1
|
Saravanan J, Nair A, Krishna SS, Viswanad V. Nanomaterials in biology and medicine: a new perspective on its toxicity and applications. Drug Chem Toxicol 2024; 47:767-784. [PMID: 38682270 DOI: 10.1080/01480545.2024.2340002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Nanotechnology offers excellent prospects for application in biology and medicine. It is used for detecting biological molecules, imaging, and as therapeutic agents. Due to nano-size (1-100 nm) and high surface-to-volume ratio, nanomaterials possess highly specific and distinct characteristics in the biological environment. Recently, the use of nanomaterials as sensors, theranostic, and drug delivery agents has become popular. The safety of these materials is being questioned because of their biological toxicity, such as inflammatory responses, cardiotoxicity, cytotoxicity, inhalation problems, etc., which can have a negative impact on the environment. This review paper focuses primarily on the toxicological effects of nanomaterials along with the mechanisms involved in cell interactions and the generation of reactive oxygen species by nanoparticles, which is the fundamental source of nanotoxicity. We also emphasize the greener synthesis of nanomaterials in biomedicine, as it is non-hazardous, feasible, and economical. The review articles shed light on the complexities of nanotoxicology in biosystems and the environment.
Collapse
Affiliation(s)
- Janani Saravanan
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sivadas Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
2
|
Pathak K, Saikia R, Sarma H, Pathak MP, Das RJ, Gogoi U, Ahmad MZ, Das A, Wahab BAA. Nanotheranostics: application of nanosensors in diabetes management. J Diabetes Metab Disord 2023; 22:119-133. [PMID: 37255773 PMCID: PMC10225368 DOI: 10.1007/s40200-023-01206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Objectives The objective of the present study is to discuss the use of nanomaterials like nanosensors for diagnosing Diabetes and highlight their applications in the treatment of Diabetes. Methods Diabetes mellitus (D.M.) is a group of metabolic diseases characterized by hyperglycemia. Orally administered antidiabetic drugs like glibenclamide, glipalamide, and metformin can partially lower blood sugar levels, but long-term use causes kidney and liver damage. Recent breakthroughs in nanotheranostics have emerged as a powerful tool for diabetes treatment and diagnosis. Results Nanotheranostics is a rapidly developing area that can revolutionize diabetes diagnosis and treatment by combining therapy and imaging in a single probe, allowing for pancreas-specific drug and insulin delivery. Nanotheranostic in Diabetes research has facilitated the development of improved glucose monitoring and insulin administration modalities, which promise to improve the quality of life for people with Diabetes drastically. Further, nanomaterials like nanocarriers and unique functional nanomaterials used as nano theranostics tools for treating Diabetes will also be highlighted. Conclusion The nanosensors discussed in this review article will encourage researchers to develop innovative nanomaterials with novel functionalities and properties for diabetes detection and treatment.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Himangshu Sarma
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
- Sophisticated Analytical Instrument Facility (SAIF), Girijananda Chowdhury Institute of Pharmaceutical Science (GIPS), Girijananda ChowdhuryUniversity, Guwahati, Assam India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam Down Town University, Panikhaiti, Guwahati, Assam India
| | - Ratna Jyoti Das
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Basel A. Abdel Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Shapira C, Itshak D, Duadi H, Harel Y, Atkins A, Lipovsky A, Lavi R, Lellouche JP, Fixler D. Noninvasive Nanodiamond Skin Permeation Profiling Using a Phase Analysis Method: Ex Vivo Experiments. ACS NANO 2022; 16:15760-15769. [PMID: 36037067 DOI: 10.1021/acsnano.2c03613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon-based nanoparticles (NPs) are widely used in nanotechnology. Among them, nanodiamonds (NDs) are suitable for biotechnology and are especially interesting for skin delivery and topical treatments. However, noninvasive detection of NDs within the different skin layers or analyzing their penetration ability is complicated due to the turbid nature of the tissue. The iterative multiplane optical properties extraction (IMOPE) technique detects differences in the optical properties of the measured item by a phase-image analysis method. The phase image is reconstructed by the multiplane Gerchberg-Saxton algorithm. This technique, traditionally, detects differences in the reduced scattering coefficients. Here, however, due to the actual size of the NDs, the IMOPE technique's detection relies on absorption analysis rather than relying on scattering events. In this paper, we use the IMOPE technique to detect the presence of the NDs within tissue-like phantoms. In addition, we perform ex vivo pigskin experiments to estimate the penetration of the NDs to the different skin layers and show that their presence reduces at deeper layers. The significance signal of the NDs within the epidermis, dermis, and fat layers gradually reduces, with t test significance values that are smaller than 10-4, 10-3, and 10-2, respectively. The IMOPE results are corroborated by TEM results and Franz-cell experiments. These results confirm that the IMOPE profiled the skin-permeation of the NDs noninvasively.
Collapse
Affiliation(s)
- Channa Shapira
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Daniel Itshak
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Hamootal Duadi
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yifat Harel
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Atkins
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Anat Lipovsky
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ronit Lavi
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Jean Paul Lellouche
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
4
|
Arshad R, Fatima I, Sargazi S, Rahdar A, Karamzadeh-Jahromi M, Pandey S, Díez-Pascual AM, Bilal M. Novel Perspectives towards RNA-Based Nano-Theranostic Approaches for Cancer Management. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3330. [PMID: 34947679 PMCID: PMC8708502 DOI: 10.3390/nano11123330] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022]
Abstract
In the fight against cancer, early diagnosis is critical for effective treatment. Traditional cancer diagnostic technologies, on the other hand, have limitations that make early detection difficult. Therefore, multi-functionalized nanoparticles (NPs) and nano-biosensors have revolutionized the era of cancer diagnosis and treatment for targeted action via attaching specified and biocompatible ligands to target the tissues, which are highly over-expressed in certain types of cancers. Advancements in multi-functionalized NPs can be achieved via modifying molecular genetics to develop personalized and targeted treatments based on RNA interference. Modification in RNA therapies utilized small RNA subunits in the form of small interfering RNAs (siRNA) for overexpressing the specific genes of, most commonly, breast, colon, gastric, cervical, and hepatocellular cancer. RNA-conjugated nanomaterials appear to be the gold standard for preventing various malignant tumors through focused diagnosis and delivering to a specific tissue, resulting in cancer cells going into programmed death. The latest advances in RNA nanotechnology applications for cancer diagnosis and treatment are summarized in this review.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan;
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | | | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China;
| |
Collapse
|
5
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Barani M, Sargazi S, Mohammadzadeh V, Rahdar A, Pandey S, Jha NK, Gupta PK, Thakur VK. Theranostic Advances of Bionanomaterials against Gestational Diabetes Mellitus: A Preliminary Review. J Funct Biomater 2021; 12:54. [PMID: 34698244 PMCID: PMC8544389 DOI: 10.3390/jfb12040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is the most frequent complication during pregnancy. This complex disease is characterized by glucose intolerance and consequent hyperglycemia that begins or is first diagnosed in pregnancy, and affects almost 7% of pregnant women. Previous reports have shown that GDM is associated with increased pregnancy complications and might cause abnormal fetal development. At present, treatments are not suitable for the prevention and management of these patients. As an alternative therapeutic opportunity and a leading scientific technique, nanotechnology has helped enlighten the health of these affected women. Theranostic nanomaterials with unique properties and small sizes (at least <100 nm in one of their dimensions) have been recently engineered for clinics and pharmaceutics. Reducing materials to the nanoscale has successfully changed their properties and enabled them to uniquely interact with cell biomolecules. Several biosensing methods have been developed to monitor glucose levels in GDM patients. Moreover, cerium oxide nanoparticles (NPs), selenium NPs, polymeric NPs, and drug-loaded NPs loaded with therapeutic agents have been used for GDM treatment. Still, there are some challenges associated with the detection limits and toxicity of such nanomaterials. This preliminary review covers the aspects from a fast-developing field to generating nanomaterials and their applications in GDM diagnosis and treatment.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 53898615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Noida 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| |
Collapse
|
7
|
Buocikova V, Rios-Mondragon I, Pilalis E, Chatziioannou A, Miklikova S, Mego M, Pajuste K, Rucins M, Yamani NE, Longhin EM, Sobolev A, Freixanet M, Puntes V, Plotniece A, Dusinska M, Cimpan MR, Gabelova A, Smolkova B. Epigenetics in Breast Cancer Therapy-New Strategies and Future Nanomedicine Perspectives. Cancers (Basel) 2020; 12:E3622. [PMID: 33287297 PMCID: PMC7761669 DOI: 10.3390/cancers12123622] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation has been recognized as a critical factor contributing to the development of resistance against standard chemotherapy and to breast cancer progression via epithelial-to-mesenchymal transition. Although the efficacy of the first-generation epigenetic drugs (epi-drugs) in solid tumor management has been disappointing, there is an increasing body of evidence showing that epigenome modulation, in synergy with other therapeutic approaches, could play an important role in cancer treatment, reversing acquired therapy resistance. However, the epigenetic therapy of solid malignancies is not straightforward. The emergence of nanotechnologies applied to medicine has brought new opportunities to advance the targeted delivery of epi-drugs while improving their stability and solubility, and minimizing off-target effects. Furthermore, the omics technologies, as powerful molecular epidemiology screening tools, enable new diagnostic and prognostic epigenetic biomarker identification, allowing for patient stratification and tailored management. In combination with new-generation epi-drugs, nanomedicine can help to overcome low therapeutic efficacy in treatment-resistant tumors. This review provides an overview of ongoing clinical trials focusing on combination therapies employing epi-drugs for breast cancer treatment and summarizes the latest nano-based targeted delivery approaches for epi-drugs. Moreover, it highlights the current limitations and obstacles associated with applying these experimental strategies in the clinics.
Collapse
Affiliation(s)
- Verona Buocikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| | - Ivan Rios-Mondragon
- Department of Clinical Dentistry, University of Bergen, Aarstadveien 19, 5009 Bergen, Norway; (I.R.-M.); (M.R.C.)
| | - Eleftherios Pilalis
- e-NIOS Applications Private Company, Alexandrou Pantou 25, 17671 Kallithea, Greece; (E.P.); (A.C.)
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aristotelis Chatziioannou
- e-NIOS Applications Private Company, Alexandrou Pantou 25, 17671 Kallithea, Greece; (E.P.); (A.C.)
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Martins Rucins
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Naouale El Yamani
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (N.E.Y.); (E.M.L.); (M.D.)
| | - Eleonora Marta Longhin
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (N.E.Y.); (E.M.L.); (M.D.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Muriel Freixanet
- Vall d Hebron, Institut de Recerca (VHIR), 08035 Barcelona, Spain; (M.F.); (V.P.)
| | - Victor Puntes
- Vall d Hebron, Institut de Recerca (VHIR), 08035 Barcelona, Spain; (M.F.); (V.P.)
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Maria Dusinska
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (N.E.Y.); (E.M.L.); (M.D.)
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, University of Bergen, Aarstadveien 19, 5009 Bergen, Norway; (I.R.-M.); (M.R.C.)
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| |
Collapse
|
8
|
Tan YY, Yap PK, Xin Lim GL, Mehta M, Chan Y, Ng SW, Kapoor DN, Negi P, Anand K, Singh SK, Jha NK, Lim LC, Madheswaran T, Satija S, Gupta G, Dua K, Chellappan DK. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact 2020; 329:109221. [PMID: 32768398 DOI: 10.1016/j.cbi.2020.109221] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
Cancer continues to be one of the most challenging diseases to be treated and is one of the leading causes of deaths around the globe. Cancers account for 13% of all deaths each year, with cancer-related mortality expected to rise to 13.1 million by the year 2030. Although, we now have a large library of chemotherapeutic agents, the problem of non-selectivity remains the biggest drawback, as these substances are toxic not only to cancerous cells, but also to other healthy cells in the body. The limitations with chemotherapy and radiation have led to the discovery and development of novel strategies for safe and effective treatment strategies to manage the menace of cancer. Researchers have long justified and have shed light on the emergence of nanotechnology as a potential area for cancer therapy and diagnostics, whereby, nanomaterials are used primarily as nanocarriers or as delivery agents for anticancer drugs due to their tumor targeting properties. Furthermore, nanocarriers loaded with chemotherapeutic agents also overcome biological barriers such as renal and hepatic clearances, thus improving therapeutic efficacy with lowered morbidity. Theranostics, which is the combination of rationally designed nanomaterials with cancer-targeting moieties, along with protective polymers and imaging agents has become one of the core keywords in cancer research. In this review, we have highlighted the potential of various nanomaterials for their application in cancer therapy and imaging, including their current state and clinical prospects. Theranostics has successfully paved a path to a new era of drug design and development, in which nanomaterials and imaging contribute to a large variety of cancer therapies and provide a promising future in the effective management of various cancers. However, in order to meet the therapeutic needs, theranostic nanomaterials must be designed in such a way, that take into account the pharmacokinetic and pharmacodynamics properties of the drug for the development of effective carcinogenic therapy.
Collapse
Affiliation(s)
- Yoke Ying Tan
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Pui Khee Yap
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Griselda Loo Xin Lim
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, 302017, Jaipur, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, NSW, 2308, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|