1
|
Huang Y, Chen Q, Lv H, Wang Z, Wang X, Liu C, Huang Y, Zhao P, Yang Z, Gong S, Wang Z. Amygdala structural and functional reorganization as an indicator of affective dysfunction in patients with tinnitus. Hum Brain Mapp 2024; 45:e26712. [PMID: 38798104 PMCID: PMC11128775 DOI: 10.1002/hbm.26712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
The aim of this study was to systematically investigate structural and functional alterations in amygdala subregions using multimodal magnetic resonance imaging (MRI) in patients with tinnitus with or without affective dysfunction. Sixty patients with persistent tinnitus and 40 healthy controls (HCs) were recruited. Based on a questionnaire assessment, 26 and 34 patients were categorized into the tinnitus patients with affective dysfunction (TPAD) and tinnitus patients without affective dysfunction (TPWAD) groups, respectively. MRI-based measurements of gray matter volume, fractional anisotropy (FA), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), degree centrality (DC), and functional connectivity (FC) were conducted within 14 amygdala subregions for intergroup comparisons. Associations between the MRI properties and clinical characteristics were estimated via partial correlation analyses. Compared with that of the HCs, the TPAD and TPWAD groups exhibited significant structural and functional changes, including white matter integrity (WMI), fALFF, ReHo, DC, and FC alterations, with more pronounced WMI changes in the TPAD group, predominantly within the left auxiliary basal or basomedial nucleus (AB/BM), right central nucleus, right lateral nuclei (dorsal portion), and left lateral nuclei (ventral portion containing basolateral portions). Moreover, the TPAD group exhibited decreased FC between the left AB/BM and left middle occipital gyrus and right superior frontal gyrus (SFG), left basal nucleus and right SFG, and right lateral nuclei (intermediate portion) and right SFG. In combination, these amygdalar alterations exhibited a sensitivity of 65.4% and specificity of 96.9% in predicting affective dysfunction in patients with tinnitus. Although similar structural and functional amygdala remodeling were observed in the TPAD and TPWAD groups, the changes were more pronounced in the TPAD group. These changes mainly involved alterations in functionality and white matter microstructure in various amygdala subregions; in combination, these changes could serve as an imaging-based predictor of emotional disorders in patients with tinnitus.
Collapse
Affiliation(s)
- Yan Huang
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Qian Chen
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Han Lv
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhaodi Wang
- Department of OtolaryngologyBeijing Jingmei Group General HospitalBeijingChina
| | - Xinghao Wang
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Chunli Liu
- Department of OtolaryngologyThe Affiliated Hospital of Chengde Medical CollegeChengdeChina
| | - Yuyou Huang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Pengfei Zhao
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhenghan Yang
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck SurgeryBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhenchang Wang
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Svobodová V, Profant O, Škoch A, Tintěra J, Tóthová D, Chovanec M, Čapková D, Syka J. The effect of aging, hearing loss, and tinnitus on white matter in the human auditory system revealed with fixel-based analysis. Front Aging Neurosci 2024; 15:1283660. [PMID: 38264549 PMCID: PMC10803717 DOI: 10.3389/fnagi.2023.1283660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Aging negatively influences the structure of the human brain including the white matter. The objective of our study was to identify, using fixel-based morphometry, the age induced changes in the pathways connecting several regions of the central auditory system (inferior colliculus, Heschl's gyrus, planum temporale) and the pathways connecting these structures with parts of the limbic system (anterior insula, hippocampus and amygdala). In addition, we were interested in the extent to which the integrity of these pathways is influenced by hearing loss and tinnitus. Methods Tractographic data were acquired using a 3 T MRI in 79 volunteers. The participants were categorized into multiple groups in accordance with their age, auditory thresholds and tinnitus status. Fixel-based analysis was utilized to identify alterations in the subsequent three parameters: logarithm of fiber cross-section, fiber density, fiber density and cross-section. Two modes of analysis were used: whole brain analysis and targeted analysis using fixel mask, corresponding to the pathways connecting the aforementioned structures. Results A significantly negative effect of aging was present for all fixel-based metrics, namely the logarithm of the fiber cross-section, (7 % fixels in whole-brain, 14% fixels in fixel mask), fiber density (5 % fixels in whole-brain, 15% fixels in fixel mask), fiber density and cross section (7 % fixels in whole-brain, 19% fixels in fixel mask). Expressed age-related losses, exceeding 30% fixels, were particularly present in pathways connecting the auditory structures with limbic structures. The effect of hearing loss and/or tinnitus did not reach significance. Conclusions Our results show that although an age-related reduction of fibers is present in pathways connecting several auditory regions, the connections of these structures with limbic structures are even more reduced. To what extent this fact influences the symptoms of presbycusis, such as decreased speech comprehension, especially in noise conditions, remains to be elucidated.
Collapse
Affiliation(s)
- Veronika Svobodová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czechia
| | - Oliver Profant
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Otorhinolaryngology, 3rd Faculty of Medicine, Charles University in Prague, University Hospital Královské Vinohrady, Prague, Czechia
| | - Antonín Škoch
- Department of Radiodiagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Jaroslav Tintěra
- Department of Radiodiagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Diana Tóthová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czechia
| | - Martin Chovanec
- Department of Otorhinolaryngology, 3rd Faculty of Medicine, Charles University in Prague, University Hospital Královské Vinohrady, Prague, Czechia
| | - Dora Čapková
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Otorhinolaryngology, 3rd Faculty of Medicine, Charles University in Prague, University Hospital Královské Vinohrady, Prague, Czechia
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Rosemann S, Rauschecker JP. Increased fiber density of the fornix in patients with chronic tinnitus revealed by diffusion-weighted MRI. Front Neurosci 2023; 17:1293133. [PMID: 38192511 PMCID: PMC10773749 DOI: 10.3389/fnins.2023.1293133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Up to 45% of the elderly population suffer from chronic tinnitus - the phantom perception of sound that is often perceived as ringing, whistling, or hissing "in the ear" without external stimulation. Previous research investigated white matter changes in tinnitus patients using diffusion-weighted magnetic resonance imaging (DWI) to assess measures such as fractional anisotropy (a measure of microstructural integrity of fiber tracts) or mean diffusivity (a measure for general water diffusion). However, findings overlap only minimally and are sometimes even contradictory. We here present the first study encompassing higher diffusion data that allow to focus on changes in tissue microstructure, such as number of axons (fiber density) and macroscopic alterations, including axon diameter, and a combination of both. In order to deal with the crossing-fibers problem, we applied a fixel-based analysis using a constrained spherical deconvolution signal modeling approach. We investigated differences between tinnitus patients and control participants as well as how cognitive abilities and tinnitus distress are related to changes in white matter morphology in chronic tinnitus. For that aim, 20 tinnitus patients and 20 control participants, matched in age, sex and whether they had hearing loss or not, underwent DWI, audiometric and cognitive assessments, and filled in questionnaires targeting anxiety and depression. Our results showed increased fiber density in the fornix in tinnitus patients compared to control participants. The observed changes might, reflect compensatory structural alterations related to the processing of negative emotions or maladaptive changes related to the reinforced learning of the chronic tinnitus sensation. Due to the low sample size, the study should be seen as a pilot study that motivates further research to investigate underlying white matter morphology alterations in tinnitus.
Collapse
Affiliation(s)
- Stephanie Rosemann
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | | |
Collapse
|
4
|
Husain FT, Khan RA. Review and Perspective on Brain Bases of Tinnitus. J Assoc Res Otolaryngol 2023; 24:549-562. [PMID: 37919556 PMCID: PMC10752862 DOI: 10.1007/s10162-023-00914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
In advancing our understanding of tinnitus, some of the more impactful contributions in the past two decades have come from human brain imaging studies, specifically the idea of both auditory and extra-auditory neural networks that mediate tinnitus. These networks subserve both the perception of tinnitus and the psychological reaction to chronic, continuous tinnitus. In this article, we review particular studies that report on the nodes and links of such neural networks and their inter-network connections. Innovative neuroimaging tools have contributed significantly to the increased understanding of anatomical and functional connections of attention, emotion-processing, and default mode networks in adults with tinnitus. We differentiate between the neural correlates of tinnitus and those of comorbid hearing loss; surprisingly, tinnitus and hearing loss when they co-occur are not necessarily additive in their impact and, in rare cases, additional tinnitus may act to mitigate the consequences of hearing loss alone on the brain. The scale of tinnitus severity also appears to have an impact on brain networks, with some of the alterations typically attributed to tinnitus reaching significance only in the case of bothersome tinnitus. As we learn more about comorbid conditions of tinnitus, such as depression, anxiety, hyperacusis, or even aging, their contributions to the network-level changes observed in tinnitus will need to be parsed out in a manner similar to what is currently being done for hearing loss or severity. Together, such studies advance our understanding of the heterogeneity of tinnitus and will lead to individualized treatment plans.
Collapse
Affiliation(s)
- Fatima T Husain
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, 901 S. Sixth Street, Champaign, IL, 61820, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, 2355/57 Beckman Institute, 405 North Mathews Avenue, Urbana, IL, 61801, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA.
| | - Rafay A Khan
- Neuroscience Program, University of Illinois Urbana-Champaign, 2355/57 Beckman Institute, 405 North Mathews Avenue, Urbana, IL, 61801, USA
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Dobel C, Junghöfer M, Mazurek B, Paraskevopoulos E, Groß J. Tinnitus and Multimodal Cortical Interaction. Laryngorhinootologie 2023; 102:S59-S66. [PMID: 37130531 PMCID: PMC10184662 DOI: 10.1055/a-1959-3021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The term of subjective tinnitus is used to describe a perceived noise without an external sound source. Therefore, it seems to be obvious that tinnitus can be understood as purely auditory, sensory problem. From a clinical point of view, however, this is a very inadequate description, as there are significant comorbidities associated with chronic tinnitus. Neurophysiological investigations with different imaging techniques give a very similar picture, because not only the auditory system is affected in chronic tinnitus patients, but also a widely ramified subcortical and cortical network. In addition to auditory processing systems, networks consisting of frontal and parietal regions are particularly disturbed. For this reason, some authors conceptualize tinnitus as a network disorder rather than a disorder of a circumscribed system. These findings and this concept suggest that tinnitus must be diagnosed and treated in a multidisciplinary and multimodal manner.
Collapse
Affiliation(s)
- Christian Dobel
- Klinik und Poliklinik für HNO-Heilkunde, Universitätsklinikum Jena, Jena
| | - Markus Junghöfer
- Institut für Biomagnetismus und Biosignalanalyse, Universität Münster, Münster
| | - Birgit Mazurek
- Tinnituszentrum, Charité - Universitätsmedizin Berlin, Berlin
| | | | - Joachim Groß
- Institut für Biomagnetismus und Biosignalanalyse, Universität Münster, Münster
| |
Collapse
|
6
|
Mazurek B, Schulze H, Schlee W, Dobel C. Tinnitus at the Junction of Traditional Medicine and Modern Technology. Nutrients 2023; 15:nu15081898. [PMID: 37111117 PMCID: PMC10143118 DOI: 10.3390/nu15081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The WHO estimated that 430 million people worldwide suffer from moderate-to-severe hearing loss [...].
Collapse
Affiliation(s)
- Birgit Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Holger Schulze
- Department of Otorhinolaryngology-Head and Neck Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Winfried Schlee
- Department of Psychiatry, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
- Institute for Information and Process Management, Eastern Switzerland University of Applied Sciences, 9001 St. Gallen, Switzerland
| | - Christian Dobel
- Department of Otorhinolaryngology, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
7
|
Zhang L, Monacelli G, Vashisht H, Schlee W, Langguth B, Ward T. The Effects of Tinnitus in Probabilistic Learning Tasks: Protocol for an Ecological Momentary Assessment Study. JMIR Res Protoc 2022; 11:e36583. [PMID: 36367761 PMCID: PMC9700237 DOI: 10.2196/36583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Chronic tinnitus is an increasing worldwide health concern, causing a significant burden to the health care system each year. The COVID-19 pandemic has seen a further increase in reported cases. For people with tinnitus, symptoms are exacerbated because of social isolation and the elevated levels of anxiety and depression caused by quarantines and lockdowns. Although it has been reported that patients with tinnitus can experience changes in cognitive capabilities, changes in adaptive learning via decision-making tasks for people with tinnitus have not yet been investigated. OBJECTIVE In this study, we aim to assess state- and trait-related impairments in adaptive learning ability on probabilistic learning tasks among people with tinnitus. Given that performance in such tasks can be quantified through computational modeling methods using a small set of neural-informed model parameters, such approaches are promising in terms of the assessment of tinnitus severity. We will first examine baseline differences in the characterization of decision-making under uncertainty between healthy individuals and people with tinnitus in terms of differences in the parameters of computational models in a cross-sectional experiment. We will also investigate whether these computational markers, which capture characteristics of decision-making, can be used to understand the cognitive impact of tinnitus symptom fluctuations through a longitudinal experimental design. METHODS We have developed a mobile app, AthenaCX, to deliver e-consent and baseline tinnitus and psychological assessments as well as regular ecological momentary assessments (EMAs) of perceived tinnitus loudness and a web-based aversive version of a probabilistic decision-making task, which can be triggered based on the participants' responses to the EMA surveys. Computational models will be developed to fit participants' choice data in the task, and cognitive parameters will be estimated to characterize participants' current ability to adapt learning to the change of the simulated environment at each session when the task is triggered. Linear regression analysis will be conducted to evaluate the impacts of baseline tinnitus severity on adapting decision-making performance. Repeated measures linear regression analysis will be used to examine model-derived parameters of decision-making in measuring real-time perceived tinnitus loudness fluctuations. RESULTS Ethics approval was received in December 2020 from Dublin City University (DCUREC/2021/070). The implementation of the experiments, including both the surveys and the web-based decision-making task, has been prepared. Recruitment flyers have been shared with audiologists, and a video instruction has been created to illustrate to the participants how to participate in the experiment. We expect to finish data collection over 12 months and complete data analysis 6 months after this. The results are expected to be published in December 2023. CONCLUSIONS We believe that EMA with context-aware triggering can facilitate a deeper understanding of the effects of tinnitus symptom severity upon decision-making processes as measured outside of the laboratory. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/36583.
Collapse
Affiliation(s)
- Lili Zhang
- Insight Science Foundation Ireland Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - Greta Monacelli
- Insight Science Foundation Ireland Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | | | - Winfried Schlee
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Tomas Ward
- Insight Science Foundation Ireland Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| |
Collapse
|
8
|
Domínguez-Borràs J, Vuilleumier P. Amygdala function in emotion, cognition, and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:359-380. [PMID: 35964983 DOI: 10.1016/b978-0-12-823493-8.00015-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The amygdala is a core structure in the anterior medial temporal lobe, with an important role in several brain functions involving memory, emotion, perception, social cognition, and even awareness. As a key brain structure for saliency detection, it triggers and controls widespread modulatory signals onto multiple areas of the brain, with a great impact on numerous aspects of adaptive behavior. Here we discuss the neural mechanisms underlying these functions, as established by animal and human research, including insights provided in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Judith Domínguez-Borràs
- Department of Clinical Psychology and Psychobiology & Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Patrik Vuilleumier
- Department of Neuroscience and Center for Affective Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
The role of the medial geniculate body of the thalamus in the pathophysiology of tinnitus and implications for treatment. Brain Res 2022; 1779:147797. [DOI: 10.1016/j.brainres.2022.147797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 01/12/2023]
|
10
|
Khan RA, Sutton BP, Tai Y, Schmidt SA, Shahsavarani S, Husain FT. A large-scale diffusion imaging study of tinnitus and hearing loss. Sci Rep 2021; 11:23395. [PMID: 34862447 PMCID: PMC8642521 DOI: 10.1038/s41598-021-02908-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
Subjective, chronic tinnitus, the perception of sound in the absence of an external source, commonly occurs with many comorbidities, making it a difficult condition to study. Hearing loss, often believed to be the driver for tinnitus, is perhaps one of the most significant comorbidities. In the present study, white matter correlates of tinnitus and hearing loss were examined. Diffusion imaging data were collected from 96 participants-43 with tinnitus and hearing loss (TINHL), 17 with tinnitus and normal hearing thresholds (TINNH), 17 controls with hearing loss (CONHL) and 19 controls with normal hearing (CONNH). Fractional anisotropy (FA), mean diffusivity and probabilistic tractography analyses were conducted on the diffusion imaging data. Analyses revealed differences in FA and structural connectivity specific to tinnitus, hearing loss, and both conditions when comorbid, suggesting the existence of tinnitus-specific neural networks. These findings also suggest that age plays an important role in neural plasticity, and thus may account for some of the variability of results in the literature. However, this effect is not seen in tractography results, where a sensitivity analysis revealed that age did not impact measures of network integration or segregation. Based on these results and previously reported findings, we propose an updated model of tinnitus, wherein the internal capsule and corpus callosum play important roles in the evaluation of, and neural plasticity in response to tinnitus.
Collapse
Affiliation(s)
- Rafay A Khan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bradley P Sutton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yihsin Tai
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Speech Pathology and Audiology, Ball State University, Muncie, IN, 47303, USA
| | - Sara A Schmidt
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Somayeh Shahsavarani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Fatima T Husain
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Zhao T, Pei L, Ning H, Guo J, Song Y, Zhou J, Chen L, Sun J, Mi Z. Networks Are Associated With Acupuncture Treatment in Patients With Diarrhea-Predominant Irritable Bowel Syndrome: A Resting-State Imaging Study. Front Hum Neurosci 2021; 15:736512. [PMID: 34720908 PMCID: PMC8551866 DOI: 10.3389/fnhum.2021.736512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Irritable Bowel Syndrome (IBS), as a functional gastrointestinal disorder, is characterized by abdominal pain and distension. Recent studies have shown that acupuncture treatment improves symptoms of diarrhea-predominant irritable bowel syndrome (IBS-D) by altering networks in certain brain regions. However, few studies have used resting-state functional magnetic resonance imaging (fMRI) to compare altered resting-state inter-network functional connectivity in IBS-D patients before and after acupuncture treatment. Objective: To analyze altered resting-state inter-network functional connectivity in IBS-D patients before and after acupuncture treatment. Methods: A total of 74 patients with IBS-D and 31 healthy controls (HCs) were recruited for this study. fMRI examination was performed in patients with IBS-D before and after acupuncture treatment, but only at baseline in HCs. Data on the left frontoparietal network (LFPN), default mode network (DMN), salience network (SN), ventral attention network (VAN), auditory network (AN), visual network (VN), sensorimotor network (SMN), dorsal attention network (DAN), and right frontoparietal network (RFPN) were subjected to independent component analysis (ICA). The functional connectivity values of inter-network were explored. Results: Acupuncture decreased irritable bowel syndrome symptom severity score (IBS-SSS) and Hamilton Anxiety Scale (HAMA). It also ameliorated symptoms related to IBS-D. Notably, functional connectivity between AN and VAN, SMN and DMN, RFPN and VAN in IBS-D patients after acupuncture treatment was different from that in HCs. Furthermore, there were differences in functional connectivity between DMN and DAN, DAN and LFPN, DMN and VAN before and after acupuncture treatment. The inter-network changes in DMN-VAN were positively correlated with changes in HAMA, life influence degree, and IBS-SSS in IBS-D. Conclusion: Altered inter-network functional connectivity is involved in several important hubs in large-scale networks. These networks are altered by acupuncture stimulation in patients with IBS-D.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Acupuncture-Moxibustion and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lixia Pei
- Department of Acupuncture-Moxibustion and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Acupuncture and Moxibustion Disease Project Group of China Evidence-Based Medicine Center of Traditional Chinese Medicine, Nanjing, China
| | - Houxu Ning
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing Guo
- Department of Acupuncture-Moxibustion and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafang Song
- College of Acupuncture, Massage, Health and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junling Zhou
- Department of Acupuncture-Moxibustion and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Chen
- Department of Acupuncture-Moxibustion and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhua Sun
- Department of Acupuncture-Moxibustion and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Acupuncture and Moxibustion Disease Project Group of China Evidence-Based Medicine Center of Traditional Chinese Medicine, Nanjing, China
| | - Zhongping Mi
- Department of Acupuncture-Moxibustion and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Zimdahl JW, Thomas H, Bolland SJ, Leggett K, Barry KM, Rodger J, Mulders WHAM. Excitatory Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex in a Guinea Pig Model Ameliorates Tinnitus. Front Neurosci 2021; 15:693935. [PMID: 34366777 PMCID: PMC8339289 DOI: 10.3389/fnins.2021.693935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Tinnitus, a phantom auditory perception that can seriously affect quality of life, is generally triggered by cochlear trauma and associated with aberrant activity throughout the auditory pathways, often referred to as hyperactivity. Studies suggest that non-auditory structures, such as prefrontal cortex (PFC), may be involved in tinnitus generation, by affecting sensory gating in auditory thalamus, allowing hyperactivity to reach the cortex and lead to perception. Indeed, human studies have shown that repetitive transcranial magnetic stimulation (rTMS) of PFC can alleviate tinnitus. The current study investigated whether this therapeutic effect is achieved through inhibition of thalamic hyperactivity, comparing effects of two common clinical rTMS protocols with sham treatment, in a guinea pig tinnitus model. Animals underwent acoustic trauma and once tinnitus developed were treated with either intermittent theta burst stimulation (iTBS), 20 Hz rTMS, or sham rTMS (10 days, 10 min/day; weekdays only). Tinnitus was reassessed and extracellular recordings of spontaneous tonic and burst firing rates in auditory thalamus made. To verify effects in PFC, densities of neurons positive for calcium-binding proteins, calbindin and parvalbumin, were investigated using immunohistochemistry. Both rTMS protocols significantly reduced tinnitus compared to sham. However, spontaneous tonic firing decreased following 20 Hz stimulation and increased following iTBS in auditory thalamus. Burst rate was significantly different between 20 Hz and iTBS stimulation, and burst duration was increased only after 20 Hz treatment. Density of calbindin, but not parvalbumin positive neurons, was significantly increased in the most dorsal region of PFC indicating that rTMS directly affected PFC. Our results support the involvement of PFC in tinnitus modulation, and the therapeutic benefit of rTMS on PFC in treating tinnitus, but indicate this is not achieved solely by suppression of thalamic hyperactivity.
Collapse
Affiliation(s)
- Jack W Zimdahl
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Harrison Thomas
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Samuel J Bolland
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Research, Crawley, WA, Australia
| | - Kerry Leggett
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Kristin M Barry
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Research, Crawley, WA, Australia
| | | |
Collapse
|
13
|
Simoes JP, Daoud E, Shabbir M, Amanat S, Assouly K, Biswas R, Casolani C, Dode A, Enzler F, Jacquemin L, Joergensen M, Kok T, Liyanage N, Lourenco M, Makani P, Mehdi M, Ramadhani AL, Riha C, Santacruz JL, Schiller A, Schoisswohl S, Trpchevska N, Genitsaridi E. Multidisciplinary Tinnitus Research: Challenges and Future Directions From the Perspective of Early Stage Researchers. Front Aging Neurosci 2021; 13:647285. [PMID: 34177549 PMCID: PMC8225955 DOI: 10.3389/fnagi.2021.647285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Tinnitus can be a burdensome condition on both individual and societal levels. Many aspects of this condition remain elusive, including its underlying mechanisms, ultimately hindering the development of a cure. Interdisciplinary approaches are required to overcome long-established research challenges. This review summarizes current knowledge in various tinnitus-relevant research fields including tinnitus generating mechanisms, heterogeneity, epidemiology, assessment, and treatment development, in an effort to highlight the main challenges and provide suggestions for future research to overcome them. Four common themes across different areas were identified as future research direction: (1) Further establishment of multicenter and multidisciplinary collaborations; (2) Systematic reviews and syntheses of existing knowledge; (3) Standardization of research methods including tinnitus assessment, data acquisition, and data analysis protocols; (4) The design of studies with large sample sizes and the creation of large tinnitus-specific databases that would allow in-depth exploration of tinnitus heterogeneity.
Collapse
Affiliation(s)
- Jorge Piano Simoes
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Elza Daoud
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Maryam Shabbir
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sana Amanat
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research Pfizer/University of Granada/Junta de Andalucía, PTS, Granada, Spain
| | - Kelly Assouly
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Clinical and Experimental Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
- Cochlear Technology Centre, Mechelen, Belgium
| | - Roshni Biswas
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Chiara Casolani
- Hearing Systems, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Oticon A/S, Smoerum, Denmark
- Interacoustics Research Unit, Lyngby, Denmark
| | - Albi Dode
- Institute of Databases and Information Systems, Ulm University, Ulm, Germany
| | - Falco Enzler
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Laure Jacquemin
- Department of Otorhinolaryngology Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, Antwerp University, Wilrijk, Belgium
| | - Mie Joergensen
- Hearing Systems, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- WS Audiology, Lynge, Denmark
| | - Tori Kok
- Ear Institute, University College London, London, United Kingdom
| | - Nuwan Liyanage
- University of Zurich, Zurich, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Matheus Lourenco
- Experimental Health Psychology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Health Psychology Research Group, Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium
| | - Punitkumar Makani
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, Groningen, Netherlands
| | - Muntazir Mehdi
- Institute of Distributed Systems, Ulm University, Ulm, Germany
| | - Anissa L. Ramadhani
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Constanze Riha
- Chair of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Jose Lopez Santacruz
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, Groningen, Netherlands
| | - Axel Schiller
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Natalia Trpchevska
- Department of Physiology and Pharmacology, Experimental Audiology Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Eleni Genitsaridi
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Nottingham Biomedical Research Centre, National Institute for Health Research, Nottingham, United Kingdom
| |
Collapse
|
14
|
Chen Q, Lv H, Wang Z, Wei X, Zhao P, Yang Z, Gong S, Wang Z. Lateralization effects in brain white matter reorganization in patients with unilateral idiopathic tinnitus: a preliminary study. Brain Imaging Behav 2021; 16:11-21. [PMID: 33830430 DOI: 10.1007/s11682-021-00472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/14/2021] [Indexed: 12/01/2022]
Abstract
Idiopathic tinnitus can cause significant auditory-related brain structural and functional changes in patients. However, changes in patterns of the lateralization effects in idiopathic tinnitus have yet to be established, especially on white matter (WM) reorganization. In this study, we studied 19 left-sided and 19 right-sided idiopathic tinnitus (LSIT, RSIT) patients and 19 healthy controls (HCs). We combined applied voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analyses to investigate altered features of the auditory-related brain WM. We also conducted correlation analyses between the clinical variables and WM changes in the patients. Compared with the HCs, both sided tinnitus patients showed significant auditory-related brain WM alterations. More interestingly, the LSIT patients demonstrated a greater decrease in white matter volume (WMV) in the right medial superior frontal gyrus (SFG) than the RSIT; meanwhile, we also found that compared with the RSIT group, the LSIT group showed significantly increased fractional anisotropy (FA) in the body of the corpus callosum (CC), left cingulum, and right superior longitudinal fasciculus (SLF) and decreased mean diffusivity (MD) in the body of CC. Moreover, relative to the RSIT group, the LSIT group also exhibited increases in WM axial diffusivity (AD) in the left SLF, left cingulum, right middle cerebellar peduncle (MCP), left thalamus, and bilateral forceps major (FM) and decreases in radial diffusivity (RD) in the genu of CC. Additionally, the FA value of the right SLF was closely associated with tinnitus severity in the LSIT. Our study suggests that lateralization has a significant effect on WM reorganization in patients with idiopathic tinnitus; in particular, LSIT patients may experience more severe and widespread alterations in WMV and WM microstructure than the RSIT group, and all these changes are indirectly auditory related. These findings provide new useful information that can lead to a better understanding of the tinnitus mechanisms.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, People's Republic of China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, People's Republic of China.
| | - Zhaodi Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, People's Republic of China
| | - Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, People's Republic of China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, People's Republic of China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, People's Republic of China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, People's Republic of China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Yousef A, Hinkley LB, Nagarajan SS, Cheung SW. Neuroanatomic Volume Differences in Tinnitus and Hearing Loss. Laryngoscope 2021; 131:1863-1868. [PMID: 33811641 DOI: 10.1002/lary.29549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To investigate neuroanatomic volume differences in tinnitus and hearing loss. STUDY DESIGN Cross-sectional. METHODS Sixteen regions of interest (ROIs) in adults (43 male, 29 female) were examined using 3Tesla structural magnetic resonance imaging in four cohorts: 1) tinnitus with moderate hearing loss (N = 31), 2) moderate hearing loss only (N = 15), 3) tinnitus with normal hearing (N = 17), and 4) normal hearing only (N = 13). ROI volumes were corrected for brain size, age, and sex variations. Analysis of covariance (ANCOVA) and post hoc Tukey's test were used to isolate the effects of tinnitus and hearing loss on volume differences. Effect sizes were calculated as the fraction of total variance (η2 ) in ANCOVA models and percent of mean volume difference relative to mean total volume. RESULTS The four cohort ANCOVA revealed tinnitus and hearing loss cohorts to have increased volume in the corona radiata (η2 = 0.192; P = .0018) and decreased volume in the nucleus accumbens (η2 = 0.252; P < .0001), caudate nucleus (η2 = 0.188; P = .002), and inferior fronto-occipital fasciculus (η2 = 0.250; P = .0001). Tinnitus with normal hearing showed decreased volume in the nucleus accumbens (22.0%; P = .001) and inferior fronto-occipital fasciculus (18.1%; P = .002), and hearing loss only showed increased volume in the corona radiata (10.7%; P = .01) and decreased volume in the nucleus accumbens (22.1%; P = .001), caudate nucleus (16.1%; P = .004), and inferior fronto-occipital fasciculus (18.3%; P = .003). CONCLUSION Tinnitus and hearing loss have overlapping effects on neurovolumetric alterations, especially impacting the nucleus accumbens and inferior fronto-occipital fasciculus. Neurovolumetric studies on tinnitus or hearing loss can be more complete by accounting for those two clinical dimensions separately and jointly. LEVEL OF EVIDENCE 3 Laryngoscope, 131:1863-1868, 2021.
Collapse
Affiliation(s)
- Andrew Yousef
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| | - Leighton B Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, U.S.A
| | - Srikantan S Nagarajan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, U.S.A
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, U.S.A
| |
Collapse
|
16
|
Macrostructural Changes of the Acoustic Radiation in Humans with Hearing Loss and Tinnitus Revealed with Fixel-Based Analysis. J Neurosci 2021; 41:3958-3965. [PMID: 33795427 DOI: 10.1523/jneurosci.2996-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Age-related hearing loss is the most prevalent sensory impairment in the older adult population and is related to noise-induced damage or age-related deterioration of the peripheral auditory system. Hearing loss may affect the central auditory pathway in the brain, which is a continuation of the peripheral auditory system located in the ear. A debilitating symptom that frequently co-occurs with hearing loss is tinnitus. Strikingly, investigations into the impact of acquired hearing loss, with and without tinnitus, on the human central auditory pathway are sparse. This study used diffusion-weighted imaging (DWI) to investigate changes in the largest central auditory tract, the acoustic radiation, related to hearing loss and tinnitus. Participants with hearing loss, with and without tinnitus, and a control group were included. Both conventional diffusion tensor analysis and higher-order fixel-based analysis were applied. The fixel-based analysis was used as a novel framework providing insight into the axonal density and macrostructural morphologic changes of the acoustic radiation in hearing loss and tinnitus. The results show tinnitus-related atrophy of the left acoustic radiation near the medial geniculate body. This finding may reflect a decrease in myelination of the auditory pathway, instigated by more profound peripheral deafferentation or reflecting a preexisting marker of tinnitus vulnerability. Furthermore, age was negatively correlated with the axonal density in the bilateral acoustic radiation. This loss of fiber density with age may contribute to poorer speech understanding observed in older adults.SIGNIFICANCE STATEMENT Age-related hearing loss is the most prevalent sensory impairment in the older adult population. Older individuals are subject to the cumulative effects of aging and noise exposure on the auditory system. A debilitating symptom that frequently co-occurs with hearing loss is tinnitus: the perception of a phantom sound. In this large DWI-study, we provide evidence that in hearing loss, the additional presence of tinnitus is related to degradation of the acoustic radiation. Additionally, older age was related to axonal loss in the acoustic radiation. It appears that older adults have the aggravating circumstances of age, hearing loss, and tinnitus on central auditory processing, which may partly be because of the observed deterioration of the acoustic radiation with age.
Collapse
|
17
|
Ahmed S, Mohan A, Yoo HB, To WT, Kovacs S, Sunaert S, De Ridder D, Vanneste S. Structural correlates of the audiological and emotional components of chronic tinnitus. PROGRESS IN BRAIN RESEARCH 2021; 262:487-509. [PMID: 33931193 DOI: 10.1016/bs.pbr.2021.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective is to investigate white matter tracts, more specifically the arcuate fasciculus and acoustic radiation, in tinnitus and assess their relationship with distress, loudness and hearing loss. DTI images were acquired for 58 tinnitus patients and 65 control subjects. Deterministic tractography was first performed to visualize the arcuate fasciculus and acoustic radiation tracts bilaterally and to calculate tract density, fractional anisotropy, radial diffusivity, and axial diffusivity for tinnitus and control subjects. Tinnitus patients had a significantly reduced tract density compared to controls in both tracts of interest. They also exhibited increased axial diffusivity in the left acoustic radiation, as well as increased radial diffusivity in the left arcuate fasciculus, and both the left and right acoustic radiation. Furthermore, they exhibited decreased fractional anisotropy in the left arcuate fasciculus, as well as the left and right acoustic radiation tracts. Partial correlation analysis showed: (1) a negative correlation between arcuate fasciculus tract density and tinnitus distress, (2) a negative correlation between acoustic radiation tract density and hearing loss, (3) a negative correlation between acoustic radiation tract density and loudness, (4) a positive correlation between left arcuate fasciculus and tinnitus distress for radial diffusivity, (5) a negative correlation between left arcuate fasciculus and tinnitus distress for fractional anisotropy, (6) a positive correlation between left and right acoustic radiation and hearing loss for radial diffusivity, (7) No correlation between any of the white matter characteristics and tinnitus loudness. Structural alterations in the acoustic radiation and arcuate fasciculus correlate with hearing loss and distress in tinnitus but not tinnitus loudness showing that loudness is a more functional correlate of the disorder which does not manifest structurally.
Collapse
Affiliation(s)
- Shaheen Ahmed
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Anusha Mohan
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Hye Bin Yoo
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Wing Ting To
- School of Nursing & Midwifery, Trinity College Dublin, Dublin, Ireland
| | - Silvia Kovacs
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dirk De Ridder
- School of Nursing & Midwifery, Trinity College Dublin, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States; Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
18
|
|
19
|
Dhir SB, Kutten KS, Li M, Faria AV, Younes L, Ratnanather JT. Visualising the topography of the acoustic radiation in clinical diffusion tensor imaging scans. Neuroradiology 2020; 62:1157-1167. [PMID: 32430643 DOI: 10.1007/s00234-020-02436-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE It has long been thought that the acoustic radiation (AR) white matter fibre tract from the medial geniculate body of the thalamus to the Heschl's gyrus cannot be reconstructed via single-fibre analysis of clinical diffusion tensor imaging (DTI) scans. A recently developed single-fibre probabilistic method suggests otherwise. The method uses dynamic programming (DP) to compute the most probable paths between two regions of interest. This study aims to observe the ability of single-fibre probabilistic analysis via DP to visualise the AR in clinical DTI scans from legacy pilot cohorts of subjects with normal hearing (NH) and profound hearing loss (HL). METHODS Single-fibre probabilistic analysis via DP was applied to reconstruct 3D models of the AR in the two cohorts. DTI and T1 data at 1.5 T for subjects with NH (n = 11) and HL (n = 5), as well as 3 T for NH (n = 1) and HL (n = 1), were used. RESULTS The topographical features of AR previously observed in post-mortem and multi-fibre analyses can be visualised in DTI scans of 16 subjects and 2 atlases with a success rate of 100%. Relative to MNI coordinates, there was no significant difference in the varifold distances between the topography of the tracts in the 1.5 T cohort. CONCLUSION The AR can be visualised in clinical 1.5 T and 3 T DTI scans using single-fibre probabilistic analysis via DP, hence, the potential for DP to visualise the AR in medical and pre-surgical applications in pathologies such as vestibular schwannoma, multiple sclerosis, thalamic tumours and stroke as well as hearing loss.
Collapse
Affiliation(s)
- S Bryn Dhir
- Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kwame S Kutten
- Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Muwei Li
- Vanderbilt University, Nashville, TN, 37235, USA
| | - Andreia V Faria
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Laurent Younes
- Center for Imaging Science and Institute for Computational Medicine, Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - J Tilak Ratnanather
- Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
20
|
Chen Q, Wang Z, Lv H, Zhao P, Yang Z, Gong S, Wang Z. Reorganization of Brain White Matter in Persistent Idiopathic Tinnitus Patients Without Hearing Loss: Evidence From Baseline Data. Front Neurosci 2020; 14:591. [PMID: 32612504 PMCID: PMC7308730 DOI: 10.3389/fnins.2020.00591] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
It remains unknown whether tinnitus or tinnitus-related hearing loss (HL) could indirectly impair or reshape the white matter (WM) of the human brain. We aim to explore the possible brain WM change in tinnitus patients without HL and further to investigate their associations with clinical variables. Structural and diffusion tensor imaging (DTI) of 20 idiopathic tinnitus patients without HL and 22 healthy controls (HCs) were obtained. Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis were conducted to investigate the differences in WM volume and integrity between patients and HCs, separately. We extracted WM parameters to determine a sensitive imaging index to differentiate the idiopathic tinnitus patients from the HCs in the early stage. Correlations between the clinical variables and WM indices were also performed in patients. Compared with the controls, the tinnitus patients without HL exhibited significant decreased fractional anisotropy (FA) in the body and genu of corpus callosum (CC), left cingulum (LC) and right cingulum (RC), and right superior longitudinal fasciculus (RSLF) and increase in mean diffusivity (MD) in the body of CC in WM. Moreover, the patients also showed decreases in WM axial diffusivity (AD) in LC, left superior longitudinal fasciculus (LSLF), and right interior cerebellar peduncle (ICP) and increases in radial diffusivity (RD) in the body and genu of CC and RSLF (p < 0.05, voxel-level FWE corrected). Furthermore, the increased RD value of the genu of CC is closely associated with the tinnitus handicap inventory (THI) subscale scores. No WMV changes were detected in tinnitus patients. We combined the altered WM integrity index of body and genu of CC and LC and RSLF as an index to differentiate the two groups and reached a sensitivity of 100% and a specificity of 77.3%. Our findings suggest that tinnitus without HL is associated with significant alterations of WM integrity. These changes may be irrespective of the duration and other clinical performance. The combination of diffusion indices of body and genu of CC and LC and RSLF might be used as the potential useful imaging index for the diagnosis of persistent idiopathic tinnitus without HL in the early stage.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaodi Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Mehrjoo Z, Kahrizi K, Mohseni M, Akbari M, Arzhangi S, Jalalvand K, Najmabadi H, Farhadi M, Mohseni M, Asghari A, Mohebbi S, Daneshi A. Limbic System Associated Membrane Protein Mutation in an Iranian Family Diagnosed with Ménière's Disease. ARCHIVES OF IRANIAN MEDICINE 2020; 23:319-325. [PMID: 32383616 DOI: 10.34172/aim.2020.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/26/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ménière's disease (MD) is a common inner ear disorder which is characterized by recurrent attacks of vertigo, fluctuating sensorineural hearing loss (SNHL), tinnitus, and a sense of fullness in the affected ear. MD is a complex disorder; although six genes have been linked to familial autosomal dominant form of the disease, in many cases, the exact genetic etiology remains elusive. METHODS To elucidate the genetic causes of MD in an Iranian family, we performed exome sequencing on all members of the family: consanguineous parents and four children (two affected and two unaffected). Variant filtering was completed using a customized workflow keeping variants based on segregation with MD in autosomal recessive (AR) inheritance pattern, minor allele frequency (MAF), and in-silico prediction of pathogenicity. RESULTS Analysis revealed that in this family, 970 variants co-segregated with MD in AR pattern, out of which eight variants (one intergenic, four intronic, and three exonic) were extremely rare. The exonic variants included a synonymous substitution in USP3 gene, an in-frame deletion in ZBED2 gene, and a rare, highly conserved deleterious missense alteration in LSAMP gene. CONCLUSION The phenotype observed in the proband described here, i.e. vertigo, poor sense of smell, tinnitus, and borderline hearing ability, may originate from aberrant changes in the cerebellum and limbic system due to a deleterious mutation in the LSAMP gene; hence, LSAMP mutation is a possible candidate for the etiology of MD in this family.
Collapse
Affiliation(s)
- Zohreh Mehrjoo
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojdeh Akbari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Jalalvand
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohseni
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Saleh Mohebbi
- Skull Base Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Daneshi
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Feng T, Wang M, Xiong H, Zheng Y, Yang H. Efficacy of an Integrative Treatment for Tinnitus Combining Music and Cognitive-Behavioral Therapy-Assessed With Behavioral and EEG Data. Front Integr Neurosci 2020; 14:12. [PMID: 32317943 PMCID: PMC7155387 DOI: 10.3389/fnint.2020.00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 01/20/2023] Open
Abstract
Chronic tinnitus is a prevalent condition that could cause severe negative impact on an individual's life. However, there has not been an established treatment due to a limited understanding of the pathophysiology of this multifarious disorder. In this study, we tested the efficacy of an integrative treatment, combining music therapy with cognitive-behavioral therapy (CBT). We collected three groups of patients receiving three different treatments: Music-CBT, music therapy and CBT. We used both subjective (i.e., questionnaires) and objective (i.e., resting-state EEG data) measurements to assess the behavioral and neural changes brought upon by the treatments. Analyses of the subjective measurements found a significant improvement of scale scores in Music-CBT and CBT, but not in the Music group. Analysis of the EEG data further showed increased powers in alpha and theta band after the Music-CBT treatment, and increased gamma power after CBT, whereas no significant difference was found for the music therapy. Further source localization analysis of alpha and theta changes in the Music-CBT group found that primary sources of the changes were located at auditory processing regions such as superior temporal gyrus, and higher emotional and cognitive processing regions such as ventromedial prefrontal cortex (vMPFC), lateral prefrontal cortex and parahippocampus. These results indicated that Music-CBT was effective in improving tinnitus symptoms on both a behavioral and neural level, which is more robust than the music therapy or CBT alone.
Collapse
Affiliation(s)
- Tianci Feng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Hearing and Speech Science Department, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Mingxia Wang
- Hearing and Speech Science Department, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Hearing and Speech Science Department, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Hearing and Speech Science Department, Xinhua College of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus. Front Syst Neurosci 2020; 13:88. [PMID: 32038184 PMCID: PMC6992603 DOI: 10.3389/fnsys.2019.00088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Tinnitus is one of the most prevalent auditory disorders worldwide, manifesting in both chronic and acute forms. The pathology of tinnitus has been mechanistically linked to induction of harmful neural plasticity stemming from traumatic noise exposure, exposure to ototoxic medications, input deprivation from age-related hearing loss, and in response to injuries or disorders damaging the conductive apparatus of the ears, the cochlear hair cells, the ganglionic cells of the VIIIth cranial nerve, or neurons of the classical auditory pathway which link the cochlear nuclei through the inferior colliculi and medial geniculate nuclei to auditory cortices. Research attempting to more specifically characterize the neural plasticity occurring in tinnitus have used a wide range of techniques, experimental paradigms, and sampled at different windows of time to reach different conclusions about why and which specific brain regions are crucial in the induction or ongoing maintenance of tinnitus-related plasticity. Despite differences in experimental methodologies, evidence reveals similar findings that strongly suggest that immediate and prolonged activation of non-classical auditory structures (i.e., amygdala, hippocampus, and cingulate cortex) may contribute to the initiation and development of tinnitus in addition to the ongoing maintenance of this devastating condition. The overarching focus of this review, therefore, is to highlight findings from the field supporting the hypothesis that abnormal early activation of non-classical sensory limbic regions are involved in tinnitus induction, with activation of these regions continuing to occur at different temporal stages. Since initial/early stages of tinnitus are difficult to control and to quantify in human clinical populations, a number of different animal paradigms have been developed and assessed in experimental investigations. Reviews of traumatic noise exposure and ototoxic doses of sodium salicylate, the most prevalently used animal models to induce experimental tinnitus, indicate early limbic system plasticity (within hours, minutes, or days after initial insult), supports subsequent plasticity in other auditory regions, and contributes to the pathophysiology of tinnitus. Understanding this early plasticity presents additional opportunities for intervention to reduce or eliminate tinnitus from the human condition.
Collapse
Affiliation(s)
- Michelle R. Kapolowicz
- Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Lucien T. Thompson
- Department of Neurobiology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
24
|
Xu JJ, Cui J, Feng Y, Yong W, Chen H, Chen YC, Yin X, Wu Y. Chronic Tinnitus Exhibits Bidirectional Functional Dysconnectivity in Frontostriatal Circuit. Front Neurosci 2019; 13:1299. [PMID: 31866810 PMCID: PMC6909243 DOI: 10.3389/fnins.2019.01299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/20/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose The phantom sound of tinnitus is considered to be associated with abnormal functional coupling between the nucleus accumbens (NAc) and the prefrontal cortex, which may form a frontostriatal top-down gating system to evaluate and modulate sensory signals. Resting-state functional magnetic resonance imaging (fMRI) was used to recognize the aberrant directional connectivity of the NAc in chronic tinnitus and to ascertain the relationship between this connectivity and tinnitus characteristics. Methods Participants included chronic tinnitus patients (n = 50) and healthy controls (n = 55), matched for age, sex, education, and hearing thresholds. The hearing status of both groups was comparable. On the basis of the NAc as a seed region, a Granger causality analysis (GCA) study was conducted to investigate the directional connectivity and the relationship with tinnitus duration or distress. Results Compared with healthy controls, tinnitus patients exhibited abnormal directional connectivity between the NAc and the prefrontal cortex, principally the middle frontal gyrus (MFG), orbitofrontal cortex (OFC), and inferior frontal gyrus (IFG). Additionally, positive correlations between tinnitus handicap questionnaire (THQ) scores and increased directional connectivity from the right NAc to the left MFG (r = 0.357, p = 0.015) and from the right MFG to the left NAc (r = 0.626, p < 0.001) were observed. Furthermore, the enhanced directional connectivity from the right NAc to the right OFC was positively associated with the duration of tinnitus (r = 0.599, p < 0.001). Conclusion In concurrence with expectations, tinnitus distress was correlated with enhanced directional connectivity between the NAc and the prefrontal cortex. The current study not only helps illuminate the neural basis of the frontostriatal gating control of tinnitus sensation but also contributes to deciphering the neuropathological features of tinnitus.
Collapse
Affiliation(s)
- Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jinluan Cui
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Feng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Zhang J. Blast-induced tinnitus: Animal models. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3811. [PMID: 31795642 DOI: 10.1121/1.5132551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blast-induced tinnitus is a prevalent problem among military personnel and veterans, as blast-related trauma damages the vulnerable microstructures within the cochlea, impacts auditory and non-auditory brain structures, and causes tinnitus and other disorders. Thus far, there is no effective treatment of blast-induced tinnitus due to an incomplete understanding of its underlying mechanisms, necessitating development of reliable animal models. This article focuses on recent animal studies using behavioral, electrophysiological, imaging, and pharmacological tools. The mechanisms underlying blast-induced tinnitus are largely similar to those underlying noise-induced tinnitus: increased spontaneous firing rates, bursting, and neurosynchrony, Mn++ accumulation, and elevated excitatory synaptic transmission. The differences mainly lie in the data variability and time course. Noise trauma-induced tinnitus mainly originates from direct peripheral deafferentation at the cochlea, and its etiology subsequently develops along the ascending auditory pathways. Blast trauma-induced tinnitus, on the other hand, results from simultaneous impact on both the peripheral and central auditory systems, and the resultant maladaptive neuroplasticity may also be related to the additional traumatic brain injury. Consequently, the neural correlates of blast-induced tinnitus have different time courses and less uniform manifestations of its neural correlates.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, USA
| |
Collapse
|
26
|
Shahsavarani S, Khan RA, Husain FT. Tinnitus and the Brain: A Review of Functional and Anatomical Magnetic Resonance Imaging Studies. ACTA ACUST UNITED AC 2019. [DOI: 10.1044/2019_pers-sig6-2019-0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Purpose
The tinnitus patient population is inherently heterogeneous. Although tinnitus often co-occurs with hearing loss and is more frequent among elderly people, it affects all age groups with varying hearing sensitivity. In addition, tinnitus severity and patients' reaction to tinnitus vary across individuals. Regardless of the metrics used to measure tinnitus handicap, on one end of the severity spectrum are the patients who have managed to habituate to their tinnitus; at the other end are those who are extremely bothered by tinnitus, and often have a confluence of related comorbidities of mood disorders. Understanding the neural correlates of tinnitus while accounting for such variations could benefit clinicians, helping them modify and objectively monitor tinnitus management strategies. Brain imaging, specifically magnetic resonance imaging, is an excellent tool to study the functional and structural properties of the neural networks involved in tinnitus and tinnitus severity.
Method
In this article, we review studies that employ magnetic resonance imaging-based neuroimaging techniques including resting-state functional connectivity, voxel-based morphometry, and diffusion tensor imaging to investigate underlying functional and structural neural correlates of tinnitus to address overarching dimensions of a person's reaction to tinnitus, namely, audition, emotion, and attention.
Results
We discuss findings from brain imaging studies in the context of theories and models proposed for tinnitus generation and persistence.
Conclusion
These studies have revealed tinnitus-related alteration in the auditory, emotion, and attention neural networks. Future research is required to better understand these changes in the neural circuitry based on tinnitus comorbidities and severity, and to refine existing theoretical models.
Collapse
Affiliation(s)
- Somayeh Shahsavarani
- Department of Speech and Hearing Science, University of Illinois at Urbana–Champaign, Champaign
- Neuroscience Program, University of Illinois at Urbana–Champaign, Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign
| | - Rafay Ali Khan
- Neuroscience Program, University of Illinois at Urbana–Champaign, Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign
| | - Fatima Tazeena Husain
- Department of Speech and Hearing Science, University of Illinois at Urbana–Champaign, Champaign
- Neuroscience Program, University of Illinois at Urbana–Champaign, Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Champaign
| |
Collapse
|
27
|
Deklerck AN, Marechal C, Pérez Fernández AM, Keppler H, Van Roost D, Dhooge IJM. Invasive Neuromodulation as a Treatment for Tinnitus: A Systematic Review. Neuromodulation 2019; 23:451-462. [DOI: 10.1111/ner.13042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/09/2019] [Accepted: 07/31/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Ann N. Deklerck
- Faculty of Medicine and Health Sciences, Department of Head and Skin Gent University Ghent Belgium
| | - Celine Marechal
- Faculty of Medicine and Health Sciences, Department of Head and Skin Gent University Ghent Belgium
| | | | - Hannah Keppler
- Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences Ghent University Ghent Belgium
- Department of Otorhinolaryngology Ghent University Hospital Ghent Belgium
| | - Dirk Van Roost
- Department of Neurosurgery Ghent University Hospital Ghent Belgium
- Faculty of Medicine and Health Sciences, Department of Human Structure and Repair Ghent University Ghent Belgium
| | - Ingeborg J. M. Dhooge
- Faculty of Medicine and Health Sciences, Department of Head and Skin Gent University Ghent Belgium
- Department of Otorhinolaryngology Ghent University Hospital Ghent Belgium
| |
Collapse
|
28
|
Review: Using diffusion-weighted magnetic resonance imaging techniques to explore the microstructure and connectivity of subcortical white matter tracts in the human auditory system. Hear Res 2019; 377:1-11. [DOI: 10.1016/j.heares.2019.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/16/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
|
29
|
Maffei C, Sarubbo S, Jovicich J. Diffusion-based tractography atlas of the human acoustic radiation. Sci Rep 2019; 9:4046. [PMID: 30858451 PMCID: PMC6411970 DOI: 10.1038/s41598-019-40666-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Diffusion MRI tractography allows in-vivo characterization of white matter architecture, including the localization and description of brain fibre bundles. However, some primary bundles are still only partially reconstructed, or not reconstructed at all. The acoustic radiation (AR) represents a primary sensory pathway that has been largely omitted in many tractography studies because its location and anatomical features make it challenging to reconstruct. In this study, we investigated the effects of acquisition and tractography parameters on the AR reconstruction using publicly available Human Connectome Project data. The aims of this study are: (i) using a subgroup of subjects and a reference AR for each subject, define an optimum set of parameters for AR reconstruction, and (ii) use the optimum parameters set on the full group to build a tractography-based atlas of the AR. Starting from the same data, the use of different acquisition and tractography parameters lead to very different AR reconstructions. Optimal results in terms of topographical accuracy and correspondence to the reference were obtained for probabilistic tractography, high b-values and default tractography parameters: these parameters were used to build an AR probabilistic tractography atlas. A significant left-hemispheric lateralization was found in the AR reconstruction of the 34 subjects.
Collapse
Affiliation(s)
- Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA.
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy.
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab (SFC-LSB) Project, "S.Chiara" Hospital, Trento APSS, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy
- Department of Psychology and Cognitive Sciences, University of Trento, Trento, Italy
| |
Collapse
|
30
|
Maffei C, Sarubbo S, Jovicich J. A Missing Connection: A Review of the Macrostructural Anatomy and Tractography of the Acoustic Radiation. Front Neuroanat 2019; 13:27. [PMID: 30899216 PMCID: PMC6416820 DOI: 10.3389/fnana.2019.00027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
The auditory system of mammals is dedicated to encoding, elaborating and transporting acoustic information from the auditory nerve to the auditory cortex. The acoustic radiation (AR) constitutes the thalamo-cortical projection of this system, conveying the auditory signals from the medial geniculate nucleus (MGN) of the thalamus to the transverse temporal gyrus on the superior temporal lobe. While representing one of the major sensory pathways of the primate brain, the currently available anatomical information of this white matter bundle is quite limited in humans, thus constituting a notable omission in clinical and general studies on auditory processing and language perception. Tracing procedures in humans have restricted applications, and the in vivo reconstruction of this bundle using diffusion tractography techniques remains challenging. Hence, a more accurate and reliable reconstruction of the AR is necessary for understanding the neurobiological substrates supporting audition and language processing mechanisms in both health and disease. This review aims to unite available information on the macroscopic anatomy and topography of the AR in humans and non-human primates. Particular attention is brought to the anatomical characteristics that make this bundle difficult to reconstruct using non-invasive techniques, such as diffusion-based tractography. Open questions in the field and possible future research directions are discussed.
Collapse
Affiliation(s)
- Chiara Maffei
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Center for Mind/Brain Sciences - CIMeC, University of Trento, Trento, Italy
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab Project, S. Chiara Hospital, Trento Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Trento, Italy.,Department of Psychology and Cognitive Sciences, University of Trento, Trento, Italy
| |
Collapse
|
31
|
Hofmeier B, Wolpert S, Aldamer ES, Walter M, Thiericke J, Braun C, Zelle D, Rüttiger L, Klose U, Knipper M. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus. NEUROIMAGE-CLINICAL 2018; 20:637-649. [PMID: 30202725 PMCID: PMC6128096 DOI: 10.1016/j.nicl.2018.08.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/02/2023]
Abstract
The exact neurophysiological basis of chronic tinnitus, which affects 10-15% of the population, remains unknown and is controversial at many levels. It is an open question whether phantom sound perception results from increased central neural gain or not, a crucial question for any future therapeutic intervention strategies for tinnitus. We performed a comprehensive study of mild hearing-impaired participants with and without tinnitus, excluding participants with co-occurrences of hyperacusis. A right-hemisphere correlation between tinnitus loudness and auditory perceptual difficulty was observed in the tinnitus group, independent of differences in hearing thresholds. This correlation was linked to reduced and delayed sound-induced suprathreshold auditory brain responses (ABR wave V) in the tinnitus group, suggesting subsided rather than exaggerated central neural responsiveness. When anatomically predefined auditory regions of interest were analysed for altered sound-evoked BOLD fMRI activity, it became evident that subcortical and cortical auditory regions and regions involved in sound detection (posterior insula, hippocampus), responded with reduced BOLD activity in the tinnitus group, emphasizing reduced, rather than increased, central neural gain. Regarding previous findings of evoked BOLD activity being linked to positive connectivities at rest, we additionally analysed r-fcMRI responses in anatomically predefined auditory regions and regions associated with sound detection. A profound reduction in positive interhemispheric connections of homologous auditory brain regions and a decline in the positive connectivities between lower auditory brainstem regions and regions involved in sound detection (hippocampus, posterior insula) were observed in the tinnitus group. The finding went hand-in-hand with the emotional (amygdala, anterior insula) and temporofrontal/stress-regulating regions (prefrontal cortex, inferior frontal gyrus) that were no longer positively connected with auditory cortex regions in the tinnitus group but were instead positively connected to lower-level auditory brainstem regions. Delayed sound processing, reduced sound-evoked BOLD fMRI activity and altered r-fcMRI in the auditory midbrain correlated in the tinnitus group and showed right hemisphere dominance as did tinnitus loudness and perceptual difficulty. The findings suggest that reduced central neural gain in the auditory stream may lead to phantom perception through a failure to energize attentional/stress-regulating networks for contextualization of auditory-specific information. Reduced auditory-specific information flow in tinnitus has until now escaped detection in humans, as low-level auditory brain regions were previously omitted from neuroimaging studies. TRIAL REGISTRATION German Clinical Trials Register DRKS0006332.
Collapse
Key Words
- ABR wave
- ABR, auditory brainstem response
- BA, Brodmann area
- BA13A, anterior insula
- BA13P, posterior insula
- BA28, entorhinal cortex
- BB-chirp, broadband chirp
- BERA, brainstem-evoked response audiometry
- CN, cochlear nucleus
- CSF, cerebrospinal fluid
- Cortisol
- DL, dorsolateral
- EFR, envelope-followed responses
- ENT, ear, nose and throat
- FA, flip angle
- FDR, false discovery rate
- FOV, field of view
- FWHM, full width at half maximum
- G-H-S, Goebel-Hiller-Score
- HF-chirp, high-frequency chirp
- HPA, hypothalamic-pituitary-adrenal
- High-SR AF, high-spontaneous firing rates auditory fibers
- IC, inferior colliculus
- L, left
- LF-chirp, low-frequency chirp
- Low-SR AF, low-spontaneous firing rates auditory fibers
- M, medial
- MGB, medial geniculate body
- MNI, Montreal Neurological Institute
- PFC, prefrontal cortex
- PTA, pure tone audiogram
- R, right
- ROI, region of interest
- SD, standard deviation
- SOC, superior olivary complex
- SPL, sound pressure level
- SPM, Statistical Parametric Mapping
- TA, acquisition time
- TE, echo time
- TR, repetition time
- Tinnitus
- VBM, voxel-based morphometry
- fMRI
- r-fcMRI
- rCBF, resting-state cerebral blood flow
- rCBV, resting-state cerebral blood volume
- zFC, z-values functional connectivity
Collapse
Affiliation(s)
- Benedikt Hofmeier
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - Stephan Wolpert
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - Ebrahim Saad Aldamer
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - Moritz Walter
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - John Thiericke
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany/HNO Ärzte Praxis Part GmbB, Aschaffenburg, Germany
| | - Christoph Braun
- MEG Center, University Hospital Tübingen, Otfried-Müller-Str. 47, D-72076 Tübingen, Germany
| | - Dennis Zelle
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, D-73076 Tübingen, Germany.
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Center Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, D-72076 Tübingen, Germany.
| |
Collapse
|
32
|
Impact of Tinnitus on Cognitive Function in Forensic Neuropsychology Context. PSYCHOLOGICAL INJURY & LAW 2018. [DOI: 10.1007/s12207-018-9321-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Lv H, Zhao P, Liu Z, Liu X, Ding H, Liu L, Wang G, Xie J, Zeng R, Chen Y, Yang Z, Gong S, Wang Z. Lateralization effects on functional connectivity of the auditory network in patients with unilateral pulsatile tinnitus as detected by functional MRI. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:228-235. [PMID: 28941768 DOI: 10.1016/j.pnpbp.2017.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
Abstract
Unilateral pulsatile tinnitus (PT) was proved to be a kind of disease with brain functional abnormalities within and beyond the auditory network (AN). However, changes in patterns of the lateralization effects of PT are yet to be established. Relationship between the AN and other brain networks in PT patients is also a scientific question need to be answered. In this study, we recruited 23 left-sided, 23 right-sided PT (LSPT, RSPT) patients and 23 normal controls (NC). We combined applied independent component analysis and seed-based functional connectivity (FC) analysis to investigate alteration feature of the FC of the AN by using resting-state functional magnetic resonance imaging (rs-fMRI). Compared with NC, LSPT patients demonstrated disconnected FC within the AN on both sides. Disrupted network integrity between AN and several brain functional networks, including executive control network, self-perceptual network and the limbic network, was also demonstrated in LSPT patient group bilaterally. In contrast, compared with NC, RSPT demonstrated decreased FC within the AN on the left side, but significant increased FC within the AN on the right side (symptomatic side). Enhanced FC between AN and executive control network, self-perceptual network and limbic network was also found mainly on the right side in patients with RSPT. Positive FC between the auditory network and the limbic network may be a reason to explain why RSPT patients are willing to be in the clinic. Briefly, LSPT exhibit disrupted network integrity in brain functional networks. But RSPT is featured by enhanced FC within AN and between networks, especially on the right (symptomatic) side. Corroboration of featured FC helps to reveal the pathophysiological changing process of the brain in patients with PT, providing imaging-based biomarker to distinguish PT from other kind of tinnitus.
Collapse
Affiliation(s)
- Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhaohui Liu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xuehuan Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Liheng Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Guopeng Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Xie
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Rong Zeng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yuchen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shusheng Gong
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
34
|
Schmidt SA, Zimmerman B, Bido Medina RO, Carpenter-Thompson JR, Husain FT. Changes in gray and white matter in subgroups within the tinnitus population. Brain Res 2018; 1679:64-74. [DOI: 10.1016/j.brainres.2017.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
35
|
Tarabichi O, Kozin ED, Kanumuri VV, Barber S, Ghosh S, Sitek KR, Reinshagen K, Herrmann B, Remenschneider AK, Lee DJ. Diffusion Tensor Imaging of Central Auditory Pathways in Patients with Sensorineural Hearing Loss: A Systematic Review. Otolaryngol Head Neck Surg 2017; 158:432-442. [PMID: 29112481 PMCID: PMC10153551 DOI: 10.1177/0194599817739838] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective The radiologic evaluation of patients with hearing loss includes computed tomography and magnetic resonance imaging (MRI) to highlight temporal bone and cochlear nerve anatomy. The central auditory pathways are often not studied for routine clinical evaluation. Diffusion tensor imaging (DTI) is an emerging MRI-based modality that can reveal microstructural changes in white matter. In this systematic review, we summarize the value of DTI in the detection of structural changes of the central auditory pathways in patients with sensorineural hearing loss. Data Sources PubMed, Embase, and Cochrane. Review Methods We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement checklist for study design. All studies that included at least 1 sensorineural hearing loss patient with DTI outcome data were included. Results After inclusion and exclusion criteria were met, 20 articles were analyzed. Patients with bilateral hearing loss comprised 60.8% of all subjects. Patients with unilateral or progressive hearing loss and tinnitus made up the remaining studies. The auditory cortex and inferior colliculus (IC) were the most commonly studied regions using DTI, and most cases were found to have changes in diffusion metrics, such as fractional anisotropy, compared to normal hearing controls. Detectable changes in other auditory regions were reported, but there was a higher degree of variability. Conclusion White matter changes based on DTI metrics can be seen in patients with sensorineural hearing loss, but studies are few in number with modest sample sizes. Further standardization of DTI using a prospective study design with larger sample sizes is needed.
Collapse
Affiliation(s)
- Osama Tarabichi
- 1 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,2 Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elliott D Kozin
- 1 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,2 Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivek V Kanumuri
- 1 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,2 Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Barber
- 1 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,3 Department of Otolaryngology-Head and Neck Surgery, University of Arizona, Arizona, USA
| | - Satra Ghosh
- 1 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,4 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Katherine Reinshagen
- 1 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,2 Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - Barbara Herrmann
- 1 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,2 Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron K Remenschneider
- 1 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,2 Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA.,5 Department of Otolaryngology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Daniel J Lee
- 1 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,2 Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Chen YC, Bo F, Xia W, Liu S, Wang P, Su W, Xu JJ, Xiong Z, Yin X. Amygdala functional disconnection with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:249-257. [PMID: 28689008 DOI: 10.1016/j.pnpbp.2017.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/02/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
Chronic tinnitus is often accompanied with depressive symptom, which may arise from aberrant functional coupling between the amygdala and cerebral cortex. To explore this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the disrupted amygdala-cortical functional connectivity (FC) in chronic tinnitus patients with depressive mood. Chronic tinnitus patients with depressive mood (n=20), without depressive mood (n=20), and well-matched healthy controls (n=23) underwent resting-state fMRI scanning. Amygdala-cortical FC was characterized using a seed-based whole-brain correlation method. The bilateral amygdala FC was compared among the three groups. Compared to non-depressed patients, depressive tinnitus patients showed decreased amygdala FC with the prefrontal cortex and anterior cingulate cortex as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. Relative to healthy controls, depressive tinnitus patients revealed decreased amygdala FC with the superior and middle temporal gyrus, anterior and posterior cingulate cortex, and prefrontal cortex, as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. The current study identified for the first time abnormal resting-state amygdala-cortical FC with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood, which will provide novel insight into the underlying neuropathological mechanisms of tinnitus-induced depressive disorder.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Fan Bo
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shenghua Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Su
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenyu Xiong
- Toshiba Stroke and Vascular Research Center, State University of New York at Buffalo, Buffalo, NY, USA
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
37
|
Maffei C, Jovicich J, De Benedictis A, Corsini F, Barbareschi M, Chioffi F, Sarubbo S. Topography of the human acoustic radiation as revealed by ex vivo fibers micro-dissection and in vivo diffusion-based tractography. Brain Struct Funct 2017; 223:449-459. [PMID: 28866840 DOI: 10.1007/s00429-017-1471-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/04/2017] [Indexed: 10/18/2022]
Abstract
The acoustic radiation is a compact bundle of fibers conveying auditory information from the medial geniculate nucleus of the thalamus to the auditory cortex. Topographical knowledge of this bundle in primates is scarce and in vivo diffusion-based tractography reconstructions in humans remains challenging, especially with the most widely used MRI acquisition protocols. Therefore, the AR represents a notable anatomical omission in the neurobiological investigation of acoustic and linguistic functional mechanisms in humans. In this study, we combine blunt micro-dissections and advanced diffusion tractography methods to provide novel insights into the topographical anatomy of this bundle in humans. Evidences from ex vivo blunt micro-dissection in three human (two right) hemispheres are compared to the 3D profile of this bundle as reconstructed by tractography techniques in four healthy adult data sets provided by the Human Connectome Project. Both techniques show the unique trajectory of the AR, a transversal course from the midline to the lateral convexity of the posterior temporal lobe. Blunt dissections demonstrated three portions of this bundle that we defined as the genu, stem, and fan, revealing the intimate relationships that each of these components has with neighboring association and projection pathways. Probabilistic tractography and ultra-high b values provided results comparable to blunt micro-dissections and highlighted the main limitations in tracking the AR. This is, to our knowledge, the first ex vivo/in vivo integrated study providing novel and reliable information about the precise anatomy of the AR, which will be important for future investigations in the neuroscientific, clinical, and surgical field.
Collapse
Affiliation(s)
- Chiara Maffei
- CIMeC Center for Mind/Brain Sciences, Trento University, Trento, Italy
| | - Jorge Jovicich
- CIMeC Center for Mind/Brain Sciences, Trento University, Trento, Italy
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Corsini
- Division of Neurosurgery, Structural and Functional Connectivity Lab (SFC-LSB) Project, Department of Neurosciences, "S. Chiara" Hospital, Trento APSS, 9, Largo Medaglie d'Oro, 38122, Trento, Italy
| | - Mattia Barbareschi
- Department of Histopathology, "S. Chiara" Hospital, Trento APSS, Trento, Italy
| | - Franco Chioffi
- Division of Neurosurgery, Structural and Functional Connectivity Lab (SFC-LSB) Project, Department of Neurosciences, "S. Chiara" Hospital, Trento APSS, 9, Largo Medaglie d'Oro, 38122, Trento, Italy
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab (SFC-LSB) Project, Department of Neurosciences, "S. Chiara" Hospital, Trento APSS, 9, Largo Medaglie d'Oro, 38122, Trento, Italy.
| |
Collapse
|
38
|
Ouyang J, Pace E, Lepczyk L, Kaufman M, Zhang J, Perrine SA, Zhang J. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study. Sci Rep 2017; 7:4852. [PMID: 28687812 PMCID: PMC5501813 DOI: 10.1038/s41598-017-04941-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
Collapse
Affiliation(s)
- Jessica Ouyang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Edward Pace
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Laura Lepczyk
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael Kaufman
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jessica Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jinsheng Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, 48201, USA.
| |
Collapse
|
39
|
Ku Y, Ahn JW, Kwon C, Kim DY, Suh MW, Park MK, Lee JH, Oh SH, Kim HC. The gap-prepulse inhibition deficit of the cortical N1-P2 complex in patients with tinnitus: The effect of gap duration. Hear Res 2017; 348:120-128. [DOI: 10.1016/j.heares.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/21/2017] [Accepted: 03/02/2017] [Indexed: 01/10/2023]
|
40
|
The Role of the Supplementary Motor Region in Overt Reading: Evidence for Differential Processing in SMA-Proper and Pre-SMA as a Function of Task Demands. Brain Topogr 2017; 30:579-591. [DOI: 10.1007/s10548-017-0553-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 01/27/2017] [Indexed: 01/31/2023]
|
41
|
Davies JE, Gander PE, Hall DA. Does Chronic Tinnitus Alter the Emotional Response Function of the Amygdala?: A Sound-Evoked fMRI Study. Front Aging Neurosci 2017; 9:31. [PMID: 28270764 PMCID: PMC5318420 DOI: 10.3389/fnagi.2017.00031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/06/2017] [Indexed: 12/24/2022] Open
Abstract
Tinnitus is often associated with strong negative thoughts and emotions which can contribute to a distressing and chronic long-term condition. The amygdala, the "feeling and reacting" part of the brain, may play a key role in this process. Although implicated in several theoretical models of tinnitus, quantification of activity in the human amygdala has only been made possible more recently through neuroimaging methods such as functional magnetic resonance imaging (fMRI) but benefits from modified scanning parameters using a double-echo acquisition for improved BOLD sensitivity. This study thus examined the role of the amygdala in emotional sound processing in people with tinnitus using a novel double-echo imaging sequence for optimal detectability of subcortical activity. Our hypotheses were: (1) emotionally evocative sound clips rated as pleasant or unpleasant would elicit stronger amygdalar activation than sound clips rated as neutral, (2) people with tinnitus have greater amygdalar activation in response to emotionally evocative sounds (relative to neutral sounds) compared to controls. Methods: Twelve participants all with chronic, constant tinnitus took part. We also recruited 11 age and hearing-matched controls. Participants listened to a range of emotionally evocative sound clips; rated as pleasant, unpleasant or neutral. A region-of-interest analysis was chosen to test our a priori hypotheses. Results: Both groups displayed a robust and similar overall response to sounds vs. silence in the following ascending auditory pathways; inferior colliculus, medial geniculate body and the primary auditory cortex. In support of our first hypothesis, the amygdala's response to pleasant and unpleasant sound clips was significantly greater than neutral sounds. Opposing our second hypothesis, we found that the amygdala's overall response to pleasant and unpleasant sounds (compared to neutral sounds) was actually lower in the tinnitus group as compared to the controls. Conclusions: The "muted" amygdala activation observed in the tinnitus group could reflect an internal modification of emotional response perhaps as a result of successful habituation to emotionally negative sound. This interpretation would predict a heightened amygdala emotional response in individuals with a more clinically bothersome tinnitus.
Collapse
Affiliation(s)
- Jeff E Davies
- Division of Audiology, Faculty of Health and Life Sciences, School of Allied Health Sciences, De Montfort UniversityLeicester, UK; National Institute for Health Research, Nottingham Hearing Biomedical Research UnitNottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of NottinghamNottingham, UK
| | - Phillip E Gander
- National Institute for Health Research, Nottingham Hearing Biomedical Research UnitNottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of NottinghamNottingham, UK
| | - Deborah A Hall
- National Institute for Health Research, Nottingham Hearing Biomedical Research UnitNottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of NottinghamNottingham, UK
| |
Collapse
|
42
|
Chen YC, Xia W, Chen H, Feng Y, Xu JJ, Gu JP, Salvi R, Yin X. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex. Hum Brain Mapp 2017; 38:2384-2397. [PMID: 28112466 DOI: 10.1002/hbm.23525] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 02/04/2023] Open
Abstract
The phantom sound of tinnitus is believed to be triggered by aberrant neural activity in the central auditory pathway, but since this debilitating condition is often associated with emotional distress and anxiety, these comorbidities likely arise from maladaptive functional connections to limbic structures such as the amygdala and hippocampus. To test this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to identify aberrant effective connectivity of the amygdala and hippocampus in tinnitus patients and to determine the relationship with tinnitus characteristics. Chronic tinnitus patients (n = 26) and age-, sex-, and education-matched healthy controls (n = 23) were included. Both groups were comparable for hearing level. Granger causality analysis utilizing the amygdala and hippocampus as seed regions were used to investigate the directional connectivity and the relationship with tinnitus duration or distress. Relative to healthy controls, tinnitus patients demonstrated abnormal directional connectivity of the amygdala and hippocampus, including primary and association auditory cortex, and other non-auditory areas. Importantly, scores on the Tinnitus Handicap Questionnaires were positively correlated with increased connectivity from the left amygdala to left superior temporal gyrus (r = 0.570, P = 0.005), and from the right amygdala to right superior temporal gyrus (r = 0.487, P = 0.018). Moreover, enhanced effective connectivity from the right hippocampus to left transverse temporal gyrus was correlated with tinnitus duration (r = 0.452, P = 0.030). The results showed that tinnitus distress strongly correlates with enhanced effective connectivity that is directed from the amygdala to the auditory cortex. The longer the phantom sensation, the more likely acute tinnitus becomes permanently encoded by memory traces in the hippocampus. Hum Brain Mapp 38:2384-2397, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Yuan Feng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Jian-Ping Gu
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, 14214, New York
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| |
Collapse
|
43
|
Differential tinnitus-related neuroplastic alterations of cortical thickness and surface area. Hear Res 2016; 342:1-12. [DOI: 10.1016/j.heares.2016.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/27/2022]
|
44
|
Factor Analysis of Low-Frequency Repetitive Transcranial Magnetic Stimulation to the Temporoparietal Junction for Tinnitus. Neural Plast 2016; 2016:2814056. [PMID: 27847647 PMCID: PMC5101393 DOI: 10.1155/2016/2814056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 11/18/2022] Open
Abstract
Objectives. We investigated factors that contribute to suppression of tinnitus after repetitive transcranial magnetic stimulation (rTMS). Methods. A total of 289 patients with tinnitus underwent active 1 Hz rTMS in the left temporoparietal region. A visual analog scale (VAS) was used to assess tinnitus loudness. All participants were interviewed regarding age, gender, tinnitus duration, laterality and pitch, audiometric parameters, sleep, and so forth. The resting motor thresholds (RMTs) were measured in all patients and 30 age- and gender-matched volunteers. Results. With respect to different factors that contribute to tinnitus suppression, we found improvement in the following domains: shorter duration, normal hearing (OR: 3.25, 95%CI: 2.01-5.27, p = 0.001), and without sleep disturbance (OR: 2.51, 95%CI: 1.56-4.1, p = 0.005) adjusted for age and gender. The patients with tinnitus lasting less than 1 year were more likely to show suppression of tinnitus (OR: 2.77, 95%CI: 1.48-5.19, p = 0.002) compared to those with tinnitus lasting more than 5 years. Tinnitus patients had significantly lower RMTs compared with healthy volunteers. Conclusion. Active low-frequency rTMS results in a significant reduction in the loudness of tinnitus. Significant tinnitus suppression was shown in subjects with shorter tinnitus duration, with normal hearing, and without sleep disturbance.
Collapse
|
45
|
Kapolowicz MR, Thompson LT. Acute high-intensity noise induces rapid Arc protein expression but fails to rapidly change GAD expression in amygdala and hippocampus of rats: Effects of treatment with D-cycloserine. Hear Res 2016; 342:69-79. [PMID: 27702572 DOI: 10.1016/j.heares.2016.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/26/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Tinnitus is a devastating auditory disorder impacting a growing number of people each year. The aims of the current experiment were to assess neuronal mechanisms involved in the initial plasticity after traumatic noise exposure that could contribute to the emergence of tinnitus and to test a potential pharmacological treatment to alter this early neural plasticity. Specifically, this study addressed rapid effects of acute noise trauma on amygdalo-hippocampal circuitry, characterizing biomarkers of both excitation and inhibition in these limbic regions, and compared them to expression of these same markers in primary auditory cortex shortly after acute noise trauma. To assess excitatory plasticity, activity-regulated cytoskeleton-associated (Arc) protein expression was evaluated in male rats 45 min after bilateral exposure to acute high-intensity noise (16 kHz, 115 dB SPL, for 1 h), sufficient to cause acute cochlear trauma, a common cause of tinnitus in humans and previously shown sufficient to induce tinnitus in rat models of this auditory neuropathology. Western blot analyses confirmed that up-regulation of amygdalo-hippocampal Arc expression occurred rapidly post-noise trauma, corroborating several lines of evidence from our own and other laboratories indicating that limbic brain structures, i.e. outside of the classical auditory pathways, exhibit plasticity early in the initiation of tinnitus. Western blot analyses revealed no noise-induced changes in amygdalo-hippocampal expression of glutamate decarboxylase (GAD), the biosynthetic enzyme required for GABAergic inhibition. No changes in either Arc or GAD protein expression were observed in primary auditory cortex in this immediate post-noise exposure period, confirming other reports that auditory cortical plasticity may not occur until later in the development of tinnitus. As a further control, our experiments compared Arc protein expression between groups exposed to the quiet background of a sound-proof chamber to those exposed not only to the traumatic noise described above, but also to an intermediate, non-traumatic noise level (70 dB SPL) for the same duration in each of these three brain regions. We found that non-traumatic noise did not up-regulate Arc protein expression in these brain regions. To see if changes in Arc expression due to acute traumatic noise exposure were stress-related, we compared circulating serum corticosterone in controls and rats exposed to traumatic noise at the time when changes in Arc were observed, and found no significant differences in this stress hormone in our experimental conditions. Finally, the ability of D-cycloserine (DCS; an NMDA-receptor NR1 partial agonist) to reduce or prevent the noise trauma-related plastic changes in the biomarker, Arc, was tested. D-cycloserine prevented traumatic noise-induced up-regulation of Arc protein expression in amygdala but not in hippocampus, suggesting that DCS alone is not fully effective in eliminating regionally-specific early plastic changes after traumatic noise exposure.
Collapse
Affiliation(s)
- M R Kapolowicz
- Behavioral & Brain Sciences, Neuroscience, The University of Texas at Dallas, 800W. Campbell Rd., BSB 14, Richardson, TX, 75080, USA
| | - L T Thompson
- Behavioral & Brain Sciences, Neuroscience, The University of Texas at Dallas, 800W. Campbell Rd., BSB 14, Richardson, TX, 75080, USA.
| |
Collapse
|
46
|
Allan TW, Besle J, Langers DRM, Davies J, Hall DA, Palmer AR, Adjamian P. Neuroanatomical Alterations in Tinnitus Assessed with Magnetic Resonance Imaging. Front Aging Neurosci 2016; 8:221. [PMID: 27708577 PMCID: PMC5030287 DOI: 10.3389/fnagi.2016.00221] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/06/2016] [Indexed: 01/08/2023] Open
Abstract
Previous studies of anatomical changes associated with tinnitus have provided inconsistent results, with some showing significant cortical and subcortical changes, while others have found effects due to hearing loss, but not tinnitus. In this study, we examined changes in brain anatomy associated with tinnitus using anatomical scans from 128 participants with tinnitus and hearing loss, tinnitus with clinically normal hearing, and non-tinnitus controls with clinically normal hearing. The groups were matched for hearing loss, age and gender. We employed voxel- and surface-based morphometry (SBM) to investigate gray and white matter volume and thickness within regions-of-interest (ROI) that were based on the results of previous studies. The largest overall effects were found for age, gender, and hearing loss. With regard to tinnitus, analysis of ROI revealed numerous small increases and decreases in gray matter and thickness between tinnitus and non-tinnitus controls, in both cortical and subcortical structures. For whole brain analysis, the main tinnitus-related significant clusters were found outside sensory auditory structures. These include a decrease in cortical thickness for the tinnitus group compared to controls in the left superior frontal gyrus (SFG), and a decrease in cortical volume with hearing loss in left Heschl’s gyrus (HG). For masked analysis, we found a decrease in gray matter volume in the right Heschle’s gyrus for the tinnitus group compared to the controls. We found no changes in the subcallosal region as reported in some previous studies. Overall, while some of the morphological differences observed in this study are similar to previously published findings, others are entirely different or even contradict previous results. We highlight other discrepancies among previous results and the increasing need for a more precise subtyping of the condition.
Collapse
Affiliation(s)
- Thomas W Allan
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| | - Julien Besle
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| | - Dave R M Langers
- Nottingham Hearing Biomedical Research Unit, National Institute for Health Research (NIHR)Nottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, The University of NottinghamNottingham, UK
| | - Jeff Davies
- Nottingham Hearing Biomedical Research Unit, National Institute for Health Research (NIHR)Nottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, The University of NottinghamNottingham, UK
| | - Deborah A Hall
- Nottingham Hearing Biomedical Research Unit, National Institute for Health Research (NIHR)Nottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, The University of NottinghamNottingham, UK
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| | - Peyman Adjamian
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| |
Collapse
|
47
|
The Importance of Aging in Gray Matter Changes Within Tinnitus Patients Shown in Cortical Thickness, Surface Area and Volume. Brain Topogr 2016; 29:885-896. [DOI: 10.1007/s10548-016-0511-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
|
48
|
A proof-of-concept study on the combination of repetitive transcranial magnetic stimulation and relaxation techniques in chronic tinnitus. J Neural Transm (Vienna) 2016; 123:1147-57. [DOI: 10.1007/s00702-016-1588-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/12/2016] [Indexed: 01/24/2023]
|
49
|
Rueckriegel SM, Homola GA, Hummel M, Willner N, Ernestus RI, Matthies C. Probabilistic Fiber-Tracking Reveals Degeneration of the Contralateral Auditory Pathway in Patients with Vestibular Schwannoma. AJNR Am J Neuroradiol 2016; 37:1610-6. [PMID: 27256855 DOI: 10.3174/ajnr.a4833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/06/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Vestibular schwannomas cause progressive hearing loss by direct damage to the vestibulocochlear nerve. The cerebral mechanisms of degeneration or plasticity are not well-understood. Therefore, the goal of our study was to show the feasibility of probabilistic fiber-tracking of the auditory pathway in patients with vestibular schwannomas and to compare the ipsi- and contralateral volume and integrity, to test differences between the hemispheres. MATERIALS AND METHODS Fifteen patients with vestibular schwannomas were investigated before surgery. Diffusion-weighted imaging (25 directions) was performed on a 3T MR imaging system. Probabilistic tractography was performed for 3 partial sections of the auditory pathway. Volume and fractional anisotropy were determined and compared ipsilaterally and contralaterally. The laterality ratio was correlated with the level of hearing loss. RESULTS Anatomically reasonable tracts were depicted in all patients for the acoustic radiation. Volume was significantly decreased on the hemisphere contralateral to the tumor side for the acoustic radiation and diencephalic section, while fractional anisotropy did not differ significantly. Tracking did not yield meaningful tracts in 3 patients for the thalamocortical section and in 5 patients for the diencephalic section. No statistically significant correlations between the laterality quotient and classification of hearing loss were found. CONCLUSIONS For the first time, this study showed that different sections of the auditory pathway between the inferior colliculus and the auditory cortex can be visualized by using probabilistic tractography. A significant volume decrease of the auditory pathway on the contralateral hemisphere was observed and may be explained by transsynaptic degeneration of the crossing auditory pathway.
Collapse
Affiliation(s)
- S M Rueckriegel
- From the Departments of Neurosurgery (S.M.R., M.H., N.W., R.-I.E., C.M.)
| | - G A Homola
- Neuroradiology (G.A.H.), Würzburg University Hospital, Würzburg, Germany
| | - M Hummel
- From the Departments of Neurosurgery (S.M.R., M.H., N.W., R.-I.E., C.M.)
| | - N Willner
- From the Departments of Neurosurgery (S.M.R., M.H., N.W., R.-I.E., C.M.)
| | - R-I Ernestus
- From the Departments of Neurosurgery (S.M.R., M.H., N.W., R.-I.E., C.M.)
| | - C Matthies
- From the Departments of Neurosurgery (S.M.R., M.H., N.W., R.-I.E., C.M.)
| |
Collapse
|
50
|
Rauschecker JP, May ES, Maudoux A, Ploner M. Frontostriatal Gating of Tinnitus and Chronic Pain. Trends Cogn Sci 2016; 19:567-578. [PMID: 26412095 DOI: 10.1016/j.tics.2015.08.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 12/18/2022]
Abstract
Tinnitus and chronic pain are sensory-perceptual disorders associated with negative affect and high impact on well-being and behavior. It is now becoming increasingly clear that higher cognitive and affective brain systems are centrally involved in the pathology of both disorders. We propose that the ventromedial prefrontal cortex and the nucleus accumbens are part of a central 'gatekeeping' system in both sensory modalities, a system which evaluates the relevance and affective value of sensory stimuli and controls information flow via descending pathways. If this frontostriatal system is compromised, long-lasting disturbances are the result. Parallels in both systems are striking and mutually informative, and progress in understanding central gating mechanisms might provide a new impetus to the therapy of tinnitus and chronic pain.
Collapse
Affiliation(s)
- Josef P Rauschecker
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA; Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Munich, Germany; Institute for Advanced Study, Technische Universität München, Munich, Germany.
| | - Elisabeth S May
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Audrey Maudoux
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Markus Ploner
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| |
Collapse
|