1
|
Mapari SS, Mary DCruz CE, Kumar L, Bhide PJ, Shirodkar RK. Formulation and characterisation of lacidipine niosomal gel for transdermal delivery. TENSIDE SURFACT DET 2023. [DOI: 10.1515/tsd-2022-2439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
The present study aimed to enhance the transdermal delivery of lacidipine by niosomal vesicles. Lacidipine niosomes were generated using the ultrasonic method, and Span 60 was used as a nonionic surfactant. Formulations were prepared containing Span 60 and cholesterol in 1:1 and 2:1 ratios, respectively, with essential oils added at increasing concentrations. The formulated niosomes had nano-vesicles with entrapment efficiency ranging from 75.81% to 91.25% and in-vitro drug release ranging from 80.61% to 89.81%. The optimal formulation was selected based on particle size, entrapment efficiency and in-vitro drug release. Optical microscopy and high-resolution transmission electron microscopy studies revealed a spherical shape of the niosomal vesicles. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffraction studies confirmed complete encapsulation of the drug in the niosomal vesicles. The optimized formulation was also incorporated into a gel base, which was then evaluated for appearance, pH, viscosity, spreadability, in vitro drug release and stability. Overall, the results indicated that the developed niosomal lacidipine vesicles may provide an alternative to existing delivery systems for this drug.
Collapse
Affiliation(s)
- Salika Santosh Mapari
- Department of Pharmaceutics , Goa College of Pharmacy , Panaji , Goa , 403001 , India
| | | | - Lalit Kumar
- Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE) , Manipal , Karnataka , 576104 , India
| | - Prashant Jivaji Bhide
- Department of Pharmaceutics , Goa College of Pharmacy , Panaji , Goa , 403001 , India
| | | |
Collapse
|
2
|
Dehari D, Mehata AK, Priya V, Parbat D, Kumar D, Srivastava AK, Singh S, Agrawal AK. Luliconazole Nail Lacquer for the Treatment of Onychomycosis: Formulation, Characterization and In Vitro and Ex Vivo Evaluation. AAPS PharmSciTech 2022; 23:175. [PMID: 35750993 DOI: 10.1208/s12249-022-02324-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Onychomycosis is the most common fungal infection of the nail affecting the skin under the fingertips and the toes. Currently, available therapy for onychomycosis includes oral and topical therapies, either alone or in combination. Oral antifungal medication has been associated with poor drug bioavailability and potential gastrointestinal and systemic side effects. The objective of this study was to prepare and evaluate the luliconazole nail lacquer (LCZ-NL) for the effective treatment of onychomycosis. In the current work, LCZ-NL was formulated in combination with penetration enhancers to overcome poor penetration. A 32 full factorial formulation design of experiment (DOE) was applied for optimization of batches with consideration of dependent (drying time, viscosity, and rate of drug diffusion) and independent (solvent ratio and film former ratio) variables. The optimized formulation was selected based on drying time, viscosity, and rate of drug diffusion. The optimized formulation was further evaluated for % non-volatile content assay, smoothness of flow, water resistance, drug content, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), in vitro drug release, ex vivo transungual permeation, antifungal efficacy, and stability study. The optimized LCZ-NL contained 70:30 solvent ratio and 1:1 film former ratio and was found to have ~ 1.79-fold higher rate of drug diffusion in comparison with LULY™. DSC and XRD studies confirmed that luliconazole retains its crystalline property in the prepared formulation. Antifungal study against Trichophyton spp. showed that LCZ-NL has comparatively higher growth inhibition than LULY™. Hence, developed LCZ-NL can be a promising topical drug delivery system for treating onychomycosis.
Collapse
Affiliation(s)
- Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dharmnath Parbat
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Deepak Kumar
- Department of Microbiology, Institute of Medical Sciences (BHU), Varanasi, 221005, India
| | - Anand Kumar Srivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.,Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
3
|
Babu CK, Shubhra, Ghouse SM, Singh PK, Khatri DK, Nanduri S, Singh SB, Madan J. Luliconazole topical dermal drug delivery for superficial fungal infections: Penetration hurdles and role of functional nanomaterials. Curr Pharm Des 2022; 28:1611-1620. [PMID: 35747957 DOI: 10.2174/1381612828666220623095743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Luliconazole is the first and only anti-fungal agent approved for the short-term treatment of superficial fungal infections. However, commercially available conventional topical dermal drug delivery cargo of luliconazole is associated with certain limitations like lower skin permeation and shorter skin retention of drug. Therefore, present review is an attempt to decode the penetration hurdles in luliconazole topical dermal drug delivery. Moreover, we also summarized the activity of functional nanomaterials based drug delivery systems employed by the scientific fraternity to improve luliconazole efficacy in superficial fungal infections on case-to-case basis. In addition, efforts have also been made to unbox the critically acclaimed mechanism of action of luliconazole against fungal cells. Under the framework of future prospects, we have analyzed the combination of luliconazole with isoquercetin using in-silico docking technique for offering synergistic antifungal activity. Isoquercetin exhibited a good affinity for superoxide dismutase (SOD), a fungal target owing to the formation of hydrogen bond with Glu132, Glu133, and Arg143, in addition to few hydrophobic interactions. On the other hand, luliconazole inhibited lanosterol-14α-demethylase and consequently blocked ergosterol. In addition, nanotechnology and artificial neural network (ANN) derived integrated drug delivery systems may also be explored for augmenting the luliconazole therapeutic efficacy in topical fungal infections. Synergy of ANN models along with topical nanoscaled drug delivery may help to achieve critical quality attributes (CQA) to gain commercial success.
Collapse
Affiliation(s)
- Chanti Katta Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shubhra
- Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Telangana, India
| | - Shaik Mahammad Ghouse
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Dos Santos Porto D, Bajerski L, Donadel Malesuik M, Soldateli Paim C. A Review of Characteristics, Properties, Application of Nanocarriers and Analytical Methods of Luliconazole. Crit Rev Anal Chem 2021; 52:1930-1937. [PMID: 34011234 DOI: 10.1080/10408347.2021.1926219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Luliconazole is an imidazole agent, used for the treatment of fungi infection, especially dermatophytes. The mechanism of action of the drug consisting in inhibits sterol 14α-demethylase which interferes with ergosterol biosynthesis. Due to low aqueous solubility and highly lipophilic, there is a need to develop drug delivery systems (nanocarriers) capable to increase the solubility, permeability, and skin retention of luliconazole, and promote a better therapeutic effect. In this context, this review presents characteristics, properties, nanocarriers, and analytical methods used for luliconazole. From the analyzed studies, the majority reports the use of RP-HPLC techniques for luliconazole determination, but also are cited spectrophotometric UV methods. The luliconazole has been qualitatively and quantitatively analyzed in different matrices, such as raw material and pharmaceutical formulations, however, in this review, only one study was found with the luliconazole quantification biological matrix, demonstrating the lack of studies related to the quantification of the drug in biological matrices. The drug quantification in different matrices by analytical methods is of great importance since they assist in the control of the quality, efficacy, and safety of the medicine.
Collapse
Affiliation(s)
- Douglas Dos Santos Porto
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| | - Lisiane Bajerski
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| | - Marcelo Donadel Malesuik
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| | - Clésio Soldateli Paim
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| |
Collapse
|