1
|
Widyananda MH, Wicaksono ST, Rahmawati K, Puspitarini S, Ulfa SM, Jatmiko YD, Masruri M, Widodo N. A Potential Anticancer Mechanism of Finger Root ( Boesenbergia rotunda) Extracts against a Breast Cancer Cell Line. SCIENTIFICA 2022; 2022:9130252. [PMID: 36106139 PMCID: PMC9467824 DOI: 10.1155/2022/9130252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer is the most common type of cancer women suffer from worldwide in 2020 and the 4th leading cause of cancer death. Boesenbergia rotunda is an herb with high potential as an anticancer agent. This study explores the potential bioactive compounds in B. rotunda as anti-breast cancer agents using in silico and in vitro approaches. The in silico study was used for active compound analysis, selection of anticancer compound candidates, prediction of target protein, functional annotation, molecular docking, and molecular dynamics simulation, respectively. The in vitro study was conducted by measurement toxicity, rhodamine 123, and apoptosis assays on T47D cells. Based on the KNApSAcK database, B. rotunda contained 20 metabolites, which are dominated by chalcone and flavonoid groups. Seven of them were predicted to have anticancer activity, namely, sakuranetin, cardamonin, alpinetin, 2S-pinocembrin, 7.4'-dihydroxy-5-methoxyflavanone, 5.6-dehydrokawain, and pinostrobin chalcone. These compounds targeted proteins related to cancer progression pathways such as the PI3K/Akt, FOXO, JAK/STAT, and estrogen signaling pathways. Therefore, these compounds are predicted to inhibit growth and induce apoptosis of cancer cells through their interactions with MMP12, MMP13, CDK4, JAK3, VEGFR1, VEGFR2, and KCNA3. Anticancer activity of B. rotunda through in vitro study confirmed that B. rotunda extract is strong cytotoxic and induces apoptosis of breast cancer cell lines. This study concludes that Boesenbergia rotunda has potency as an anticancer candidate.
Collapse
Affiliation(s)
| | - Septian Tri Wicaksono
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Kurnia Rahmawati
- Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
| | - Sapti Puspitarini
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Siti Mariyah Ulfa
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Yoga Dwi Jatmiko
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Masruri Masruri
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Nashi Widodo
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| |
Collapse
|
3
|
Possible Participation of Ionotropic Glutamate Receptors and l-Arginine-Nitric Oxide-Cyclic Guanosine Monophosphate-ATP-Sensitive K + Channel Pathway in the Antinociceptive Activity of Cardamonin in Acute Pain Animal Models. Molecules 2020; 25:molecules25225385. [PMID: 33217904 PMCID: PMC7698774 DOI: 10.3390/molecules25225385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
The perception of pain caused by inflammation serves as a warning sign to avoid further injury. The generation and transmission of pain impulses involves various pathways and receptors. Cardamonin isolated from Boesenbergia rotunda (L.) Mansf. has been reported to exert antinociceptive effects in thermal and mechanical pain models; however, the precise mechanism has yet to be examined. The present study investigated the possible mechanisms involved in the antinociceptive activity of cardamonin on protein kinase C, N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors, l-arginine/cyclic guanosine monophosphate (cGMP) mechanism, as well as the ATP-sensitive potassium (K+) channel. Cardamonin was administered to the animals intra-peritoneally. Present findings showed that cardamonin significantly inhibited pain elicited by intraplantar injection of phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator) with calculated mean ED50 of 2.0 mg/kg (0.9–4.5 mg/kg). The study presented that pre-treatment with MK-801 (NMDA receptor antagonist) and NBQX (non-NMDA receptor antagonist) significantly modulates the antinociceptive activity of cardamonin at 3 mg/kg when tested with glutamate-induced paw licking test. Pre-treatment with l-arginine (a nitric oxide precursor), ODQ (selective inhibitor of soluble guanylyl cyclase) and glibenclamide (ATP-sensitive K+ channel inhibitor) significantly enhanced the antinociception produced by cardamonin. In conclusion, the present findings showed that the antinociceptive activity of cardamonin might involve the modulation of PKC activity, NMDA and non-NMDA glutamate receptors, l-arginine/nitric oxide/cGMP pathway and ATP-sensitive K+ channel.
Collapse
|
4
|
Kis B, Avram S, Pavel IZ, Lombrea A, Buda V, Dehelean CA, Soica C, Yerer MB, Bojin F, Folescu R, Danciu C. Recent Advances Regarding the Phytochemical and Therapeutic Uses of Populus nigra L. Buds. PLANTS 2020; 9:plants9111464. [PMID: 33138272 PMCID: PMC7693997 DOI: 10.3390/plants9111464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Populus nigra L. (Salicaceae family) is one of the most popular trees that can be found in deciduous forests. Some particularities that characterize the Populus genus refer to the fact that it includes more than 40 species, being widespread especially in Europe and Asia. Many residues, parts of this tree can be used as a bioresource for different extracts as active ingredients in pharmaceuticals next to multiple benefits in many areas of medicine. The present review discusses the latest findings regarding the phytochemical composition and the therapeutic properties of Populus nigra L. buds. The vegetal product has been described mainly to contain phenolic compounds (phenols, phenolic acids and phenylpropanoids), terpenoids (mono and sesquiterpenoids), flavones (e.g., apigenol and crysin), flavanones (e.g., pinocembrin and pinostrombin), caffeic/ferulic acids and their derivates, and more than 48 phytocompounds in the essential oils. The resinous exudates present on the buds have been the major plant source used by bees to form propolis. Several studies depicted its antioxidant, anti-inflammatory, antibacterial, antifungal, antidiabetic, antitumor, hepatoprotective, hypouricemic properties and its effects on melanin production. All these lead to the conclusion that black poplar buds are a valuable and important source of bioactive compounds responsible for a wide range of therapeutic uses, being a promising candidate as a complementary and/or alternative source for a large number of health problems. The aim of the review is to gather the existing information and to bring an up to date regarding the phytochemical and therapeutic uses of Populus nigra L. buds.
Collapse
Affiliation(s)
- Brigitta Kis
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania; (B.K.); (S.A.); (I.Z.P.); (A.L.); (C.D.)
| | - Stefana Avram
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania; (B.K.); (S.A.); (I.Z.P.); (A.L.); (C.D.)
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania; (B.K.); (S.A.); (I.Z.P.); (A.L.); (C.D.)
| | - Adelina Lombrea
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania; (B.K.); (S.A.); (I.Z.P.); (A.L.); (C.D.)
| | - Valentina Buda
- Department of Pharmacology and Clinical Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania
- Correspondence: ; Tel.: +40-755-100-408
| | - Cristina Adriana Dehelean
- Department of Toxicology, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania;
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Melikgazi, 38039 Kayseri, Turkey;
| | - Florina Bojin
- Department of Functional Sciences, Victor Babeş University of Medicine and Pharmacy, 2, Eftimie Murgu Square, 300041 Timişoara, Romania;
| | - Roxana Folescu
- Department of Anatomy and Embryology, University of Medicine and Pharmacy Victor Babeş, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No.2, 300041 Timisoara, Romania; (B.K.); (S.A.); (I.Z.P.); (A.L.); (C.D.)
| |
Collapse
|
5
|
Break MKB, Chiang M, Wiart C, Chin CF, Khoo ASB, Khoo TJ. Cytotoxic Activity of Boesenbergia rotunda Extracts against Nasopharyngeal Carcinoma Cells (HK1). Cardamonin, a Boesenbergia rotunda Constituent, Inhibits Growth and Migration of HK1 Cells by Inducing Caspase-Dependent Apoptosis and G2/M-Phase Arrest. Nutr Cancer 2020; 73:473-483. [PMID: 32270712 DOI: 10.1080/01635581.2020.1751217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Boesenbergia rotunda (L.) Mansf. is an edible herb that is commonly used in the cuisine of several Asian countries. Studies have shown that it possesses high bioactivity against a variety of cancer cells. In this study, we investigated the cytotoxic activity of Boesenbergia rotunda rhizomes and some of its constituents on nasopharyngeal carcinoma cells (HK1). MTT assay results showed that the methanolic and hexane extracts of Boesenbergia rotunda decreased HK1 cell viability with IC50 values of 136 µg/ml and 66 µg/ml, respectively. Cardamonin, a constituent of Boesenbergia rotunda, exhibited the highest cytotoxic activity with an IC50 value of 27 μg/ml. Further studies on cardamonin revealed that it inhibited the migration of HK1 cells, caused G2/M-phase arrest and induced apoptosis. Apoptosis was induced via activating caspase-8 and caspase-3, but independent of caspase-9. This indicated that cardamonin induced extrinsic apoptosis. Western blot analysis further showed that cardamonin caused extrinsic apoptosis, as the expression levels of intrinsic apoptosis-related proteins (Bcl-XL, Bcl-2 and Bax), were not affected. Finally, JC-1 staining of HK1 cells revealed an increase in the mitochondrial membrane potential after treatment, further proving that cardamonin did not induce apoptosis via the intrinsic pathway. These results reflect cardamonin's potential as an anticancer agent.
Collapse
Affiliation(s)
| | - Michelle Chiang
- Centre for Natural and Medicinal Product Research, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Christophe Wiart
- Centre for Natural and Medicinal Product Research, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Chiew-Foan Chin
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Alan Soo Beng Khoo
- Unit of Molecular Pathology, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Teng-Jin Khoo
- Centre for Natural and Medicinal Product Research, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|