1
|
Fu Z, Li Q, Jiang P, Song X, Yang J, Chen G, Gong X, Yang L. Macrophage migration inhibitory factor reversed senescent phenotype in human chondrocytes in vitro. Mol Biol Rep 2024; 51:154. [PMID: 38245877 DOI: 10.1007/s11033-023-09101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND The senescence of chondrocytes, which is closely linked to the development of osteoarthritis (OA), has been found to be influenced by the inflammatory environment of joint cavity. However, there remains a lack of comprehensive understanding regarding the specific mechanisms through which cytokine impacts chondrocytes senescence. PURPOSE To investigate the effects of MIF on the chondrocytes senescence and explore the underlying mechanism. METHODS Human cytokine array and ELISA were used for the level of MIF in synovium fluid. CCK-8 was used for chondrocytes viability. IF, WB, SA-β-gal staining and flow cytometry were used for the chondrogenic, apoptotic and senescent phenotype of chondrocytes. RESULTS The level of MIF was significantly increased in OA patients. MIF significantly reversed the senescent phenotype induced by LPS pretreatment in human chondrocytes. MIF significantly enhanced the expression of Col II, SOX9, and ACAN in LPS pre-treated human chondrocytes. Furthermore, MIF significantly inhibited the apoptosis of LPS-induced senescent chondrocytes. CONCLUSION Increased level of MIF in osteoarthritic joint cavity might effectively suppress the senescent phenotype and simultaneously improve the chondrogenic phenotype in chondrocytes, the underlying mechanism was likely to be independent of apoptosis.
Collapse
Affiliation(s)
- Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qingqing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Peiyao Jiang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junjun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Sivani BM, Azzeh M, Patnaik R, Pantea Stoian A, Rizzo M, Banerjee Y. Reconnoitering the Therapeutic Role of Curcumin in Disease Prevention and Treatment: Lessons Learnt and Future Directions. Metabolites 2022; 12:metabo12070639. [PMID: 35888763 PMCID: PMC9320502 DOI: 10.3390/metabo12070639] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Turmeric is a plant with a very long history of medicinal use across different cultures. Curcumin is the active part of turmeric, which has exhibited various beneficial physiological and pharmacological effects. This review aims to critically appraise the corpus of literature associated with the above pharmacological properties of curcumin, with a specific focus on antioxidant, anti-inflammatory, anticancer and antimicrobial properties. We have also reviewed the different extraction strategies currently in practice, highlighting the strengths and drawbacks of each technique. Further, our review also summarizes the clinical trials that have been conducted with curcumin, which will allow the reader to get a quick insight into the disease/patient population of interest with the outcome that was investigated. Lastly, we have also highlighted the research areas that need to be further scrutinized to better grasp curcumin’s beneficial physiological and medicinal properties, which can then be translated to facilitate the design of better bioactive therapeutic leads.
Collapse
Affiliation(s)
- Bala Mohan Sivani
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Mahmoud Azzeh
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Rajashree Patnaik
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90128 Palermo, Italy;
| | - Yajnavalka Banerjee
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
- Correspondence: or ; Tel.: +971-527-873-636
| |
Collapse
|
3
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
4
|
Gu Y, Yan R, Wang Y, Zeng Y, Yao Q. High TRB3 expression induces chondrocyte autophagy and senescence in osteoarthritis cartilage. Aging (Albany NY) 2022; 14:5366-5375. [PMID: 35776529 PMCID: PMC9320551 DOI: 10.18632/aging.204066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Objective: Osteoarthritis is closely related to aging. Tribbles homologue 3 (TRB3) is found to display age-related expression and contributes to the regulation of cell proliferation, differentiation and fibrosis. In this study, we aimed to investigate the potential involvement of TRB3 in cartilage autophagy and aging in osteoarthritis. Methods: Cartilage tissue samples were collected from osteoarthritis patients who received joint replacement and cadaveric donors. In osteoarthritis cartilage tissue, we analyzed autophagy- and senescence-associated proteins using immunohistochemistry and western blot (WB), in vitro, to confirm the role played by TRB3 in the process of autophagy, cell senescence, and inflammation, small interfering RNA (siRNA) was used for TRB3 knockdown in cells. Results: We found increased level of p62, decreased level of microtubule-associated protein 1A/1B-light chain 3 (LC3) and beclin-1 in cartilage, and increased level of p16 and p21 in tissue samples collected from osteoarthritis patients, indicating decreased autophagy and increased cell senescence. TRB3 knockdown significantly rescued, in vitro, the reduced autophagy and elevated cell senescence in human chondrocyte. Conclusions: Interfering with TRB3 expression in cartilage may serve as a target in the prevention and treatment of age-related osteoarthritis.
Collapse
Affiliation(s)
- Yanqing Gu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ren Yan
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwen Zeng
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingqiang Yao
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,Digital Medicine Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Li DY, Gao FH, Wu CF, Liang ZJ, Xiong WH. miR-34a/SIRT1 Axis Plays a Critical Role in Regulating Chondrocyte Senescence in Type 2 Diabetes Mellitus. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2022; 7:1-7. [DOI: 10.14218/erhm.2021.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Tian Z, Zhang X, Sun M. Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Front Pharmacol 2022; 12:795058. [PMID: 34987406 PMCID: PMC8722717 DOI: 10.3389/fphar.2021.795058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease and is a leading cause of disability and reduced quality of life worldwide. There are currently no clinical treatments that can stop or slow down OA. Drugs have pain-relieving effects, but they do not slow down the course of OA and their long-term use can lead to serious side effects. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Autophagy is an intracellular protective mechanism, and targeting autophagy-related pathways has been found to prevent and treat various diseases. Attenuation of the autophagic pathway has now been found to disrupt cartilage homeostasis and plays an important role in the development of OA. Therefore, modulation of autophagic signaling pathways mediating cartilage homeostasis has been considered as a potential therapeutic option for OA. Phytochemicals are active ingredients from plants that have recently been found to reduce inflammatory factor levels in cartilage as well as attenuate chondrocyte apoptosis by modulating autophagy-related signaling pathways, which are not only widely available but also have the potential to alleviate the symptoms of OA. We reviewed preclinical studies and clinical studies of phytochemicals mediating autophagy to regulate cartilage homeostasis for the treatment of OA. The results suggest that phytochemicals derived from plant extracts can target relevant autophagic pathways as complementary and alternative agents for the treatment of OA if subjected to rigorous clinical trials and pharmacological tests.
Collapse
Affiliation(s)
- Zheng Tian
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xinan Zhang
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
7
|
Guillén MI, Tofiño-Vian M, Silvestre A, Castejón MA, Alcaraz MJ. Role of peroxiredoxin 6 in the chondroprotective effects of microvesicles from human adipose tissue-derived mesenchymal stem cells. J Orthop Translat 2021; 30:61-69. [PMID: 34611515 PMCID: PMC8458778 DOI: 10.1016/j.jot.2021.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background Osteoarthritis (OA) is a joint disease characterized by cartilage degradation, low-grade synovitis and subchondral bone alterations. In the damaged joint, there is a progressive increase of oxidative stress leading to disruption of chondrocyte homeostasis. The modulation of oxidative stress could control the expression of inflammatory and catabolic mediators involved in OA. We have previously demonstrated that extracellular vesicles (EVs) present in the secretome of human mesenchymal stem cells from adipose tissue (AD-MSCs) exert anti-inflammatory and anti-catabolic effects in OA chondrocytes. In the current work, we have investigated whether AD-MSC EVs could regulate oxidative stress in OA chondrocytes as well as the possible contribution of peroxiredoxin 6 (Prdx6). Methods Microvesicles (MV) and exosomes (EX) were isolated from AD-MSC conditioned medium by differential centrifugation with size filtration. The size and concentration of EVs were determined by resistive pulse sensing. OA chondrocytes were isolated from knee articular cartilage of advanced OA patients. 4-Hydroxynonenal adducts, IL-6 and MMP-13 were determined by enzyme-linked immunosorbent assay. Expression of Prdx6 and autophagic markers was assessed by immunofluorescence and Western blotting. Prdx6 was downregulated in AD-MSCs by transfection with a specific siRNA. Results MV and to a lesser extent EX significantly reduced the production of oxidative stress in OA chondrocytes stimulated with IL-1β. Treatment with MV resulted in a dramatic upregulation of Prdx6. MV also enhanced the expression of autophagy marker LC3B. We downregulated Prdx6 in AD-MSCs by using a specific siRNA and then MV were isolated. These Prdx6-silenced MV failed to modify oxidative stress and the expression of autophagy markers. We also assessed the possible contribution of Prdx6 to the effects of MV on IL-6 and MMP-13 production. The reduction in the levels of both mediators induced by MV was partly reverted after Prdx6 silencing. Conclusion Our results indicate that EVs from AD-MSCs regulate the production of oxidative stress in OA chondrocytes during inflammation. Prdx6 may mediate the antioxidant and protective effects of MV. The translational potential of this article: This study gives insight into the protective properties of EVs from AD-MSCs in OA chondrocytes. Our findings support the development of novel therapies based on EVs to prevent or treat cartilage degradation.
Collapse
Affiliation(s)
- María Isabel Guillén
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, 46100, Burjassot, Valencia, Spain
- Department of Pharmacy, Faculty of Health Sciences, Cardenal Herrera-CEU University, 46115, Alfara del Patriarca, Valencia, Spain
| | - Miguel Tofiño-Vian
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Antonio Silvestre
- Department of Surgery, Faculty of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 4610, Valencia, Spain
| | - Miguel Angel Castejón
- Department of Orthopaedic Surgery and Traumatology, De la Ribera University Hospital, Alzira, 46600, Valencia, Spain
| | - María José Alcaraz
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, 46100, Burjassot, Valencia, Spain
- Corresponding author. Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Burjassot, Valencia, Spain.
| |
Collapse
|
8
|
Guo YF, Su T, Yang M, Li CJ, Guo Q, Xiao Y, Huang Y, Liu Y, Luo XH. The role of autophagy in bone homeostasis. J Cell Physiol 2021; 236:4152-4173. [PMID: 33452680 DOI: 10.1002/jcp.30111] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is an evolutionarily conserved intracellular process and is considered one of the main catabolism pathways. In the process of autophagy, cells are digested nonselectively or selectively to recover nutrients and energy, so it is regarded as an antiaging process. In addition to the essential role of autophagy in cellular homeostasis, autophagy is a stress response mechanism for cell survival. Here, we review recent literature describing the pathway of autophagy and its role in different bone cell types, including osteoblasts, osteoclasts, and osteocytes. Also discussed is the mechanism of autophagy in bone diseases associated with bone homeostasis, including osteoporosis and Paget's disease. Finally, we discuss the application of autophagy regulators in bone diseases. This review aims to introduce autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role and therapeutic potential in the pathogenesis of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Yi-Fan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Clock knockdown attenuated reactive oxygen species-mediated senescence of chondrocytes through restoring autophagic flux. Life Sci 2021; 269:119036. [PMID: 33450259 DOI: 10.1016/j.lfs.2021.119036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 11/20/2022]
Abstract
AIMS Articular cartilage degeneration has been recognized as the primary pathological change in osteoarthritis (OA). Mechanisms that govern the shift from cartilage homeostasis to OA remain unknown. Previous studies have reported that intrinsic circadian clock in chondrocytes could function to optimize cartilage repair/remodeling to optimum times of day, but little is known about its molecular mechanisms. This study attempted to investigate the potential role and mechanism of circadian gene Clock in OA pathology. MATERIALS AND METHODS The expression of Clock in OA chondrocytes and cartilage was detected by qRT-PCR, western blot and immunohistochemistry. Temporal gene expression changes were analyzed using qRT-PCR in chondrocytes transfected with siClock following dexamethasone synchronization. In addition, the effect of Clock knockdown on senescent phenotypes and autophagic flux was evaluated in chondrocytes treated with siClock or siCntrl. KEY FINDINGS The expression of Clock was up-regulated in OA cartilage from humans and mouse models. Clock knockdown had no influence on rhythmic expression of the downstream genes in primary chondrocytes. We also found that Clock knockdown elevated antioxidant enzyme activities, diminished reactive oxygen species (ROS) production and attenuated senescence of chondrocytes via restoring autophagic flux. SIGNIFICANCE Clock knockdown can attenuate ROS-mediated senescence of chondrocytes through restoring autophagic flux in non-circadian manner, providing a potential therapeutic target for OA.
Collapse
|
10
|
Yang H, Chen C, Chen H, Duan X, Li J, Zhou Y, Zeng W, Yang L. Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging (Albany NY) 2020; 12:12750-12770. [PMID: 32611834 PMCID: PMC7377880 DOI: 10.18632/aging.103177] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
Abstract
Cell senescence is a chronic process associated with age-related degenerative diseases such as osteoarthritis (OA). Senescent cells (SnCs) accumulate in the articular cartilage and synovium, leading to OA pathologies. The accumulation of SnCs in the cartilage results in a senescence-associated secretory phenotype (SASP) and age-related inflammation and dysfunction. Selective removal of SnCs by senolytic agent as a therapeutic strategy has been developed recently. In this study, we examined the ability of the senolytic drug ABT263 (navitoclax) to clear SnCs and further evaluated the therapeutic effect of ABT263 on post-traumatic OA. Monolayer and 3D pellet cultured osteoarthritic chondrocytes were used to evaluate the effect of ABT263 in vitro and a DMM rat model was established for in vivo experiments. We found that ABT263 reduced the expression of inflammatory cytokines and promoted cartilage matrix aggregation in OA chondrocyte pellet culture by inducing SnC apoptosis. Moreover, OA pathological changes in the cartilage and subchondral bone in post-traumatic OA rat were alleviated by ABT263 intra-articular injection. These results demonstrated that ABT263 not only improves inflammatory microenvironment but also promotes cartilage phenotype maintenance in vitro. Furthermore, ABT263 might play a protective role against post-traumatic OA development. Therefore, strategies targeting SnC elimination might be promising for the clinical therapy of OA.
Collapse
Affiliation(s)
- Hao Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Hao Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Xiaojun Duan
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Juan Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Yi Zhou
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Weinan Zeng
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China.,Department of Orthopedics, West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
11
|
Nogueira-Recalde U, Lorenzo-Gómez I, Blanco FJ, Loza MI, Grassi D, Shirinsky V, Shirinsky I, Lotz M, Robbins PD, Domínguez E, Caramés B. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine 2019; 45:588-605. [PMID: 31285188 PMCID: PMC6642320 DOI: 10.1016/j.ebiom.2019.06.049] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background Ageing-related failure of homeostasis mechanisms contributes to articular cartilage degeneration and osteoarthritis (OA), for which disease-modifying treatments are not available. Our objective was to identify molecules to prevent OA by regulating chondrocyte senescence and autophagy. Methods Human chondrocytes with IL-6 induced senescence and autophagy suppression and SA-β-gal as a reporter of senescence and LC3 as reporter of autophagic flux were used to screen the Prestwick Chemical Library of approved drugs. Preclinical cellular, tissue and blood from OA and blood from OA and ageing models were used to test the efficacy and relevance of activating PPARα related to cartilage degeneration. Findings Senotherapeutic molecules with pro-autophagic activity were identified. Fenofibrate (FN), a PPARα agonist used for dyslipidaemias in humans, reduced the number of senescent cells via apoptosis, increased autophagic flux, and protected against cartilage degradation. FN reduced both senescence and inflammation and increased autophagy in both ageing human and OA chondrocytes whereas PPARα knockdown conferred the opposite effect. Moreover, PPARα expression was reduced through both ageing and OA in mice and also in blood and cartilage from knees of OA patients. Remarkably, in a retrospective study, fibrate treatment improved OA clinical conditions in human patients from the Osteoarthritis Initiative (OAI) Cohort. Interpretation These results demonstrate that FDA-approved fibrate drugs targeting lipid metabolism protect against cartilage degeneration seen with ageing and OA. Thus, these drugs could have immediate clinically utility for age-related cartilage degeneration and OA treatment. Fund This study was supported by Instituto de Salud Carlos III- Ministerio de Ciencia, Innovación y Universidades, Spain, Plan Estatal 2013–2016 and Fondo Europeo de Desarrollo Regional (FEDER), “Una manera de hacer Europa”, PI14/01324 and PI17/02059, by Innopharma Pharmacogenomics platform applied to the validation of targets and discovery of drugs candidates to preclinical phases, Ministerio de Economía y Competitividad, by grants of the National Instiutes of Health to PDR (P01 AG043376 and U19 AG056278). We thank FOREUM Foundation for Research in Rheumatology for their support.
Collapse
Affiliation(s)
- Uxía Nogueira-Recalde
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - Irene Lorenzo-Gómez
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - Francisco J Blanco
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - María I Loza
- Eduardo Domínguez: Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Spain
| | - Diego Grassi
- Institute for Interdisciplinary Neuroscience (IINS), Bordeaux, Nouvelle-Aquitaine, France
| | - Valery Shirinsky
- Scientific Research Institute of Clinical immunology, Novosibirsk, Russia
| | - Ivan Shirinsky
- Scientific Research Institute of Clinical immunology, Novosibirsk, Russia
| | - Martin Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Eduardo Domínguez
- Eduardo Domínguez: Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Spain.
| | - Beatriz Caramés
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain.
| |
Collapse
|
12
|
Wang L, Han X, Qu G, Su L, Zhao B, Miao J. A pH probe inhibits senescence in mesenchymal stem cells. Stem Cell Res Ther 2018; 9:343. [PMID: 30526663 PMCID: PMC6286523 DOI: 10.1186/s13287-018-1081-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BMSCs) are gradually getting attention because of its multi-directional differentiation potential, hematopoietic support, and promotion of stem cell implantation. However, cultured BMSCs in vitro possess a very limited proliferation potential, and the presence of stem cell aging has substantially restricted the effect together with the efficiency in clinical treatment. Recently, increasing attention has been paid to the connection between cellular aging and lysosomal acidification as new reports indicated that vacuolar H+-ATPase (v-ATPase) activity was altered and lysosomal pH was dysregulated in the process of cellular aging. Therefore, promoting lysosomal acidification might contribute to inhibition of cell senescence. Our previous studies showed that a novel small molecule, 3-butyl-1-chloro imidazo [1, 5-a] pyridine-7-carboxylic acid (SGJ), could selectively and sensitively respond to acidic pH with fast response (within 3 min), but whether SGJ can promote lysosomal acidification and inhibit senescence in BMSCs is unknown. METHODS Rat BMSCs were cultured based on our system that had been already documented. BMSCs were treated with SGJ and/or Bafilomycin-A1 (Baf-A1). The co-localization between SGJ and lysosomes was assessed by a confocal microscope. Acridine orange (AO) staining and the Lysosensor™ Green DND-189 reagents were used for indicating changes in lysosomal concentration of H+. Changes of senescence were detected by immunoblotting of p21 and senescence-associated beta-galactosidase (SA-β-gal) staining as well as immunofluorescence assay of senescence-associated heterochromatin foci (SAHF). Changes of autophagy were detected by immunoblotting of MAP1LC3 (LC3B) and SQSTM1 (p62). Cell proliferation was determined by flow cytometry. Cell viability was calculated by sulforhodamine B assay (SRB). The V0 proton channel of v-ATPase was knocked down by transfecting with its small interfering RNA (si-ATP6V0C). RESULTS Our work showed that SGJ can promote lysosomal acidification and inhibit senescence in BMSCs. Firstly, SGJ and lysosomes were well co-located in senescent BMSCs with the co-localization coefficient of 0.94. Secondly, SGJ increased the concentration of H+ and the protein expression of lysosome-associated membrane protein 1 (LAMP1) and lysosome-associated membrane protein 2 (LAMP2). Thirdly, SGJ suppressed the expression of p21 in the senescent BMSCs and reduced SA-β-gal positive cells. Fourthly, SGJ promoted senescent BMSCs' proliferation and protein level of LC3B but reduced the p62/SQSTM1 protein level. Furthermore, experimental group pretreated with 20 μM SGJ showed a stronger red fluorescent intensity, thinner cell morphology, less SA-β-gal positive cell, and less p21 protein level as well as higher cell viability in the presence of Baf-A1. Notably, ATP6V0C knockdown decreased the activity of v-ATPase and SGJ increased the concentration of H+. CONCLUSION Our work showed that SGJ could inhibit senescence in BMSCs and protect lysosomes by promoting expression of LAMP1 and LAMP2. Meanwhile, SGJ could promote autophagy. Furthermore, our study also suggested that SGJ was a new Baf-A1 antagonist because SGJ could target and occupy the V0 proton channel of v-ATPase.
Collapse
Affiliation(s)
- Lihong Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Xianjing Han
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Guojing Qu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Baoxiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China. .,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, People's Republic of China.
| |
Collapse
|
13
|
Curcumin improves age-related and surgically induced osteoarthritis by promoting autophagy in mice. Biosci Rep 2018; 38:BSR20171691. [PMID: 29802156 PMCID: PMC6028754 DOI: 10.1042/bsr20171691] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
Reduced autophagy has been implied in chondrocyte death and osteoarthritis. Curcumin (Cur) owns therapeutic effect against osteoarthritis (OA) and enhances autophagy in various tumor cells. Whether the cartilage protection of curcumin is associated with autophagy promotion and the potential signaling pathway involved remains unclear. The present study aimed to investigate the role of autophagy in the anti-OA activity of curcumin using spontaneous and surgically induced OA mice model. Spontaneous and surgically induced OA mice model was established and treated with Cur. Articular cartilage destruction and proteoglycan loss were scored through Safranin O/Fast green staining. Apoptotic cell death was detected with TUNEL (terminal deoxynucleotidyl transferase-mediated dTUP-biotin nick end labeling assay) staining and Western blot for caspase-3, Bcl-2 associated X protein (Bax), and Bcl-2 (B-cell lymphoma-2). Light chain 3 (LC3) immunohistochemistry was used to evaluate autophagy. In vitro, primary chondrocytes were treated with interleukin 1 beta (IL-1β) and Cur. Autophagy was inhibited using 3-methyladenine. Apoptosis and autophagy were detected using flow cytometry and Western blotting assay. Curcumin treatment enhanced autophagy, reduced apoptosis, and cartilage loss in both OA models. In vitro, curcumin treatment improved IL-1β induced autophagy inhibition, cell viability decrease, and apoptosis. Mechanistically, in vivo studies suggested curcumin promoted autophagy through regulating Akt/mTOR pathway. In conclusion, our results demonstrate that curcumin-induced autophagy via Akt/mTOR signaling pathway contributes to the anti-OA effect of curcumin.
Collapse
|
14
|
Towards the antioxidant therapy in Osteoarthritis: Contribution of nanotechnology. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
A standardized extract of Butea monosperma (Lam.) flowers suppresses the IL-1β-induced expression of IL-6 and matrix-metalloproteases by activating autophagy in human osteoarthritis chondrocytes. Biomed Pharmacother 2017; 96:198-207. [DOI: 10.1016/j.biopha.2017.09.140] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
|
16
|
Abstract
Osteoarthritis is characterized by continuous degeneration of articular cartilage resulting in disability. The death of chondrocytes and the loss of the extracellular matrix are the central peculiarities in cartilage degeneration during osteoarthritis pathogenesis. Autophagy is an essential cellular homeostasis mechanism whereby cellular organelles and macromolecules are recycled to maintain cellular metabolism. Autophagy is reported to be cytoprotective effects for articular cartilage, and osteoarthritis is associated with decreased autophagy. While autophagy is known to be cytoprotective to chondrocytes, its role may vary with differing stages and models of osteoarthritis. Therefore, more in-depth studies on autophagy are needed to determine its impact on cell survival and death in articular cartilage under various in vitro and in vivo conditions. Application of autophagy on osteoarthritis therapeutics will be possible after a profound understanding is established on the role of autophagy in osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Hyelin Jeon
- a Department of Orthopaedics , Dongguk University Ilsan Hospital , Goyang , Republic of Korea
| | - Gun-Il Im
- a Department of Orthopaedics , Dongguk University Ilsan Hospital , Goyang , Republic of Korea
| |
Collapse
|
17
|
Abusarah J, Bentz M, Benabdoune H, Rondon PE, Shi Q, Fernandes JC, Fahmi H, Benderdour M. An overview of the role of lipid peroxidation-derived 4-hydroxynonenal in osteoarthritis. Inflamm Res 2017; 66:637-651. [PMID: 28447122 DOI: 10.1007/s00011-017-1044-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Over the years, many theories have been proposed and examined to better explain the etiology and development of osteoarthritis (OA). The characteristics of joint destruction are one of the most important aspects in disease progression. Therefore, investigating different factors and signaling pathways involved in the alteration of extracellular matrix (ECM) turnover, and the subsequent catabolic damage to cartilage holds chief importance in understanding OA development. Among these factors, reactive oxygen species (ROS) have been at the forefront of the physiological and pathophysiological OA investigation. FINDINGS In the last decades, research studies provided an enormous volume of data supporting the involvement of ROS in OA. Most interestingly, published data regarding the effect of exogenous antioxidant therapy in OA lack conclusive results from clinical trials to back up in vitro data. Accordingly, it is rational to suggest that there are other reactive species in OA that are not taken into account. Thus, our present review is focused on our current understanding of the involvement of lipid peroxidation-derived 4-hydroxynonenal (HNE) in OA. CONCLUSION Our findings, like those in the literature, illustrate the central role played by HNE in the regulation of a number of factors involved in joint homeostasis. HNE could thus be considered as an attractive therapeutic target in OA.
Collapse
Affiliation(s)
- Jamilah Abusarah
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Mireille Bentz
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Houda Benabdoune
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Patricia Elsa Rondon
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Qin Shi
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Julio C Fernandes
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Hassan Fahmi
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Mohamed Benderdour
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada.
| |
Collapse
|
18
|
Chandrasekaran A, Idelchik MDPS, Melendez JA. Redox control of senescence and age-related disease. Redox Biol 2017; 11:91-102. [PMID: 27889642 PMCID: PMC5126126 DOI: 10.1016/j.redox.2016.11.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022] Open
Abstract
The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS) provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP) promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology.
Collapse
Affiliation(s)
- Akshaya Chandrasekaran
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA
| | | | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|
19
|
Diniz BS, Reynolds CF, Sibille E, Lin CW, Tseng G, Lotrich F, Aizenstein HJ, Butters MA. Enhanced Molecular Aging in Late-Life Depression: the Senescent-Associated Secretory Phenotype. Am J Geriatr Psychiatry 2017; 25:64-72. [PMID: 27856124 PMCID: PMC5164865 DOI: 10.1016/j.jagp.2016.08.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study aims to investigate whether a systemic molecular pattern associated with aging (senescent-associated secretory phenotype [SASP]) is elevated in adults with late-life depression (LLD), compared with never-depressed elderly comparison participants. DESIGN Cross-sectional study. PARTICIPANTS We included 111 older adults (80 with LLD and 31 comparison participants) in this study. MEASUREMENT A panel of 22 SASP-related proteins was extracted from a previous multiplex protein panel performed in these participants. We conducted a principal component analysis to create the SASP index based on individual weights of each of protein. RESULTS Participants with LLD showed a significantly increased SASP index compared with comparison participants, after controlling for age, depressive symptoms, medical comorbidity (CIRS-G) scores, sex, and cognitive performance (F(1,98) = 7.3, p = 0.008). Correlation analyses revealed that the SASP index was positively correlated with age (r = 0.2, p = 0.03) and CIRS score (r = 0.27, p = 0.005), and negatively correlated with information processing speed (r = -0.34, p = 0.001), executive function (r = -0.27, p = 0.004) and global cognitive performance (r = -0.28, p = 0.007). CONCLUSIONS To the best of our knowledge, this is the first study to show that a set of proteins (i.e., SASP index) primarily associated with cellular aging is abnormally regulated and elevated in LLD. These results suggest that individuals with LLD display enhanced aging-related molecular patterns that are associated with higher medical comorbidity and worse cognitive function. Finally, we provide a set of proteins that can serve as potential therapeutic targets and biomarkers to monitor the effects of therapeutic or preventative interventions in LLD.
Collapse
Affiliation(s)
- Breno Satler Diniz
- Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX.
| | - Charles F Reynolds
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Etienne Sibille
- Departments of Psychiatry and of Pharmacology and Toxicology, Campbell Family Mental Health Research Institute of CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Chien-Wei Lin
- Department of Statistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - George Tseng
- Department of Statistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - Francis Lotrich
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
20
|
Li YS, Xiao WF, Luo W. Cellular aging towards osteoarthritis. Mech Ageing Dev 2016; 162:80-84. [PMID: 28049007 DOI: 10.1016/j.mad.2016.12.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a common form of degenerative joint disease. Aging process is supposed to be a leading predictor for developing OA. In this review, we have discussed the potential roles of aging in OA, a better understanding of which might delay or stop the development and progression of OA. Different cellular signaling mechanisms are involved process of aging that induces age-related changes in chondrocytes. These changes influence the expression of catabolic factors resulting in increased production of matrix metalloproteinases and cytokines, reduced levels of collagen type II and aggrecan synthesis, and increased production of reactive oxygen species (ROS). ROS leads to mitochondrial dysfunction and chondrocyte death, which contributes to the development of OA. Antioxidant supplementation is probably the best way to prevent or delay the age-related OA. Some therapeutic agents like histone deacetylase inhibitors and anti-miR34a agents have been reported to be effective against age-related OA. However, further research is needed to demonstrate the efficacy of these alternative treatment strategies in clinical trials using controlled and prospective studies.
Collapse
Affiliation(s)
- Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Wen-Feng Xiao
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha 410008, PR China.
| |
Collapse
|
21
|
Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling. Int J Mol Sci 2016; 17:ijms17122065. [PMID: 27941690 PMCID: PMC5187865 DOI: 10.3390/ijms17122065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022] Open
Abstract
Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA) disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark), orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling.
Collapse
|