1
|
Isnard S, Fombuena B, Ouyang J, Royston L, Lin J, Bu S, Sheehan N, Lakatos PL, Bessissow T, Chomont N, Klein M, Lebouché B, Costiniuk CT, Routy B, Marette A, Routy JP. Camu Camu effects on microbial translocation and systemic immune activation in ART-treated people living with HIV: protocol of the single-arm non-randomised Camu Camu prebiotic pilot study (CIHR/CTN PT032). BMJ Open 2022; 12:e053081. [PMID: 35039291 PMCID: PMC8765027 DOI: 10.1136/bmjopen-2021-053081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Despite the success of antiretroviral therapy (ART) in transforming HIV disease into a chronic infection, people living with HIV (PLWH) remain at risk for various non-AIDS inflammatory comorbidities. Risk of non-AIDS comorbidities is associated with gut dysbiosis, epithelial gut damage and subsequent microbial translocation, and increased activation of both circulating CD4+ and CD8+ T-cells. Therefore, in addition to ART, novel gut microbiota-modulating therapies could aid in reducing inflammation and immune activation, gut damage, and microbial translocation. Among various gut-modulation strategies under investigation, the Amazonian fruit Camu Camu (CC) presents itself as a prebiotic candidate based on its anti-inflammatory and antioxidant properties in animal models and tobacco smokers. METHOD AND ANALYSIS A total of 22 PLWH on ART for more than 2 years, with a viral load <50 copies/mL, a CD4 +count >200 and a CD4+/CD8 +ratio <1 (suggesting increased inflammation and risk for non-AIDS comorbidities), will be recruited in a single arm, non-randomised, interventional pilot trial. We will assess tolerance and effect of supplementation with CC in ART-treated PLWH on reducing gut damage, microbial translocation, inflammation and HIV latent reservoir by various assays. ETHICS AND DISSEMINATION The Canadian Institutes of Health Research (CIHR)/Canadian HIV Trials Network (CTN) pilot trial protocol CTNPT032 was approved by the Natural and Non-prescription Health Products Directorate of Health Canada and the research ethics board of the McGill university Health Centre committee (number 2020-5903). Results will be made available as free access through publications in peer-reviewed journals and through the CIHR/CTN website. TRIAL REGISTRATION NUMBER NCT04058392.
Collapse
Affiliation(s)
- Stéphane Isnard
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
- Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - Brandon Fombuena
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jing Ouyang
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
- Chongqing Public Health Medical Center, Chongqing, People's Republic of China
| | - Léna Royston
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
- Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - John Lin
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Simeng Bu
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Nancy Sheehan
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Peter L Lakatos
- Division of Gastroentrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Talat Bessissow
- Division of Gastroentrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Marina Klein
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bertrand Lebouché
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Family Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Cecilia T Costiniuk
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bertrand Routy
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - André Marette
- Insitute of Nutrition and Functional food, Laval University, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Laval University, Quebec city, Quebec, Canada
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Ouyang J, Isnard S, Lin J, Fombuena B, Peng X, Nair Parvathy S, Chen Y, Silverman MS, Routy JP. Treating From the Inside Out: Relevance of Fecal Microbiota Transplantation to Counteract Gut Damage in GVHD and HIV Infection. Front Med (Lausanne) 2020; 7:421. [PMID: 32850913 PMCID: PMC7423874 DOI: 10.3389/fmed.2020.00421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is a complex and well-balanced milieu of anatomic and immunological barriers. The epithelial surface of the GI tract is colonized by trillions of microorganisms, known as the gut microbiota, which is considered an “organ” with distinctive endocrine and immunoregulatory functions. Dysregulation of the gut microbiota composition, termed dysbiosis, has been associated with epithelial damage and translocation of microbial products into the circulating blood. Dysbiosis, increased gut permeability and chronic inflammation play a major role on the clinical outcome of inflammatory bowel diseases, graft-vs.-host disease (GVHD) and HIV infection. In this review, we focus on GVHD and HIV infection, conditions sharing gut immune damage leading to dysbiosis. The degree of dysbiosis and level of epithelial gut damage predict poor clinical outcome in both conditions. Emerging interventions are therefore warranted to promote gut microbiota homeostasis and improve intestinal barrier function. Interventions such as anti-inflammatory medications, and probiotics have toxicity and/or limited transitory effects, justifying innovative approaches. Fecal microbiota transplantation (FMT) is one such approach where fecal microorganisms are transferred from healthy donors into the GI tract of the recipient to restore microbiota composition in patients with Clostridium difficile-induced colitis or inflammatory bowel diseases. Preliminary findings point toward a beneficial effect of FMT to improve GVHD and HIV-related outcomes through the engraftment of beneficial donor bacteria, notably those producing anti-inflammatory metabolites. Herein, we critically review the potential for FMT in alleviating dysbiosis and gut damage in patients with GVHD or HIV-infection. Understanding the underlying mechanism by which FMT restores gut function will pave the way toward novel scalable and targeted interventions.
Collapse
Affiliation(s)
- Jing Ouyang
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Xiaorong Peng
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | | | - Yaokai Chen
- Chongqing Public Health Medical Center, Chongqing, China
| | | | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, McGill University Health Centre, Research Institute, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
3
|
Elevations in Circulating sST2 Levels Are Associated With In-Hospital Mortality and Adverse Clinical Outcomes After Blunt Trauma. J Surg Res 2019; 244:23-33. [PMID: 31279260 DOI: 10.1016/j.jss.2019.05.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/09/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Soluble suppression of tumorigenicity 2 (sST2), a decoy receptor for interleukin (IL)-33, has emerged as a novel biomarker in various disease processes. Recent studies have elucidated the role of the sST2/IL-33 complex in modulating the balance of Th1/Th2 immune responses after tissue stress. However, the role of sST2 as a biomarker after traumatic injury remains unclear. To address this, we evaluated serum sST2 correlations with mortality and in-hospital adverse outcomes as endpoints in blunt trauma patients. METHODS We retrospectively analyzed clinical and biobank data of 493 blunt trauma victims 472 survivors (mean age: 48.4 ± 0.87; injury severity score [ISS]: 19.6 ± 0.48) and 19 nonsurvivors (mean age: 58.8 ± 4.5; ISS: 23.3 ± 2.1) admitted to the intensive care unit. Given the confounding impact of age on the inflammatory response, we derived a propensity-matched survivor subgroup (n = 19; mean age: 59 ± 3; ISS: 23.4 ± 2) using an IBM SPSS case-control matching algorithm. Serial blood samples were obtained from all patients (3 samples within the first 24 h and then once daily from day [D] 1 to D5 after injury). sST2 and twenty-nine inflammatory biomarkers were assayed using enzyme-linked immunosorbent assay and Luminex, respectively. Two-way analysis of variance on ranks was used to compare groups (P < 0.05). Spearman rank correlation was performed to determine the association of circulating sST2 levels with biomarker levels and in-hospital clinical outcomes. RESULTS Circulating sST2 levels of the nonsurvivor cohort were statistically significantly elevated at 12 h after injury and remained elevated up to D5 when compared either to the overall 472 survivor cohort or a matched 19 survivor subcohort. Admission sST2 levels obtained from the first blood draw after injury in the survivor cohort correlated positively with admission base deficit (correlation coefficient [CC] = 0.1; P = 0.02), international normalized ratio (CC = 0.1, P = 0.03), ISS (CC = 0.1, P = 0.008), and the average Marshall multiple organ dysfunction score between D2 and D5 (CC = 0.1, P = 0.04). Correlations with ISS revealed a positive correlation of ISS with plasma sST2 levels across the mild ISS (CC = 0.47, P < 0.001), moderate ISS (CC = 0.58, P < 0.001), and severe ISS groups (CC = 0.63, P < 0.001). Analysis of biomarker correlations in the matched survivor group over the initial 24 h after injury showed that sST2 correlates strongly and positively with IL-4 (CC = 0.65, P = 0.002), IL-5 (CC = 0.57, P = 0.01), IL-21 (CC = 0.52, P = 0.02), IL-2 (CC = 0.51, P = 0.02), soluble IL-2 receptor-α (CC = 0.5, P = 0.02), IL-13 (CC = 0.49, P = 0.02), and IL-17A (CC = 0.48, P = 0.03). This was not seen in the matched nonsurvivor group. sST2/IL-33 ratios were significantly elevated in nonsurvivors and patients with severe injury based on ISS ≥ 25. CONCLUSIONS Elevations in serum sST2 levels are associated with poor clinical trajectories and mortality after blunt trauma. High sST2 coupled with low IL-33 associates with severe injury, mortality, and worse clinical outcomes. These findings suggest that sST2 could serve as an early prognostic biomarker in trauma patients and that sustained elevations of sST2 could contribute to a detrimental suppression of IL-33 bioavailability in patients with high injury severity.
Collapse
|
4
|
Wu X, Li Y, Song CB, Chen YL, Fu YJ, Jiang YJ, Ding HB, Shang H, Zhang ZN. Increased Expression of sST2 in Early HIV Infected Patients Attenuated the IL-33 Induced T Cell Responses. Front Immunol 2018; 9:2850. [PMID: 30564243 PMCID: PMC6288272 DOI: 10.3389/fimmu.2018.02850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
T cell responses were less functional and persisted in an exhausted state in chronic HIV infection. Even in early phase of HIV infection, the dysfunction of HIV-specific T cells can be observed in rapid progressors, but the underlying mechanisms are not fully understood. Cytokines play a central role in regulating T cell function. In this study, we sought to elucidate whether IL-33/ST2 axis plays roles in the regulation of T cell function in HIV infection. We found that the level of IL-33 was upregulated in early HIV-infected patients compared with that in healthy controls and has a trend associated with disease progression. In vitro study shows that IL-33 promotes the expression of IFN-γ by Gag stimulated CD4+ and CD8+T cells from HIV-infected patients to a certain extent. However, soluble ST2 (sST2), a decoy receptor of IL-33, was also increased in early HIV infected patients, especially in those with progressive infection. We found that anti-ST2 antibodies attenuated the effect of IL-33 to CD4+ and CD8+T cells. Our data indicates that elevated expression of IL-33 in early HIV infection has the potential to enhance the function of T cells, but the upregulated sST2 weakens the activity of IL-33, which may indirectly contribute to the dysfunction of T cells and rapid disease progression. This data broadens the understanding of HIV pathogenesis and provides critical information for HIV intervention.
Collapse
Affiliation(s)
- Xian Wu
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yao Li
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Clinical and Emergency Medical Laboratory Department, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Cheng-Bo Song
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Li Chen
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hai-Bo Ding
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|