test classification accuracy of left versus right movements at 63 %. SIGNIFICANCE Our study provides support for using the alpha, beta and gamma frequency bands at the sensorimotor areas (C1 and C2 electrodes) and incorporating information from the parietal/occipital lobes (PO3 and PO4 electrodes) for focused, real-time EEG signal processing to assist in creating a BCI for those with lower limb compromised mobility.
Collapse
Affiliation(s)
- Adrienne Kline
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta Canada.
| | - Calin Gaina Ghiroaga
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Pittman
- Department of Radiology, University of Calgary, Alberta, Canada
| | | | - Janet Ronsky
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Kraeutner SN, McArthur JL, Kraeutner PH, Westwood DA, Boe SG. Leveraging the effector independent nature of motor imagery when it is paired with physical practice. Sci Rep 2020; 10:21335. [PMID: 33288785 PMCID: PMC7721807 DOI: 10.1038/s41598-020-78120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022] Open
Abstract
While considered analogous to physical practice, the nature of imagery-based skill acquisition—specifically whether or not both effector independent and dependent encoding occurs through motor imagery—is not well understood. Here, motor imagery-based training was applied prior to or after physical practice-based training to probe the nature of imagery-based skill acquisition. Three groups of participants (N = 38) engaged in 10 days of training of a dart throwing task: 5 days of motor imagery prior to physical practice (MIP-PP), motor imagery following physical practice (PP-MIP), or physical practice only (PP-PP). Performance-related outcomes were assessed throughout. Brain activity was measured at three time points using fMRI (pre/mid/post-training; MIP-PP and PP-MIP groups). In contrast with physical practice, motor imagery led to changes in global versus specific aspects of the movement. Following 10 days of training, performance was greater when motor imagery preceded physical practice, although remained inferior to performance resulting from physical practice alone. Greater activation of regions that support effector dependent encoding was observed mid-, but not post-training for the PP-MIP group. Findings indicate that changes driven by motor imagery reflect effector independent encoding, providing new information regarding how motor imagery may be leveraged for skill acquisition.
Collapse
Affiliation(s)
- Sarah N Kraeutner
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Department of Physical Therapy, University of British Columbia, Vancouver, BC, V6T1Z3, Canada
| | - Jennifer L McArthur
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, B3H4R1, Canada
| | - Paul H Kraeutner
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, B3H4R1, Canada
| | - David A Westwood
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H4R2, Canada.,School of Health and Human Performance, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - Shaun G Boe
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, B3H4R1, Canada. .,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H4R2, Canada. .,School of Health and Human Performance, Dalhousie University, Halifax, NS, B3H4R2, Canada. .,School of Physiotherapy, Dalhousie University, Rm 407, 4th Floor Forrest Building, 5869 University Avenue, PO Box 15000, Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
15
|
Cederström N, Granér S, Nilsson G, Ageberg E. Effect of motor imagery on enjoyment in knee-injury prevention and rehabilitation training: A randomized crossover study. J Sci Med Sport 2020; 24:258-263. [PMID: 32958377 DOI: 10.1016/j.jsams.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The novel MOTor Imagery to Facilitate Sensorimotor Re-Learning (MOTIFS) model takes a uniquely holistic approach by integrating mental and physical aspects into current training programs. The aim of this trial was to evaluate enjoyment of MOTIFS training as compared to Care-as-Usual (CaU) knee injury and/or rehabilitation training. The primary hypothesis was that enjoyment would be greater following MOTIFS training than CaU training. DESIGN Block-randomized 2×2 cross-over trial. METHODS Thirty athletes (18-31years, 50% women) currently or previously active in team ball sports, with no pain or injury preventing jump and/or directional changes. MOTIFS training integrates sport-specific experiences and equipment into physical exercises to increase individualized realism and meaning. The CaU condition included solely physical exercise. The main outcome was the Physical Activity Enjoyment Scale (PACES). Secondary outcomes included Self-Assessment Manikin (SAM; subscales Valence, Arousal, Dominance), Perceived exertion, pulse, duration, and movement quality. RESULTS PACES scores were better following MOTIFS training than CaU (point estimate 24.67; 95% CI: 19.0; 30.3). Between-groups differences in SAM Valence (median 2, quartiles 1;3), Arousal (median 1, quartiles 0;2.25), and Dominance (median 0.5, quartiles 0;2), and RPE (median 1, quartiles -0.3;2), training duration (mean 5.34, 95% CI: -0.17; -0.73), and pulse (median 7.50, quartiles 0.25;16.75) were higher following MOTIFS training than CaU training. CONCLUSIONS Results suggest that the MOTIFS model, which integrates simultaneous physical and psychological interventions, is a clinically plausible method of influencing enjoyment and other psychological outcomes. Further studies may explore effects of the MOTIFS principles on injury prevention and rehabilitation training.
Collapse
Affiliation(s)
| | - Simon Granér
- Department of Psychology, Lund University, Sweden
| | | | - Eva Ageberg
- Department of Health Sciences, Lund University, Sweden
| |
Collapse
|
16
|
Kline A, Pittman D, Ronsky J, Goodyear B. Differentiating the Brain's involvement in Executed and Imagined Stepping using fMRI. Behav Brain Res 2020; 394:112829. [PMID: 32717374 DOI: 10.1016/j.bbr.2020.112829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to extend the extant literature regarding brain areas that are activated during executed and imagined lower limb movement. Past research suggests that stepping, as a cyclical movement, should activate the motor control areas of the brain that integrates smooth movements with spinal cord nerves. The neuronal activity needed to imagine that same activity is likely to recruit additional sensory-motor areas that provide initiation and inhibition signals, making this task take on a neuronal activity pattern that is more similar to discrete movements. To assess this research question, 16 participants took part in the current study where they executed and imagined stepping, with movement at the hip, knee, and ankle joints, while viewing a computer-generated image of a human walking. A block design with a total of 10 blocks for rest and task for each condition was used. Rest blocks lasted 18 seconds, followed by an 18-second display of the visual stimulus. Results showed that in the executed condition, areas of the brain that are most prominently associated with sensory-motor activity were activated. In the imagined condition areas of the brain associated with movement control, inhibition of movement, and the integration of sensory input and motor output (parietal and occipital) were also activated. These findings contribute to the literature identifying brain areas that are activated in lower limb locomotion.
Collapse
Affiliation(s)
- Adrienne Kline
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada.
| | - Daniel Pittman
- Cumming School of Medicine University of Calgary, Calgary, AB, Canada
| | - Janet Ronsky
- Department of Mechanical and Manufacturing Engineering University of Calgary, Calgary, AB, Canada
| | - Bradley Goodyear
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Menicucci D, Di Gruttola F, Cesari V, Gemignani A, Manzoni D, Sebastiani L. Task-independent Electrophysiological Correlates of Motor Imagery Ability from Kinaesthetic and Visual Perspectives. Neuroscience 2020; 443:176-187. [PMID: 32736068 DOI: 10.1016/j.neuroscience.2020.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
Motor imagery (MI) ability is highly subjective, as indicated by the individual scores of the MIQ-3 questionnaire, and poor imagers compensate for the difficulty in performing MI with larger cerebral activations, as demonstrated by MI studies involving hands/limbs. In order to identify general, task-independent MI ability correlates, 16 volunteers were stratified with MIQ-3. The scores in the kinaesthetic (K) and 1st-person visual (V) perspectives were associated with EEG patterns obtained during K-MI and V-MI of the same complex MIQ-3 movements during these MI tasks (Spearman's correlation, significance at <0.05, SnPM corrected). EEG measures were relative to rest (relaxation, closed eyes), and based on six electrode clusters both for band spectral content and connectivity (Granger causality). Lower K-MI ability was associated with greater theta decreases during tasks in fronto-central clusters and greater inward information flow to prefrontal clusters for theta, high alpha and beta bands. On the other hand, power band relative decreases were associated with V-MI ability in fronto-central clusters for low alpha and left fronto-central and both centro-parietal clusters for beta bands. The results thus suggest different computational mechanisms for MI-V and MI-K. The association between low alpha/beta desynchronization and V-MIQ scores and between theta changes and K-MIQ scores suggest a cognitive effort with greater cerebral activation in participants with lower V-MI ability. The association between information flow to prefrontal hub and K-MI ability suggest the need for a continuous update of information to support MI-related executive functions in subjects with poor K-MI ability.
Collapse
|
18
|
Kraeutner SN, Stratas A, McArthur JL, Helmick CA, Westwood DA, Boe SG. Neural and Behavioral Outcomes Differ Following Equivalent Bouts of Motor Imagery or Physical Practice. J Cogn Neurosci 2020; 32:1590-1606. [PMID: 32420839 DOI: 10.1162/jocn_a_01575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite its reported effectiveness for the acquisition of motor skills, we know little about how motor imagery (MI)-based brain activation and performance evolves when MI (the imagined performance of a motor task) is used to learn a complex motor skill compared to physical practice (PP). The current study examined changes in MI-related brain activity and performance driven by an equivalent bout of MI- or PP-based training. Participants engaged in 5 days of either MI or PP of a dart-throwing task. Brain activity (via fMRI) and performance-related outcomes were obtained using a pre/post/retention design. Relative to PP, MI-based training did not drive robust changes in brain activation and was inferior for realizing improvements in performance: Greater activation in regions critical to refining the motor program was observed in the PP versus MI group posttraining, and relative to those driven via PP, MI led only to marginal improvements in performance. Findings indicate that the modality of practice (i.e., MI vs. PP) used to learn a complex motor skill manifests as differences in both resultant patterns of brain activity and performance. Ultimately, by directly comparing brain activity and behavioral outcomes after equivalent training through MI versus PP, this work provides unique knowledge regarding the neural mechanisms underlying learning through MI.
Collapse
|
19
|
Orlandi A, Arno E, Proverbio AM. The Effect of Expertise on Kinesthetic Motor Imagery of Complex Actions. Brain Topogr 2020; 33:238-254. [PMID: 32112306 DOI: 10.1007/s10548-020-00760-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 02/23/2020] [Indexed: 12/25/2022]
Abstract
The ability to mentally simulate an action by recalling the body sensations relative to the real execution is referred to as kinesthetic motor imagery (MI). Frontal and parietal motor-related brain regions are generally engaged during MI. The present study aimed to investigate the time course and neural correlates of complex action imagery and possible effects of expertise on the underlying action representation processes. Professional ballet dancers and controls were presented with effortful and effortless ballet steps and instructed to mentally reproduce each movement during EEG recording. Time-locked MI was associated with an Anterior Negativity (AN) component (400-550 ms) that was larger in dancers relative to controls. The AN was differentially modulated by the motor content (effort) as a function of ballet expertise. It was more negative in response to effortful (than effortless) movements in control participants only. This effect also had a frontal distribution in controls and a centro-parietal distribution in dancers, as shown by the topographic maps of the scalp voltage. The source reconstruction (swLORETA) of the recorded potentials in the AN time-window showed enhanced engagement of prefrontal regions in controls (BA 10/47) relative to dancers, and occipitotemporal (BA 20) and bilateral sensorimotor areas in dancers (BA6/40) compared with controls. This evidence seems to suggest that kinesthetic MI of complex action relied on visuomotor simulation processes in participants with acquired dance expertise. Simultaneously, increased cognitive demands occurred in participants lacking in motor knowledge with the specific action. Hence, professional dance training may lead to refined action representation processes.
Collapse
Affiliation(s)
- Andrea Orlandi
- Department of Psychology, Neuro-MI, Milan Center for Neuroscience, University of Milano - Bicocca, Milan, Italy.
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
| | - Elisa Arno
- Department of Psychology, Neuro-MI, Milan Center for Neuroscience, University of Milano - Bicocca, Milan, Italy
| | - Alice Mado Proverbio
- Department of Psychology, Neuro-MI, Milan Center for Neuroscience, University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
20
|
Learning to play badminton altered resting-state activity and functional connectivity of the cerebellar sub-regions in adults. PLoS One 2019; 14:e0223234. [PMID: 31574108 PMCID: PMC6771995 DOI: 10.1371/journal.pone.0223234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that sport experts are different from novices in functions and structures of the cerebellar sub-regions and the functional connectivity (FC) associated with the cerebellum, suggesting the role of the cerebellum on motor skill learning (MSL). However, the manipulation of individuals with different motor skills fails to exclude the effects of innate talents. In addition, individuals with higher motor skills often start with the MSL in their young ages. It is still unclear whether the effects regarding the cerebellum would be shown at one's adult age. The present study was to directly alter individuals' motor skills to investigate whether MSL (taking learning to play badminton as an example) in adulthood influences resting-state activity in the cerebellum. To this end, young adults without ball training experience were recruited as participants and were assigned randomly into the experimental group and the control group. Participants in the experimental group were asked to attend a badminton training course for 12 weeks, while the control group did not regularly attend any ball sports during this period. Resting-state functional magnetic resonance imaging (fMRI) was recorded before and after the training. Results showed that compared to the control group, the experimental group had smaller amplitude of low-frequency fluctuation (ALFF) in right cerebellar hemispheric VI and left VIII after training. For the experimental group, right hemispheric VIII had a stronger FC with left hemispheric IV-V, cerebellar vermal IX, left middle cingulate gyrus and right hippocampus after training. Taken together, these findings suggested that MSL, at least learning to play badminton in adulthood, reduces resting-state activity in different sub-regions in the cerebellum but increases FC between sub-regions of the cerebellum as well as between sub-regions of the cerebellum and cerebral cortices (e.g., middle cingulate cortex and hippocampus).
Collapse
|
21
|
Gandola M, Zapparoli L, Saetta G, De Santis A, Zerbi A, Banfi G, Sansone V, Bruno M, Paulesu E. Thumbs up: Imagined hand movements counteract the adverse effects of post-surgical hand immobilization. Clinical, behavioral, and fMRI longitudinal observations. NEUROIMAGE-CLINICAL 2019; 23:101838. [PMID: 31071593 PMCID: PMC6506638 DOI: 10.1016/j.nicl.2019.101838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023]
Abstract
Motor imagery (M.I.) training has been widely used to enhance motor behavior. To characterize the neural foundations of its rehabilitative effects in a pathological population we studied twenty-two patients with rhizarthrosis, a chronic degenerative articular disease in which thumb-to-fingers opposition becomes difficult due to increasing pain while the brain is typically intact. Before and after surgery, patients underwent behavioral tests to measure pain and motor performance and fMRI measurements of brain motor activity. After surgery, the affected hand was immobilized, and patients were enrolled in a M.I. training. The sample was split in those who had a high compliance with the program of scheduled exercises (T+, average compliance: 84%) and those with low compliance (T−, average compliance: 20%; cut-off point: 55%). We found that more intense M.I. training counteracts the adverse effects of immobilization reducing pain and expediting motor recovery. fMRI data from the post-surgery session showed that T+ patients had decreased brain activation in the premotor cortex and the supplementary motor area (SMA); meanwhile, for the same movements, the T− patients exhibited a reversed pattern. Furthermore, in the post-surgery fMRI session, pain intensity was correlated with activity in the ipsilateral precentral gyrus and, notably, in the insular cortex, a node of the pain matrix. These findings indicate that the motor simulations of M.I. have a facilitative effect on recovery by cortical plasticity mechanisms and optimization of motor control, thereby establishing the rationale for incorporating the systematic use of M.I. into standard rehabilitation for the management of post-immobilization syndromes characteristic of hand surgery. Motor imagery training counteracts the effects of post-surgical hand immobilization. It also reduces pain and expedites motor recovery after immobilization. These effects were accompanied by significant fMRI signs of brain plasticity. The clinical-fMRI evidence advocates for the use of motor imagery in rehabilitation.
Collapse
Affiliation(s)
- Martina Gandola
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | | | - Gianluca Saetta
- Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Valerio Sansone
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; University of Milano-Statale, Milan, Italy
| | | | - Eraldo Paulesu
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Psychology and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
22
|
Benjaminse A, Webster KE, Kimp A, Meijer M, Gokeler A. Revised Approach to the Role of Fatigue in Anterior Cruciate Ligament Injury Prevention: A Systematic Review with Meta-Analyses. Sports Med 2019; 49:565-586. [PMID: 30659497 PMCID: PMC6422960 DOI: 10.1007/s40279-019-01052-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Causes of anterior cruciate ligament (ACL) injuries are multifactorial. Anterior cruciate ligament injury prevention should thus be approached from a multifactorial perspective as well. Training to resist fatigue is an underestimated aspect of prevention programs given that the presence of fatigue may play a crucial role in sustaining an ACL injury. OBJECTIVES The primary objective of this literature review was to summarize research findings relating to the kinematic and kinetic effects of fatigue on single-leg landing tasks through a systematic review and meta-analysis. Other objectives were to critically appraise current approaches to examine the effects of fatigue together with elucidating and proposing an optimized approach for measuring the role of fatigue in ACL injury prevention. METHODS A systematic literature search was conducted in the databases PubMed (1978-November 2017), CINAHL (1992-November 2017), and EMBASE (1973-November 2017). The inclusion criteria were: (1) full text, (2) published in English, German, or Dutch, (3) healthy subjects, (4) average age ≥ 18 years, (5) single-leg jump landing task, (6) evaluation of the kinematics and/or kinetics of the lower extremities before and after a fatigue protocol, and (7) presentation of numerical kinematic and/or kinetic data. Participants included healthy subjects who underwent a fatigue protocol and in whom the effects of pre- and post-fatigue on three-dimensional lower extremity kinematic and kinetics were compared. Methods of data collection, patient selection, blinding, prevention of verification bias, and study design were independently assessed. RESULTS Twenty studies were included, in which four types of single-leg tasks were examined: the single-leg drop vertical jump, the single-leg drop landing, the single-leg hop for distance, and sidestep cutting. Fatigue seemed to mostly affect initial contact (decreased angles post-fatigue) and peak (increased angles post-fatigue) hip and knee flexion. Sagittal plane variables at initial contact were mostly affected under the single-leg hop for distance and sidestep cutting conditions whilst peak angles were affected during the single-leg drop jump. CONCLUSIONS Training to resist fatigue is an underestimated aspect of prevention programs given that the presence of fatigue may play a crucial role in sustaining an ACL injury. Considering the small number of variables affected after fatigue, the question arises whether the same fatigue pathways are affected by the fatigue protocols used in the included laboratory studies as are experienced on the sports field.
Collapse
Affiliation(s)
- Anne Benjaminse
- Center for Human Movement Science, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- School of Sport Studies, Hanze University Groningen, Groningen, The Netherlands.
| | - Kate E Webster
- School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, Melbourne, VIC, Australia
| | - Alexander Kimp
- School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, Melbourne, VIC, Australia
| | - Michelle Meijer
- Midwifery Academy Amsterdam Groningen (AVAG), Groningen, The Netherlands
| | - Alli Gokeler
- Exercise Science & Neuroscience Unit, Department Exercise & Health, Faculty of Science, University of Paderborn, Paderborn, Germany
- Luxembourg Institute of Research for Orthopedics, Medicine and Science in Sports, Luxembourg City, Luxembourg
| |
Collapse
|
23
|
Paravlic AH, Slimani M, Tod D, Marusic U, Milanovic Z, Pisot R. Effects and Dose-Response Relationships of Motor Imagery Practice on Strength Development in Healthy Adult Populations: a Systematic Review and Meta-analysis. Sports Med 2018. [PMID: 29541965 DOI: 10.1007/s40279-018-0874-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Motor imagery (MI), a mental simulation of a movement without overt muscle contraction, has been largely used to improve general motor tasks. However, the effects of MI practice on maximal voluntary strength (MVS) remain equivocal. OBJECTIVES The aims of this meta-analysis were to (1) estimate whether MI practice intervention can meaningfully improve MVS in healthy adults; (2) compare the effects of MI practice on MVS with its combination with physical practice (MI-C), and with physical practice (PP) training alone; and (3) investigate the dose-response relationships of MI practice. DATA SOURCES AND STUDY ELIGIBILITY Seven electronic databases were searched up to April 2017. Initially 717 studies were identified; however, after evaluation of the study characteristics, data from 13 articles involving 370 participants were extracted. The meta-analysis was completed on MVS as the primary parameter. In addition, parameters associated with training volume, training intensity, and time spent training were used to investigate dose-response relationships. RESULTS MI practice moderately improved MVS. When compared to conventional PP, effects were of small benefit in favour of PP. MI-C when compared to PP showed unclear effects. MI practice produced moderate effects in both upper and lower extremities on MVS. The cortical representation area of the involved muscles did not modify the effects. Meta-regression analysis revealed that (a) a training period of 4 weeks, (b) a frequency of three times per week, (c) two to three sets per single session, (d) 25 repetitions per single set, and (e) single session duration of 15 min were associated with enhanced improvements in muscle strength following MI practice. Similar dose-response relationships were observed following MI and PP. CONCLUSIONS The present meta-analysis demonstrates that compared to a no-exercise control group of healthy adults, MI practice increases MVS, but less than PP. These findings suggest that MI practice could be considered as a substitute or additional training tool to preserve muscle function when athletes are not exposed to maximal training intensities.
Collapse
Affiliation(s)
- Armin H Paravlic
- Science and Research Centre, Institute for Kinesiology Research, University of Primorska, Garibaldijeva 1, 6000, Koper, Slovenia.
| | - Maamer Slimani
- Research Laboratory "Sports Performance Optimization", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - David Tod
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Uros Marusic
- Science and Research Centre, Institute for Kinesiology Research, University of Primorska, Garibaldijeva 1, 6000, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Zoran Milanovic
- Science and Research Centre, Institute for Kinesiology Research, University of Primorska, Garibaldijeva 1, 6000, Koper, Slovenia.,Faculty of Sport and Physical Education, University of Niš, Čarnojevićeva 10a, Niš, 18000, Serbia
| | - Rado Pisot
- Science and Research Centre, Institute for Kinesiology Research, University of Primorska, Garibaldijeva 1, 6000, Koper, Slovenia
| |
Collapse
|
24
|
Pitt K, Brumberg J. A screening protocol incorporating brain-computer interface feature matching considerations for augmentative and alternative communication. Assist Technol 2018; 32:161-172. [DOI: 10.1080/10400435.2018.1512175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Kevin Pitt
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, Kansas, USA
| | - Jonathan Brumberg
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
25
|
Wriessnegger SC, Brunner C, Müller-Putz GR. Frequency Specific Cortical Dynamics During Motor Imagery Are Influenced by Prior Physical Activity. Front Psychol 2018; 9:1976. [PMID: 30410454 PMCID: PMC6209646 DOI: 10.3389/fpsyg.2018.01976] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/26/2018] [Indexed: 11/13/2022] Open
Abstract
Motor imagery is often used inducing changes in electroencephalographic (EEG) signals for imagery-based brain-computer interfacing (BCI). A BCI is a device translating brain signals into control signals providing severely motor-impaired persons with an additional, non-muscular channel for communication and control. In the last years, there is increasing interest using BCIs also for healthy people in terms of enhancement or gaming. Most studies focusing on improving signal processing feature extraction and classification methods, but the performance of a BCI can also be improved by optimizing the user's control strategies, e.g., using more vivid and engaging mental tasks for control. We used multichannel EEG to investigate neural correlates of a sports imagery task (playing tennis) compared to a simple motor imagery task (squeezing a ball). To enhance the vividness of both tasks participants performed a short physical exercise between two imagery sessions. EEG was recorded from 60 closely spaced electrodes placed over frontal, central, and parietal areas of 30 healthy volunteers divided in two groups. Whereas Group 1 (EG) performed a physical exercise between the two imagery sessions, Group 2 (CG) watched a landscape movie without physical activity. Spatiotemporal event-related desynchronization (ERD) and event-related synchronization (ERS) patterns during motor imagery (MI) tasks were evaluated. The results of the EG showed significant stronger ERD patterns in the alpha frequency band (8-13 Hz) during MI of tennis after training. Our results are in evidence with previous findings that MI in combination with motor execution has beneficial effects. We conclude that sports MI combined with an interactive game environment could be a future promising task in motor learning and rehabilitation improving motor functions in late therapy processes or support neuroplasticity.
Collapse
Affiliation(s)
- Selina C. Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Clemens Brunner
- BioTechMed-Graz, Graz, Austria
- Institute of Psychology, University of Graz, Graz, Austria
| | - Gernot R. Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
26
|
Validation of the Slovenian Version of Motor Imagery Questionnaire 3 (MIQ-3): Promising Tool in Modern Comprehensive Rehabilitation Practice. Zdr Varst 2018; 57:201-210. [PMID: 30294361 PMCID: PMC6172525 DOI: 10.2478/sjph-2018-0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 08/27/2018] [Indexed: 11/20/2022] Open
Abstract
Purpose The high rate of injury incidence and its severity is estimated to cause approximately 9% of global mortality, while a large proportion of people surviving their injuries experience temporary or permanent disabilities. To reduce the occurrence of disability and improve general health of survivors, a more comprehensive rehabilitation approach is needed. Motor imagery is recognized as the promising cognitive strategy to counteract impaired functional capacity of the neuromuscular system. Thus, we aimed to provide to the Slovenian-speaking community a valid and reliable version of Motor Imagery Questionnaire – 3 [MIQ-3], that consists of kinaesthetic imagery [KI] and visual [i.e., Internal Imagery [IMI] and external imagery [EVI]] items. Methods We investigated both absolute and relative test-retest repeatability; construct validity and internal consistency of the KI, IMI and EMI items of the Slovenian version of MIQ-3 in 86 healthy adult subjects. Results Results showed high to very high average intra-class correlation coefficient [ICC] for the visual items [ICC=0.89] and KI items [ICC=0.92], whilst the measure of absolute variability presented as coefficient of variation [CV%] ranged from 4.9% [EVI] to 6.7% [KI]. The internal consistency was satisfactory [Cronbach α=0.91 [KI] and 0.89]) for both visual items. Confirmatory analysis confirmed a two-factorial structure of MIQ-3. Conclusion Understanding the content of the questionnaire is of utmost importance to ensure its effectiveness in rehabilitation practice. The Slovenian translation of the MIQ-3 is culturally and linguistically equivalent to the original English version.
Collapse
|
27
|
Sacheli LM, Zapparoli L, Preti M, De Santis C, Pelosi C, Ursino N, Zerbi A, Stucovitz E, Banfi G, Paulesu E. A functional limitation to the lower limbs affects the neural bases of motor imagery of gait. NEUROIMAGE-CLINICAL 2018; 20:177-187. [PMID: 30094167 PMCID: PMC6072647 DOI: 10.1016/j.nicl.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 02/04/2023]
Abstract
Studies on athletes or neurological patients with motor disorders have shown a close link between motor experience and motor imagery skills. Here we evaluated whether a functional limitation due to a musculoskeletal disorder has an impact on the ability to mentally rehearse the motor patterns of walking, an overlearned and highly automatic behaviour. We assessed the behavioural performance (measured through mental chronometry tasks) and the neural signatures of motor imagery of gait in patients with chronic knee arthrosis and in age-matched, healthy controls. During fMRI, participants observed (i) stationary or (ii) moving videos of a path in a park shown in the first-person perspective: they were asked to imagine themselves (i) standing on or (ii) walking along the path, as if the camera were “their own eyes” (gait imagery (GI) task). In half of the trials, participants performed a dynamic gait imagery (DGI) task by combining foot movements with GI. Behavioural tests revealed a lower degree of isochrony between imagined and performed walking in the patients, indicating impairment in the ability to mentally rehearse gait motor patterns. Moreover, fMRI showed widespread hypoactivation during GI in motor planning (premotor and parietal) brain regions, the brainstem, and the cerebellum. Crucially, the performance of DGI had a modulatory effect on the patients and enhanced activation of the posterior parietal, brainstem, and cerebellar regions that the healthy controls recruited during the GI task. These findings show that functional limitations of peripheral origin may impact on gait motor representations, providing a rationale for cognitive rehabilitation protocols in patients with gait disorders of orthopaedic nature. The DGI task may be a suitable tool in this respect. Patients with chronic knee arthrosis show impairment in gait motor imagery Impairment is selective for gait and paralleled by hypoactivation in premotor areas Peripheral limitation of lower limb movements affects central gait motor control Dynamic motor imagery favours the recruitment of a motor strategy during imagery Mental motor training might help to restore gait control in orthopaedic patients
Collapse
Affiliation(s)
- Lucia Maria Sacheli
- University of Milano-Bicocca, Department of Psychology and Milan Center for Neuroscience (NeuroMI), Piazza dell'Ateneo Nuovo 1, 20126 Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy.
| | - Laura Zapparoli
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Matteo Preti
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Carlo De Santis
- University of Milano-Bicocca, Department of Psychology and Milan Center for Neuroscience (NeuroMI), Piazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Catia Pelosi
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Nicola Ursino
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Alberto Zerbi
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Elena Stucovitz
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy; University Vita e Salute San Raffaele, Milan, Italy
| | - Eraldo Paulesu
- University of Milano-Bicocca, Department of Psychology and Milan Center for Neuroscience (NeuroMI), Piazza dell'Ateneo Nuovo 1, 20126 Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy.
| |
Collapse
|
28
|
Raison N, Ahmed K, Abe T, Brunckhorst O, Novara G, Buffi N, McIlhenny C, van der Poel H, van Hemelrijck M, Gavazzi A, Dasgupta P. Cognitive training for technical and non-technical skills in robotic surgery: a randomised controlled trial. BJU Int 2018; 122:1075-1081. [DOI: 10.1111/bju.14376] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Nicholas Raison
- Division of Transplantation Immunology and Mucosal Biology; Faculty of Life Sciences and Medicine; Kings College London; UK
| | - Kamran Ahmed
- Division of Transplantation Immunology and Mucosal Biology; Faculty of Life Sciences and Medicine; Kings College London; UK
| | - Takashige Abe
- Division of Transplantation Immunology and Mucosal Biology; Faculty of Life Sciences and Medicine; Kings College London; UK
- Department of Urology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Oliver Brunckhorst
- Division of Transplantation Immunology and Mucosal Biology; Faculty of Life Sciences and Medicine; Kings College London; UK
| | | | - Nicolò Buffi
- Department of Urology; Humanitas Clinical and Research Centre; Rozzano Milan Italy
| | - Craig McIlhenny
- Department of Urology; Forth Valley Royal Hospital; Larbert UK
| | - Henk van der Poel
- Department of Urology; Netherlands Cancer Institute; Amsterdam The Netherlands
| | | | - Andrea Gavazzi
- Department of Urology; Azienda USL Toscana Centro; Florence Italy
| | - Prokar Dasgupta
- Division of Transplantation Immunology and Mucosal Biology; Faculty of Life Sciences and Medicine; Kings College London; UK
| |
Collapse
|
29
|
Long-Term Motor Recovery After Severe Traumatic Brain Injury: Beyond Established Limits. J Head Trauma Rehabil 2018; 31:E50-8. [PMID: 26360005 DOI: 10.1097/htr.0000000000000185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To report neural plasticity changes after severe traumatic brain injury. SETTING Case-control study. PARTICIPANTS Canadian soldier, Captain Trevor Greene survived a severe open-traumatic brain injury during a 2006 combat tour in Afghanistan. DESIGN Longitudinal follow-up for more than 6 years. MAIN MEASURES Twelve longitudinal functional magnetic imaging (fMRI) examinations were conducted to investigate lower limb activation changes in association with clinical examination. Trevor Greene's lower limb fMRI activation was compared with control fMRI activation of (1) mental imagery of similar movement and (2) matched control subject data. RESULTS Trevor Greene's motor recovery and corresponding fMRI activation increased significantly over time (F = 32.54, P < .001). Clinical measures of functional recovery correlated strongly with fMRI motor activation changes (r = 0.81, P = .001). By comparison, while Trevor Greene's mental imagery activated similar motor regions, there was no evidence of fMRI activation change over time. While comparable, control motor activation did not change over time and there was no significant mental imagery activation. CONCLUSION Motor function recovery can occur beyond 6 years after severe traumatic brain injury, both in neural plasticity and clinical outcome. This demonstrates that continued benefits in physical function due to rehabilitative efforts can be achieved for many years following injury. The finding challenges current practices and assumptions in rehabilitation following traumatic brain injury.
Collapse
|
30
|
Schilhab T. Adaptive Smart Technology Use: The Need for Meta-Self-Regulation. Front Psychol 2017; 8:298. [PMID: 28303112 PMCID: PMC5332409 DOI: 10.3389/fpsyg.2017.00298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/16/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Theresa Schilhab
- Future Technologies, Culture and Learning, Danish School of Education, University of Aarhus Copenhagen, Denmark
| |
Collapse
|
31
|
Mizuguchi N, Kanosue K. Changes in brain activity during action observation and motor imagery: Their relationship with motor learning. PROGRESS IN BRAIN RESEARCH 2017; 234:189-204. [DOI: 10.1016/bs.pbr.2017.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Wriessnegger S, Steyrl D, Koschutnig K, Müller-Putz G. Cooperation in mind: Motor imagery of joint and single actions is represented in different brain areas. Brain Cogn 2016; 109:19-25. [DOI: 10.1016/j.bandc.2016.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 11/27/2022]
|
33
|
Kilintari M, Narayana S, Babajani-Feremi A, Rezaie R, Papanicolaou AC. Brain activation profiles during kinesthetic and visual imagery: An fMRI study. Brain Res 2016; 1646:249-261. [DOI: 10.1016/j.brainres.2016.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/09/2016] [Accepted: 06/07/2016] [Indexed: 01/25/2023]
|
34
|
Fargier P, Collet C, Moran A, Massarelli R. Inter-disciplinarity in sport sciences: The neuroscience example. Eur J Sport Sci 2016; 17:42-50. [PMID: 27485177 DOI: 10.1080/17461391.2016.1207710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sport science is a relatively recent domain of research born from the interactions of different disciplines related to sport. According to the European College of sport science ( http://sport-science.org ): "scientific excellence in sport science is based on disciplinary competence embedded in the understanding that its essence lies in its multi- and interdisciplinary character". In this respect, the scientific domain of neuroscience has been developed within such a framework. Influenced by the apparent homogeneity of this scientific domain, the present paper reviews three important research topics in sport from a neuroscientific perspective. These topics concern the relationship between mind and motor action, the effects of cognition on motor performance, and the study of certain mental states (such as the "flow" effect, see below) and motor control issues to understand, for example, the neural substrates of the vertical squat jump. Based on the few extensive examples shown in this review, we argue that by adopting an interdisciplinary paradigm, sport science can emulate neuroscience in becoming a mono-discipline.
Collapse
Affiliation(s)
- Patrick Fargier
- a University of Lyon, University Claude Bernard Lyon 1, Inter-University Laboratory on Human Movement Biology, Federative Centre for Interdisciplinary Research in Sport , Villeurbanne , France
| | - Christian Collet
- a University of Lyon, University Claude Bernard Lyon 1, Inter-University Laboratory on Human Movement Biology, Federative Centre for Interdisciplinary Research in Sport , Villeurbanne , France
| | - Aidan Moran
- b School of Psychology , University College Dublin , Dublin 4 , Ireland
| | - Raphaël Massarelli
- a University of Lyon, University Claude Bernard Lyon 1, Inter-University Laboratory on Human Movement Biology, Federative Centre for Interdisciplinary Research in Sport , Villeurbanne , France
| |
Collapse
|
35
|
Motor and mental training in older people: Transfer, interference, and associated functional neural responses. Neuropsychologia 2016; 89:371-377. [PMID: 27450266 DOI: 10.1016/j.neuropsychologia.2016.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Abstract
Learning new motor skills may become more difficult with advanced age. In the present study, we randomized 56 older individuals, including 30 women (mean age 70.6 years), to 6 weeks of motor training, mental (motor imagery) training, or a combination of motor and mental training of a finger tapping sequence. Performance improvements and post-training functional magnetic resonance imaging (fMRI) were used to investigate performance gains and associated underlying neural processes. Motor-only training and a combination of motor and mental training improved performance in the trained task more than mental-only training. The fMRI data showed that motor training was associated with a representation in the premotor cortex and mental training with a representation in the secondary visual cortex. Combining motor and mental training resulted in both premotor and visual cortex representations. During fMRI scanning, reduced performance was observed in the combined motor and mental training group, possibly indicating interference between the two training methods. We concluded that motor and motor imagery training in older individuals is associated with different functional brain responses. Furthermore, adding mental training to motor training did not result in additional performance gains compared to motor-only training and combining training methods may result in interference between representations, reducing performance.
Collapse
|
36
|
Di Rienzo F, Debarnot U, Daligault S, Saruco E, Delpuech C, Doyon J, Collet C, Guillot A. Online and Offline Performance Gains Following Motor Imagery Practice: A Comprehensive Review of Behavioral and Neuroimaging Studies. Front Hum Neurosci 2016; 10:315. [PMID: 27445755 PMCID: PMC4923126 DOI: 10.3389/fnhum.2016.00315] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/10/2016] [Indexed: 11/13/2022] Open
Abstract
There is now compelling evidence that motor imagery (MI) promotes motor learning. While MI has been shown to influence the early stages of the learning process, recent data revealed that sleep also contributes to the consolidation of the memory trace. How such "online" and "offline" processes take place and how they interact to impact the neural underpinnings of movements has received little attention. The aim of the present review is twofold: (i) providing an overview of recent applied and fundamental studies investigating the effects of MI practice (MIP) on motor learning; and (ii) detangling applied and fundamental findings in support of a sleep contribution to motor consolidation after MIP. We conclude with an integrative approach of online and offline learning resulting from intense MIP in healthy participants, and underline research avenues in the motor learning/clinical domains.
Collapse
Affiliation(s)
- Franck Di Rienzo
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Claude Bernard Lyon 1 Villeurbanne, France
| | - Ursula Debarnot
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Claude Bernard Lyon 1Villeurbanne, France; Laboratoire de Neurologie et d'Imagerie Cognitive, Université de GenèveGeneva, Switzerland
| | | | - Elodie Saruco
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Claude Bernard Lyon 1 Villeurbanne, France
| | - Claude Delpuech
- INSERM U821, Département MEG, CERMEP Imagerie Du Vivant Bron, France
| | - Julien Doyon
- Unité de Neuroimagerie Fonctionnelle, Département de Psychologie, Institut Universitaire de Gériatrie de Montréal, Université de Montréal Montréal, QC, Canada
| | - Christian Collet
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Claude Bernard Lyon 1 Villeurbanne, France
| | - Aymeric Guillot
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Claude Bernard Lyon 1Villeurbanne, France; Institut Universitaire de FranceParis, France
| |
Collapse
|
37
|
Di Nota PM, Levkov G, Bar R, DeSouza JFX. Lateral occipitotemporal cortex (LOTC) activity is greatest while viewing dance compared to visualization and movement: learning and expertise effects. Exp Brain Res 2016; 234:2007-2023. [PMID: 26960739 DOI: 10.1007/s00221-016-4607-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
The lateral occipitotemporal cortex (LOTC) is comprised of subregions selectively activated by images of human bodies (extrastriate body area, EBA), objects (lateral occipital complex, LO), and motion (MT+). However, their role in motor imagery and movement processing is unclear, as are the influences of learning and expertise on its recruitment. The purpose of our study was to examine putative changes in LOTC activation during action processing following motor learning of novel choreography in professional ballet dancers. Subjects were scanned with functional magnetic resonance imaging up to four times over 34 weeks and performed four tasks: viewing and visualizing a newly learned ballet dance, visualizing a dance that was not being learned, and movement of the foot. EBA, LO, and MT+ were activated most while viewing dance compared to visualization and movement. Significant increases in activation were observed over time in left LO only during visualization of the unlearned dance, and all subregions were activated bilaterally during the viewing task after 34 weeks of performance, suggesting learning-induced plasticity. Finally, we provide novel evidence for modulation of EBA with dance experience during the motor task, with significant activation elicited in a comparison group of novice dancers only. These results provide a composite of LOTC activation during action processing of newly learned ballet choreography and movement of the foot. The role of these areas is confirmed as primarily subserving observation of complex sequences of whole-body movement, with new evidence for modification by experience and over the course of real world ballet learning.
Collapse
Affiliation(s)
- Paula M Di Nota
- Department of Psychology, York University, Toronto, ON, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada.,Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Gabriella Levkov
- Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Rachel Bar
- Department of Psychology, Ryerson University, Toronto, ON, Canada.,Canada's National Ballet School, Toronto, ON, Canada
| | - Joseph F X DeSouza
- Department of Psychology, York University, Toronto, ON, Canada. .,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada. .,Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada. .,Department of Biology, York University, Toronto, ON, Canada. .,Canadian Action and Perception Network (CAPnet), Toronto, ON, Canada.
| |
Collapse
|
38
|
Mizuguchi N, Nakata H, Kanosue K. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements. Neuroscience 2016; 315:104-13. [DOI: 10.1016/j.neuroscience.2015.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
39
|
Bar RJ, DeSouza JFX. Tracking Plasticity: Effects of Long-Term Rehearsal in Expert Dancers Encoding Music to Movement. PLoS One 2016; 11:e0147731. [PMID: 26824475 PMCID: PMC4732757 DOI: 10.1371/journal.pone.0147731] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 01/07/2016] [Indexed: 11/19/2022] Open
Abstract
Our knowledge of neural plasticity suggests that neural networks show adaptation to environmental and intrinsic change. In particular, studies investigating the neuroplastic changes associated with learning and practicing motor tasks have shown that practicing such tasks results in an increase in neural activation in several specific brain regions. However, studies comparing experts and non-experts suggest that experts employ less neuronal activation than non-experts when performing a familiar motor task. Here, we aimed to determine the long-term changes in neural networks associated with learning a new dance in professional ballet dancers over 34 weeks. Subjects visualized dance movements to music while undergoing fMRI scanning at four time points over 34-weeks. Results demonstrated that initial learning and performance at seven weeks led to increases in activation in cortical regions during visualization compared to the first week. However, at 34 weeks, the cortical networks showed reduced activation compared to week seven. Specifically, motor learning and performance over the 34 weeks showed the typical inverted-U-shaped function of learning. Further, our result demonstrate that learning of a motor sequence of dance movements to music in the real world can be visualized by expert dancers using fMRI and capture highly significant modeled fits of the brain network variance of BOLD signals from early learning to expert level performance.
Collapse
Affiliation(s)
- Rachel J. Bar
- Department of Psychology, York University, Toronto, ON, Canada
| | - Joseph F. X. DeSouza
- Centre for Vision Research, Department of Psychology, Department of Biology, Neuroscience Graduate Diploma Program, Graduate Program in Interdisciplinary Studies, Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada
| |
Collapse
|
40
|
Hedlund M, Lindström B, Sojka P, Lundström R, Boraxbekk CJ. Is better preservation of eccentric strength after stroke due to altered prefrontal function? Neurocase 2016; 22:229-42. [PMID: 26750576 DOI: 10.1080/13554794.2015.1130232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ventrolateral prefrontal cortex (VLPFC) is part of a network that exerts inhibitory control over the motor cortex (MC). Recently, we demonstrated that VLPFC was more activated during imagined maximum eccentric than during imagined concentric contractions in healthy participants. This was accompanied with lower activation levels within motor regions during imagined eccentric contractions. The aim was to test a novel hypothesis of an involvement of VLPFC in contraction mode-specific modulation of force. Functional magnetic resonance imaging was used to examine differences in VLPFC and motor regions during the concentric and the eccentric phases of imagined maximum contractions in a selected sample of subjects with stroke (n = 4). The subjects were included as they exhibited disturbed modulation of force. The previously demonstrated pattern within VLPFC was evident only on the contralesional hemisphere. On the ipsilesional hemisphere, the recruitment in VLPFC was similar for both modes of contractions. The findings support a hypothesis of the involvement of VLPFC in contraction mode-specific modulation of maximum force production. A disturbance of this system might underlie the lack of contraction mode-specific modulation commonly found among stroke subjects, often expressed as an increased ratio between eccentric and concentric strength.
Collapse
Affiliation(s)
- Mattias Hedlund
- a Department of Community Medicine and Rehabilitation , Umeå University , Umeå , Sweden
| | - Britta Lindström
- a Department of Community Medicine and Rehabilitation , Umeå University , Umeå , Sweden
| | - Peter Sojka
- b Department of Health Sciences , Mid-Sweden University , Östersund , Sweden
| | - Ronnie Lundström
- c Department of Radiation Sciences, Biomedical Engineering , Umeå University , Umeå , Sweden
| | - Carl-Johan Boraxbekk
- d CEDAR, Center for Demographic and Aging Research , Umeå University , Umeå , Sweden.,e UFBI, Umeå Centre for Functional Brain Imaging , Umeå University , Umeå , Sweden
| |
Collapse
|
41
|
Wriessnegger SC, Steyrl D, Koschutnig K, Müller-Putz GR. Short time sports exercise boosts motor imagery patterns: implications of mental practice in rehabilitation programs. Front Hum Neurosci 2014; 8:469. [PMID: 25071505 PMCID: PMC4075334 DOI: 10.3389/fnhum.2014.00469] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
Motor imagery (MI) is a commonly used paradigm for the study of motor learning or cognitive aspects of action control. The rationale for using MI training to promote the relearning of motor function arises from research on the functional correlates that MI shares with the execution of physical movements. While most of the previous studies investigating MI were based on simple movements in the present study a more attractive mental practice was used to investigate cortical activation during MI. We measured cerebral responses with functional magnetic resonance imaging (fMRI) in twenty three healthy volunteers as they imagined playing soccer or tennis before and after a short physical sports exercise. Our results demonstrated that only 10 min of training are enough to boost MI patterns in motor related brain regions including premotor cortex and supplementary motor area (SMA) but also fronto-parietal and subcortical structures. This supports previous findings that MI has beneficial effects especially in combination with motor execution when used in motor rehabilitation or motor learning processes. We conclude that sports MI combined with an interactive game environment could be a promising additional tool in future rehabilitation programs aiming to improve upper or lower limb functions or support neuroplasticity.
Collapse
Affiliation(s)
- Selina C Wriessnegger
- Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology Graz, Austria ; BioTechMed-Graz Graz, Austria
| | - David Steyrl
- Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology Graz, Austria ; BioTechMed-Graz Graz, Austria
| | - Karl Koschutnig
- BioTechMed-Graz Graz, Austria ; Department of Psychology, University of Graz Graz, Austria
| | - Gernot R Müller-Putz
- Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology Graz, Austria ; BioTechMed-Graz Graz, Austria
| |
Collapse
|
42
|
Debarnot U, Sperduti M, Di Rienzo F, Guillot A. Experts bodies, experts minds: How physical and mental training shape the brain. Front Hum Neurosci 2014; 8:280. [PMID: 24847236 PMCID: PMC4019873 DOI: 10.3389/fnhum.2014.00280] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/15/2014] [Indexed: 12/15/2022] Open
Abstract
Skill learning is the improvement in perceptual, cognitive, or motor performance following practice. Expert performance levels can be achieved with well-organized knowledge, using sophisticated and specific mental representations and cognitive processing, applying automatic sequences quickly and efficiently, being able to deal with large amounts of information, and many other challenging task demands and situations that otherwise paralyze the performance of novices. The neural reorganizations that occur with expertise reflect the optimization of the neurocognitive resources to deal with the complex computational load needed to achieve peak performance. As such, capitalizing on neuronal plasticity, brain modifications take place over time-practice and during the consolidation process. One major challenge is to investigate the neural substrates and cognitive mechanisms engaged in expertise, and to define “expertise” from its neural and cognitive underpinnings. Recent insights showed that many brain structures are recruited during task performance, but only activity in regions related to domain-specific knowledge distinguishes experts from novices. The present review focuses on three expertise domains placed across a motor to mental gradient of skill learning: sequential motor skill, mental simulation of the movement (motor imagery), and meditation as a paradigmatic example of “pure” mental training. We first describe results on each specific domain from the initial skill acquisition to expert performance, including recent results on the corresponding underlying neural mechanisms. We then discuss differences and similarities between these domains with the aim to identify the highlights of the neurocognitive processes underpinning expertise, and conclude with suggestions for future research.
Collapse
Affiliation(s)
- Ursula Debarnot
- Département des Neurosciences Fondamentales, Centre Médical Universitaire, Université de Genéve Genéve, Suisse ; Centre de Recherche et d'Innovation sur le Sport, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne Cedex Lyon, France
| | - Marco Sperduti
- Centre de Psychiatrie et Neurosciences (Inserm UMR S894), Université Paris Descartes Paris, France ; Laboratoire Mémoire et Cognition, Institut de Psychologie Boulogne-Billancourt, France
| | - Franck Di Rienzo
- Centre de Recherche et d'Innovation sur le Sport, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne Cedex Lyon, France
| | - Aymeric Guillot
- Centre de Recherche et d'Innovation sur le Sport, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne Cedex Lyon, France ; Institut Universitaire de France Paris, France
| |
Collapse
|
43
|
Abstract
Abstract In the general population, suppression of vision modulates body sway by increasing the center of pressure (CoP) velocity, while a light fingertip touch reduces the area of the CoP displacement in blindfolded subjects. This study assessed whether imagined fixation and fingertip touch differentially stabilize posture in subjects with high (highs) and low (lows) hypnotizability. Visual and tactile imageries were ineffective in lows. In highs, the effects of visual imagery could not be evaluated because the real information was ineffective; real tactile stimulation was effective only on velocity, but the imagery effects could not be definitely assessed owing to low effect size. The highs' larger variability could account for this and represents the most important finding.
Collapse
|
44
|
Gibson RM, Chennu S, Owen AM, Cruse D. Complexity and familiarity enhance single-trial detectability of imagined movements with electroencephalography. Clin Neurophysiol 2013; 125:1556-67. [PMID: 24388403 DOI: 10.1016/j.clinph.2013.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/28/2013] [Accepted: 11/23/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We sought to determine whether the sensorimotor rhythms (SMR) elicited during motor imagery (MI) of complex and familiar actions could be more reliably detected with electroencephalography (EEG), and subsequently classified on a single-trial basis, than those elicited during relatively simpler imagined actions. METHODS Groups of healthy volunteers, including experienced pianists and ice hockey players, performed MI of varying complexity and familiarity. Their electroencephalograms were recorded and compared using brain-computer interface (BCI) approaches and spectral analyses. RESULTS Relative to simple MI, significantly more participants produced classifiable SMR for complex MI. During MI of performance of a complex musical piece, the EEG of the experienced pianists was classified significantly more accurately than during MI of performance of a simpler musical piece. The accuracy of EEG classification was also significantly more sustained during complex MI. CONCLUSION MI of complex actions results in EEG responses that are more reliably classified for more individuals than MI of relatively simpler actions, and familiarity with actions enhances these responses in some cases. SIGNIFICANCE The accuracy of SMR-based BCIs in non-communicative patients may be improved by employing familiar and complex actions. Increased sensitivity to MI may also improve diagnostic accuracy for severely brain-injured patients in a vegetative state.
Collapse
Affiliation(s)
- Raechelle M Gibson
- The Brain and Mind Institute, Department of Psychology, Western University, London, Ont., Canada.
| | - Srivas Chennu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- The Brain and Mind Institute, Department of Psychology, Western University, London, Ont., Canada
| | - Damian Cruse
- The Brain and Mind Institute, Department of Psychology, Western University, London, Ont., Canada
| |
Collapse
|
45
|
Binder E, Hagelweide K, Wang LE, Kornysheva K, Grefkes C, Fink GR, Schubotz RI. Sensory-guided motor tasks benefit from mental training based on serial prediction. Neuropsychologia 2013; 54:18-27. [PMID: 24321273 DOI: 10.1016/j.neuropsychologia.2013.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 11/16/2022]
Abstract
Mental strategies have been suggested to constitute a promising approach to improve motor abilities in both healthy subjects and patients. This behavioural effect has been shown to be associated with changes of neural activity in premotor areas, not only during movement execution, but also while performing motor imagery or action observation. However, how well such mental tasks are performed is often difficult to assess, especially in patients. We here used a novel mental training paradigm based on the serial prediction task (SPT) in order to activate premotor circuits in the absence of a motor task. We then tested whether this intervention improves motor-related performance such as sensorimotor transformation. Two groups of healthy young participants underwent a single-blinded five-day cognitive training schedule and were tested in four different motor tests on the day before and after training. One group (N=22) received the SPT-training and the other one (N=21) received a control training based on a serial match-to-sample task. The results revealed significant improvements of the SPT-group in a sensorimotor timing task, i.e. synchronization of finger tapping to a visually presented rhythm, as well as improved visuomotor coordination in a sensory-guided pointing task compared to the group that received the control training. However, mental training did not show transfer effects on motor abilities in healthy subjects beyond the trained modalities as evident by non-significant changes in the Jebsen-Taylor handfunctiontest. In summary, the data suggest that mental training based on the serial prediction task effectively engages sensorimotor circuits and thereby improves motor behaviour.
Collapse
Affiliation(s)
- Ellen Binder
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Max Planck Institute for Neurological Research, Cologne, Germany; Cognitive Neurology Section, Institute of Neuroscience and Medicine (INM3), Research Centre Jülich, Jülich, Germany.
| | - Klara Hagelweide
- Max Planck Institute for Neurological Research, Cologne, Germany; Institute for Psychology, University of Münster, Münster, Germany
| | - Ling E Wang
- Division of Speech and Hearing Sciences, Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Katja Kornysheva
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Max Planck Institute for Neurological Research, Cologne, Germany; Cognitive Neurology Section, Institute of Neuroscience and Medicine (INM3), Research Centre Jülich, Jülich, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neurology Section, Institute of Neuroscience and Medicine (INM3), Research Centre Jülich, Jülich, Germany
| | - Ricarda I Schubotz
- Max Planck Institute for Neurological Research, Cologne, Germany; Institute for Psychology, University of Münster, Münster, Germany
| |
Collapse
|
46
|
Diersch N, Mueller K, Cross ES, Stadler W, Rieger M, Schütz-Bosbach S. Action prediction in younger versus older adults: neural correlates of motor familiarity. PLoS One 2013; 8:e64195. [PMID: 23704980 PMCID: PMC3660406 DOI: 10.1371/journal.pone.0064195] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/12/2013] [Indexed: 11/22/2022] Open
Abstract
Generating predictions during action observation is essential for efficient navigation through our social environment. With age, the sensitivity in action prediction declines. In younger adults, the action observation network (AON), consisting of premotor, parietal and occipitotemporal cortices, has been implicated in transforming executed and observed actions into a common code. Much less is known about age-related changes in the neural representation of observed actions. Using fMRI, the present study measured brain activity in younger and older adults during the prediction of temporarily occluded actions (figure skating elements and simple movement exercises). All participants were highly familiar with the movement exercises whereas only some participants were experienced figure skaters. With respect to the AON, the results confirm that this network was preferentially engaged for the more familiar movement exercises. Compared to younger adults, older adults recruited visual regions to perform the task and, additionally, the hippocampus and caudate when the observed actions were familiar to them. Thus, instead of effectively exploiting the sensorimotor matching properties of the AON, older adults seemed to rely predominantly on the visual dynamics of the observed actions to perform the task. Our data further suggest that the caudate played an important role during the prediction of the less familiar figure skating elements in better-performing groups. Together, these findings show that action prediction engages a distributed network in the brain, which is modulated by the content of the observed actions and the age and experience of the observer.
Collapse
Affiliation(s)
- Nadine Diersch
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
MacIntyre TE, Moran AP, Collet C, Guillot A. An emerging paradigm: a strength-based approach to exploring mental imagery. Front Hum Neurosci 2013; 7:104. [PMID: 23554591 PMCID: PMC3612690 DOI: 10.3389/fnhum.2013.00104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
Mental imagery, or the ability to simulate in the mind information that is not currently perceived by the senses, has attracted considerable research interest in psychology since the early 1970's. Within the past two decades, research in this field-as in cognitive psychology more generally-has been dominated by neuroscientific methods that typically involve comparisons between imagery performance of participants from clinical populations with those who exhibit apparently normal cognitive functioning. Although this approach has been valuable in identifying key neural substrates of visual imagery, it has been less successful in understanding the possible mechanisms underlying another simulation process, namely, motor imagery or the mental rehearsal of actions without engaging in the actual movements involved. In order to address this oversight, a "strength-based" approach has been postulated which is concerned with understanding those on the high ability end of the imagery performance spectrum. Guided by the expert performance approach and principles of ecological validity, converging methods have the potential to enable imagery researchers to investigate the neural "signature" of elite performers, for example. Therefore, the purpose of this paper is to explain the origin, nature, and implications of the strength-based approach to mental imagery. Following a brief explanation of the background to this latter approach, we highlight some important theoretical advances yielded by recent research on mental practice, mental travel, and meta-imagery processes in expert athletes and dancers. Next, we consider the methodological implications of using a strength-based approach to investigate imagery processes. The implications for the field of motor cognition are outlined and specific research questions, in dynamic imagery, imagery perspective, measurement, multi-sensory imagery, and metacognition that may benefit from this approach in the future are sketched briefly.
Collapse
Affiliation(s)
- Tadhg E. MacIntyre
- Department of Physical Education and Sport Sciences, University of LimerickLimerick, Ireland
| | | | - Christian Collet
- Centre de Recherche et d'Innovation sur le Sport, Université Claude Bernard Lyon 1France
| | - Aymeric Guillot
- Centre de Recherche et d'Innovation sur le Sport, Université Claude Bernard Lyon 1France
| |
Collapse
|
48
|
Gooijers J, Caeyenberghs K, Sisti HM, Geurts M, Heitger MH, Leemans A, Swinnen SP. Diffusion tensor imaging metrics of the corpus callosum in relation to bimanual coordination: effect of task complexity and sensory feedback. Hum Brain Mapp 2013; 34:241-52. [PMID: 22021056 PMCID: PMC6869984 DOI: 10.1002/hbm.21429] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 12/13/2022] Open
Abstract
When manipulating objects with both hands, the corpus callosum (CC) is of paramount importance for interhemispheric information exchange. Hence, CC damage results in impaired bimanual performance. Here, healthy young adults performed a complex bimanual dial rotation task with or without augmented visual feedback and according to five interhand frequency ratios (1:1, 1:3, 2:3, 3:1, 3:2). The relation between bimanual task performance and microstructural properties of seven CC subregions (i.e., prefrontal, premotor/supplementary motor, primary motor, primary sensory, occipital, parietal, and temporal) was studied by means of diffusion tensor imaging (DTI). Findings revealed that bimanual coordination deteriorated in the absence as compared to the presence of augmented visual feedback. Simple frequency ratios (1:1) were performed better than the multifrequency ratios (non 1:1). Moreover, performance was more accurate when the preferred hand (1:3-2:3) as compared to the nonpreferred hand (3:1-3:2) moved faster and during noninteger (2:3-3:2) as compared to integer frequency ratios (1:3-3:1). DTI findings demonstrated that bimanual task performance in the absence of augmented visual feedback was significantly related to the microstructural properties of the primary motor and occipital region of the CC, suggesting that white matter microstructure is associated with the ability to perform bimanual coordination patterns in young adults.
Collapse
Affiliation(s)
- Jolien Gooijers
- Motor Control Laboratory, Research Center of Movement Control and Neuroplasticity, Department of Biomedical Kinesiology, Group Biomedical Sciences, K.U. Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
49
|
Action Imagery Combined With Action Observation Activates More Corticomotor Regions Than Action Observation Alone. J Neurol Phys Ther 2012; 36:182-8. [DOI: 10.1097/npt.0b013e318272cad1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Olsson CJ, Hedlund M, Sojka P, Lundström R, Lindström B. Increased prefrontal activity and reduced motor cortex activity during imagined eccentric compared to concentric muscle actions. Front Hum Neurosci 2012; 6:255. [PMID: 22973217 PMCID: PMC3435522 DOI: 10.3389/fnhum.2012.00255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/22/2012] [Indexed: 11/13/2022] Open
Abstract
In this study we used functional magnetic resonance imaging (fMRI) to examine differences in recruited brain regions during the concentric and the eccentric phase of an imagined maximum resistance training task of the elbow flexors in healthy young subjects. The results showed that during the eccentric phase, pre-frontal cortex (BA44) bilaterally was recruited when contrasted to the concentric phase. During the concentric phase, however, the motor and pre-motor cortex (BA 4/6) was recruited when contrasted to the eccentric phase. Interestingly, the brain activity of this region was reduced, when compared to the mean activity of the session, during the eccentric phase. Thus, the neural mechanisms governing imagined concentric and eccentric contractions appear to differ. We propose that the recruitment of the pre-frontal cortex is due to an increased demand of regulating force during the eccentric phase. Moreover, it is possible that the inability to fully activate a muscle during eccentric contractions may partly be explained by a reduction of activity in the motor and pre-motor cortex.
Collapse
Affiliation(s)
- C-J Olsson
- Centre for Population Studies, Ageing and Living Conditions, Umeå University Umeå, Sweden
| | | | | | | | | |
Collapse
|