1
|
Gupta J, Jalil AT, Abd Alzahraa ZH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Najafi M. The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection. Curr Med Chem 2024; 31:5370-5396. [PMID: 37403391 DOI: 10.2174/0929867331666230703143907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor-promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Azmoonfar R, Khosravi H, Rafieemehr H, Mirzaei F, Dastan D, Ghiasvand MR, Khorshidi L, Pashaki AS. Radioprotective effect of Malva sylvestris L. against radiation-induced liver, kidney and intestine damages in rat: A histopathological study. Biochem Biophys Rep 2023; 34:101455. [PMID: 36969320 PMCID: PMC10031346 DOI: 10.1016/j.bbrep.2023.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Background Ionizing radiation (IR) is widely used in the treatment of cancer in radiotherapy. One of the main concerns of patients with gastrointestinal cancers undergoing radiotherapy is the harmful side effects of IR on normal tissues. The liver, kidney, and duodenum are usually exposed to high doses of radiation in the treatment of some cancers in abdominal region radiotherapy. We aimed to assess the radioprotective effects of Malva sylvestris L. against IR damages to the abdominal region. Materials and methods This current study was conducted on 45 rats divided randomly into nine groups of five: A) negative control group, B) sham group, C) irradiation group, D) mallow treatment-1(200gr/kg), E) mallow treatment-2(400gr/kg), F) mallow treatment-3(600gr/kg), G) mallow treatment-4(200gr/kg) plus irradiation, H) mallow treatment-5(400gr/kg) plus irradiation, I) mallow treatment-6(600gr/kg) plus irradiation. Irradiation was performed with a 6Gy x-ray. Histopathological evaluations were performed 10 days after irradiation. Results The histopathological examination results confirmed that preventive therapy with the effective dose of mallow reduced the liver, kidney, and intestine damage induced by radiation. The dose of 400 mg/kg was more effective than other selected dose in improving the damage caused by irradiation in the studied tissues. Conclusion This study concludes that Malva sylvestris L. contributed to significant improvements in radiation-induced histological parameters of the liver and kidney and, to a lesser extent, in the intestine. These results collectively indicate that mallow is an effective radioprotective agent.
Collapse
Affiliation(s)
- Rasool Azmoonfar
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Khosravi
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Rafieemehr
- Department of Laboratory Sciences, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohamad Reza Ghiasvand
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Lavin Khorshidi
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolazim Sedighi Pashaki
- Department of Radiooncology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
4
|
Abdel-Magied N, Shedid SM. Impact of zinc oxide nanoparticles on thioredoxin-interacting protein and asymmetric dimethylarginine as biochemical indicators of cardiovascular disorders in gamma-irradiated rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:430-442. [PMID: 31749214 DOI: 10.1002/tox.22879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Nanoparticle is a microscopic particle that has been existed in a wide range of biotechnological purposes. Zinc oxide nanoparticles (ZnO-NPs) have fewer environmental hazards and have shown positive impacts in the medical field. This work aimed to observe the effects of low and high doses of ZnO-NPs on heart injury induced by ionizing radiation (IR). Animals were irradiated by 8 Gy of gamma rays and ZnO-NPs (10 and 300 mg/Kg/day) were orally delivered to rats 1 hour after irradiation. Animals were dissected on 15th day postirradiation. Data showed that the oxidative damage resulted from radiation exposure, appeared by marked increments in the malondialdehyde (MDA) content and the level and protein expression of thioredoxin-interacting protein (TXNIP) with a noticeable decline in the level and expression of thioredoxin 1 (Trx-1) and thioredoxin reductase (TrxR), as well as glutathione (GSH) level and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Moreover, radiation-induced inflammation, manifested by a noticeable elevation in the level of tumor necrotic factor-alpha (TNF-α), interleukin-18 (IL-18), and C-reactive protein (CRP). Additionally, endothelial dysfunction marked with a high level of asymmetric dimethylarginine (ADMA), total nitrite/nitrate (NOx), intercellular adhesion molecule 1 (ICAM-1), homocysteine (Hcy), creatine kinase (CK-MB), cardiac troponin-I (cTn-I), and lactate dehydrogenase (LDH). In addition, a decrease of zinc (Zn) level in the cardiac tissue was recorded. ZnO-NPs treatment (10 mg/kg) mitigated the oxidative stress and inflammation effects on the cardiovascular tissue through the positive modulations in the studied parameters. In contrast, ZnO-NPs treatment (300 mg/kg) induced cardiovascular toxicity of normal rats and elevated the deleterious effects of radiation. In conclusion, ZnO-NPs at a low dose could mitigate the adverse effects on cardiovascular tissue induced by radiation during its applications, while the high dose showed morbidity and mortality in normal and irradiated rats.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| | - Shereen M Shedid
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| |
Collapse
|
5
|
Eskandari A, Mahmoudzadeh A, Shirazi A, Esmaely F, Carnovale C, Cheki M. Melatonin a Promising Candidate for DNA Double-Stranded Breaks Reduction in Patients Undergoing Abdomen-Pelvis Computed Tomography Examinations. Anticancer Agents Med Chem 2020; 20:859-864. [PMID: 32208125 DOI: 10.2174/1871521409666200324101701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/20/2019] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Cancer incidence is 24% higher in children and young adults exposed to Computed Tomography (CT) scans than those unexposed. Non-repairing of ionizing radiation-induced DNA Double-Strand Breaks (DSBs) can initiate carcinogenesis. In the present study, we aimed to investigate the radioprotective potential of melatonin against DSBs in peripheral blood lymphocytes of patients undergoing abdomen-pelvis CT examinations. METHODS This double-blind, placebo-controlled clinical trial was conducted on thirty patients. These patients were divided into two groups; group one (control) patients who have undergone the CT examination received a single oral dose of placebo, while in group two, patients received a single oral dose of 100mg melatonin. In both the groups, blood samples were collected 5-10min before and 30 minutes after the CT examination. The lymphocytes from these samples were isolated and DSBs were analyzed using γH2AX immunofluorescence microscopy. RESULTS Compared to the control group, the use of melatonin 1h before the CT examination caused a significant reduction in γH2AX-foci, indicating a reduction in DSBs. In addition, no side effect was observed in patients following 100mg melatonin administration. CONCLUSION For the first time, this study has shown that melatonin has protective effects against radiationinduced genotoxicity in peripheral blood lymphocytes of patients undergoing abdomen-pelvis CT examinations. Therefore, melatonin can be considered as a promising candidate for reducing DSBs in patients undergoing abdomen-pelvis CT examinations.
Collapse
Affiliation(s)
- Ali Eskandari
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aziz Mahmoudzadeh
- Department of Biosciences and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| | - Farid Esmaely
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences L. Sacco, Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, Università di Milano, Milan, Italy
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Bertolini M, Ramot Y, Gherardini J, Heinen G, Chéret J, Welss T, Giesen M, Funk W, Paus R. Theophylline exerts complex anti-ageing and anti-cytotoxicity effects in human skin ex vivo. Int J Cosmet Sci 2019; 42:79-88. [PMID: 31633195 DOI: 10.1111/ics.12589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Theophylline is a phosphodiesterase inhibitor that is being used clinically for asthma therapy. In addition, it is recognized as a cosmetic agent with possible anti-ageing and anti-oxidative properties. Nevertheless, how it affects human skin is still poorly examined. METHODS Theophylline (10 or 100 µM) was administered to the culture medium of full-thickness human skin ex vivo for 24 or 72 h. RESULTS Theophylline stimulated protein expression of the anti-oxidant metallothionein-1 and mRNA levels of collagen I and III. Assessment of fibrillin-1 immunohistology revealed enhanced structural stability of dermal microfibrils. Theophylline also exerted extracellular matrix-protective effects by decreasing MMP-2 and MMP-9 mRNA levels, partially antagonizing the effects of menadione, the potent, toxic ROS donor. In addition, it decreased menadione-stimulated epidermal keratinocytes apoptosis. Interestingly, theophylline also increased the level of intracutaneously produced melatonin, that is the most potent ROS-protective and DNA damage repair neuromediator, and tendentially increased protein expression of MT1, the melatonin receptor. Theophylline also increased the expression of keratin 15, the stem cell marker, in the epidermal basal layer but did not change mitochondrial activity or epidermal pigmentation. CONCLUSION This ex vivo pilot study in human skin shows that theophylline possesses several interesting complex skin-protective properties. It encourages further examination of theophylline as a topical candidate for anti-ageing treatment.
Collapse
Affiliation(s)
- M Bertolini
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany
| | - Y Ramot
- Department of Dermatology, The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, 9112001 , Jerusalem, Israel
| | - J Gherardini
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany
| | - G Heinen
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - J Chéret
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 33136 , Miami, FL, USA
| | - T Welss
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - M Giesen
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - W Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. med. Funk, 81739, Munich, Germany
| | - R Paus
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 33136 , Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, M13 9PL, Manchester, UK
| |
Collapse
|
7
|
Ashrafizadeh M, Tavakol S, Ahmadi Z, Roomiani S, Mohammadinejad R, Samarghandian S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res 2019; 34:911-923. [PMID: 31829475 DOI: 10.1002/ptr.6577] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Regulated cell death (RCD) guarantees to preserve organismal homeostasis. Apoptosis and autophagy are two major arms of RCD, while endoplasmic reticulum (ER) as a crucial organelle involved in proteostasis, promotes cells toward autophagy and apoptosis. Alteration in ER stress and autophagy machinery is responsible for a great number of diseases. Therefore, targeting those pathways appears to be beneficial in the treatment of relevant diseases. Meantime, among the traditional herb medicine, kaempferol as a flavonoid seems to be promising to modulate ER stress and autophagy and exhibits protective effects on malfunctioning cells. There are some reports indicating the capability of kaempferol in affecting autophagy and ER stress. In brief, kaempferol modulates autophagy in noncancerous cells to protect cells against malfunction, while it induces cell mortality derived from autophagy through the elevation of p-AMP-activated protein kinase, light chain-3-II, autophagy-related geness, and Beclin-1 in cancer cells. Noteworthy, kaempferol enhances cell survival through C/EBP homologous protein (CHOP) suppression and GRP78 increment in noncancerous cells, while it enhances cell mortality through the induction of unfolding protein response and CHOP increment in cancer cells. In this review, we discuss how kaempferol modulates autophagy and ER stress in noncancer and cancer cells to expand our knowledge of new pharmacological compounds for the treatment of associated diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Sahar Roomiani
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
8
|
Rusanova I, Martínez-Ruiz L, Florido J, Rodríguez-Santana C, Guerra-Librero A, Acuña-Castroviejo D, Escames G. Protective Effects of Melatonin on the Skin: Future Perspectives. Int J Mol Sci 2019; 20:ijms20194948. [PMID: 31597233 PMCID: PMC6802208 DOI: 10.3390/ijms20194948] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022] Open
Abstract
When exposed to hostile environments such as radiation, physical injuries, chemicals, pollution, and microorganisms, the skin requires protective chemical molecules and pathways. Melatonin, a highly conserved ancient molecule, plays a crucial role in the maintenance of skin. As human skin has functional melatonin receptors and also acts as a complete system that is capable of producing and regulating melatonin synthesis, melatonin is a promising candidate for its maintenance and protection. Below, we review the studies of new metabolic pathways involved in the protective functions of melatonin in dermal cells. We also discuss the advantages of the topical use of melatonin for therapeutic purposes and skin protection. In our view, endogenous intracutaneous melatonin production, together with topically-applied exogenous melatonin and its metabolites, represent two of the most potent defense systems against external damage to the skin.
Collapse
Affiliation(s)
- Iryna Rusanova
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
- Department of Physiology, University of Granada, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Investigación Biosanitaria CIBERFES, IBS. Granada, Granada Hospital Complex, 18016 Granada, Spain.
| | - Laura Martínez-Ruiz
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
| | - Javier Florido
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
| | - César Rodríguez-Santana
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
| | - Ana Guerra-Librero
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Investigación Biosanitaria CIBERFES, IBS. Granada, Granada Hospital Complex, 18016 Granada, Spain.
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
- Department of Physiology, University of Granada, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Investigación Biosanitaria CIBERFES, IBS. Granada, Granada Hospital Complex, 18016 Granada, Spain.
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
- Department of Physiology, University of Granada, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Investigación Biosanitaria CIBERFES, IBS. Granada, Granada Hospital Complex, 18016 Granada, Spain.
| |
Collapse
|
9
|
Mercantepe T, Topcu A, Rakici S, Tumkaya L, Yilmaz A, Mercantepe F. The radioprotective effect of N-acetylcysteine against x-radiation-induced renal injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29085-29094. [PMID: 31392607 DOI: 10.1007/s11356-019-06110-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was therefore to investigate the effects of radiotherapy on the kidney and the potential use of agents such as N-acetylcysteine (NAC) in developing a future therapeutic protocol for radiation-induced nephrotoxicity at the histopathological and biochemical levels. Our study consisted of three groups: control (oral saline solution only; group 1), irradiation (IR; group 2), and NAC + IR (group 3). The irradiation groups received a single dose of whole-body 6-Gy x-irradiation. The NAC group received 300 mg/kg by the oral route for 7 days, from 5 days before irradiation to 2 days after. All subjects were sacrificed under anesthesia 2 days after irradiation. IR increased tubular necrosis scores (TNS), MDA, and caspase-3 expression, while reducing renal tissue GSH levels. We also observed dilation in renal corpuscles and tubules. Capillary congestion was present in the intertubular spaces. NAC reduced the levels of TNS, MDA, and caspase-3 expression, but increased the levels of renal tissue GSH. ROS-scavenging antioxidants may represent a promising means of preventing renal injury in patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| | - Sema Rakici
- Department of Radiation Oncology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Adnan Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Filiz Mercantepe
- Department of Internal Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| |
Collapse
|
10
|
Histopathological and Functional Evaluation of Radiation-Induced Sciatic Nerve Damage: Melatonin as Radioprotector. ACTA ACUST UNITED AC 2019; 55:medicina55080502. [PMID: 31430996 PMCID: PMC6722514 DOI: 10.3390/medicina55080502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Radiotherapy uses ionizing radiation for cancer treatment. One of the side effects of radiotherapy is peripheral neuropathy. After irradiation, the first stage of neuropathy involves electrophysiological, biochemical and histopathological variations, while the fibrosis of soft tissues surrounding the exposed nerve occurs in the second stage. The present study aimed to examine the radioprotective effects of melatonin against ionizing radiation-induced sciatic nerve damage. Materials and Methods: Sixty male Wistar rats were assigned to four groups: C (Control + Vehicle), M (Melatonin), R (Radiation + Vehicle), MR (Radiation + Melatonin). Their right legs were irradiated with a 30 Gy single dose of gamma rays. Then, 100 mg/kg melatonin was administered to the animals 30 min before irradiation once daily (5 mg/kg) until the day of rats' sacrifice. Their exposed nerve tissues were assessed using the sciatic functional index (SFI) and histological evaluation. Results: Four, 12 and 20 weeks post irradiation, the SFI results showed that irradiation led to partial loss of motor nerve function after 12 and 20 weeks. Histological evaluation showed the various stages of axonal degeneration and demyelination compared to the C and M groups. Scar-like tissues were detected around the irradiated nerves in the R group at 20 weeks, but were absent in the MR group. The SFI and histological results of the R group showed partial nerve lesion. However, in all cases, treatment with melatonin prevented these effects. Conclusions: Results showed that melatonin has the potential to improve functional and morphological features of exposed sciatic nerves. This could possibly improve the therapeutic window of radiotherapy.
Collapse
|
11
|
Rakici SY, Tumkaya L, Edirvanli OC, Yazici U, Dursun E, Arpa M, Mercantepe T. Radioprotective effect of endogenous melatonin secretion associated with the circadian rhythm in irradiated rats. Int J Radiat Biol 2019; 95:1236-1241. [PMID: 31287351 DOI: 10.1080/09553002.2019.1642532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: We investigated the radioprotective effect of endogenous melatonin release at different times associated with the circadian rhythm on head and neck radiotherapy. Materials and methods: Two groups of animals were subjected daily to 8 Gy single fraction radiotherapy in the head and neck region from 5:00 to 6:00 (the morning group) or from 19:00 to 20:00 (the evening group). Corresponding untreated groups served as controls. Submandibular glands from rats sacrificed on the seventh day after irradiation were assessed biochemically and histopathologically. Melatonin, malondialdehyde and superoxide dismutase levels in blood collected immediately prior to irradiation were measured with rat-specific ELISA kits. Results: In irradiated rats, melatonin, malondialdehyde and superoxide dismutase levels were significantly higher in the evening group than in the morning group. In nonirradiated rats, melatonin and superoxide dismutase levels were significantly higher in the evening group than in the morning group. The areas of seromucous acinar cells were similar between the irradiated and nonirradiated evening groups, but the area was higher in the evening irradiated group than in the morning irradiated group. Conclusion: Consideration of endogenous melatonin secretion associated with the circadian rhythm may offer new therapeutic solutions for the complications of head and neck radiotherapy.
Collapse
Affiliation(s)
- Sema Yilmaz Rakici
- Department of Radiation Oncology, Recep Tayyip Erdogan University , Rize , Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Recep Tayyip Erdogan University , Rize , Turkey
| | | | - Ufuk Yazici
- Department of Radiation Oncology, Recep Tayyip Erdogan University , Rize , Turkey
| | - Engin Dursun
- Department of Otorhinolaryngology, Recep Tayyip Erdogan University , Rize , Turkey
| | - Medeni Arpa
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University , Rize , Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Recep Tayyip Erdogan University , Rize , Turkey
| |
Collapse
|
12
|
|
13
|
Musa AE, Shabeeb D, Alhilfi HSQ. Protective Effect of Melatonin Against Radiotherapy-Induced Small Intestinal Oxidative Stress: Biochemical Evaluation. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E308. [PMID: 31242652 PMCID: PMC6631393 DOI: 10.3390/medicina55060308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 01/06/2023]
Abstract
Background and Objectives: Radiation enteritis is a common side effect after radiotherapy for abdominal and pelvic malignancies. The aim of the present study was to investigate the protective effect of melatonin, known for its free radical scavenging ability, against radiotherapy-induced small intestinal oxidative damage. Materials and Methods: Thirty male Wistar rats were randomly assigned to six groups (5 rats in each) as follows: Group I (control group) rats received neither radiation nor melatonin; group II rats received only 8 Gy single dose of gamma radiation to their abdomen and pelvis regions; group III (administered with only 50 mg/kg melatonin); group IV (administered with only 100 mg/kg melatonin); group V (50 mg/kg melatonin + 8 Gy radiation), group VI (100 mg/kg melatonin + 8 Gy radiation). All rats were sacrificed after 5 days for biochemical assessments of their intestinal tissues. Results: Treatment with melatonin post irradiation significantly reduced malondialdehyde (MDA) levels as well as increased both superoxide dismutase (SOD) and catalase (CAT) activities of the irradiated intestinal tissues. In addition, melatonin administration with different doses pre irradiation led to protection of the tissues. Moreover, the 100 mg/kg dose was more effective compared to 50 mg/kg. Conclusions: The results of our study suggest that melatonin has a potent protective effect against radiotherapy-induced intestinal damage, by decreasing oxidative stress and increasing antioxidant enzymes. We recommend future clinical trials for more insights.
Collapse
Affiliation(s)
- Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (TUMS), International Campus, Tehran 1416753955, Iran.
- Research Center for Molecular and Cellular Imaging, TUMS, Tehran 1416753955, Iran.
| | - Dheyauldeen Shabeeb
- Al-Sadder Teaching Hospital, Department of Neurophysiology, Misan 62010, Iraq.
- University of Misan, Faculty of Medicine, Department of Physiology, Misan 62010, Iraq.
| | | |
Collapse
|
14
|
Zare H, Shafabakhsh R, Reiter RJ, Asemi Z. Melatonin is a potential inhibitor of ovarian cancer: molecular aspects. J Ovarian Res 2019; 12:26. [PMID: 30914056 PMCID: PMC6434863 DOI: 10.1186/s13048-019-0502-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is one of the most common causes of morbidity related to gynecologic malignancies. Possible risk factors are including hereditary ovarian cancer, obesity, diabetes mellitus, alcohol consumption, aging, and smoking. Various molecular signaling pathways including inflammation, oxidative stress, apoptosis and angiogenesis are involved in this progression of ovarian cancer. Standard treatments for recently diagnosed patients are Surgery and chemotherapy such as co-treatment with other drugs such that the exploitation of neoadjuvant chemotherapy is expanding. Melatonin (N-acetyl-5-methoxy-tryptamine), an endogenous agent secreted from the pineal gland, has anti-carcinogenic features, such as regulation of estradiol production, cell cycle modulation, stimulation of apoptosis as well as anti-angiogenetic properties, anti-inflammatory activities, significant antioxidant effects and modulation of various immune system cells and cytokines. Multiple studies have shown the significant beneficial roles of melatonin in various types of cancers including ovarian cancer. This paper aims to shed light on the roles of melatonin in ovarian cancer treatment from the standpoint of the molecular aspects.
Collapse
Affiliation(s)
- Hadis Zare
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, TX, USA
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| |
Collapse
|