1
|
Martín-Abreu C, Fariña-Jerónimo H, Plata-Bello J. Radiological and Not Clinical Variables Guide the Surgical Plan in Patients with Glioblastoma. Curr Oncol 2024; 31:1899-1912. [PMID: 38668045 PMCID: PMC11049408 DOI: 10.3390/curroncol31040142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Background and Purpose: The extent of resection is the most important prognostic factor in patients with glioblastoma. However, the factors influencing the decision to perform a biopsy instead of maximal resection have not been clearly established. The aim of this study was to analyze the factors associated with the intention to achieve maximal resection in glioblastoma patients. Methods: A retrospective single-center case-series analysis of patients with a new diagnosis of glioblastoma was performed. Patients were distributed into two groups: the biopsy (B) and complete resection (CR) groups. To identify factors associated with the decision to perform a B or CR, uni- and multivariate binary logistic regression analyses were performed. Cox regression analysis was also performed in the B and CR groups. Results: Ninety-nine patients with a new diagnosis of glioblastoma were included. Sixty-eight patients (68.7%) were treated with CR. Ring-enhancement and edema volume on presurgical magnetic resonance imaging were both associated with CR. Corpus callosum involvement and proximity to the internal capsule were identified as factors associated with the decision to perform a biopsy. In the multivariate analysis, edema volume (OR = 1.031; p = 0.002) and proximity to the internal capsule (OR = 0.104; p = 0.001) maintained significance and were considered independent factors. In the survival analysis, only corpus callosum involvement (HR = 2.055; p = 0.035) and MGMT status (HR = 0.484; p = 0.027) presented statistical significance in the CR group. Conclusions: The volume of edema and proximity to the internal capsule were identified as independent factors associated with the surgical decision. The radiological evaluation and not the clinical situation of the patient influences the decision to perform a biopsy or CR.
Collapse
Affiliation(s)
- Carla Martín-Abreu
- Department of Medical Oncology, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Helga Fariña-Jerónimo
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| |
Collapse
|
2
|
Tsuzuki S, Muragaki Y, Nitta M, Saito T, Maruyama T, Koriyama S, Tamura M, Kawamata T. Information-guided Surgery Centered on Intraoperative Magnetic Resonance Imaging Guarantees Surgical Safety with Low Mortality. Neurol Med Chir (Tokyo) 2024; 64:57-64. [PMID: 38199242 PMCID: PMC10918452 DOI: 10.2176/jns-nmc.2022-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/11/2023] [Indexed: 01/12/2024] Open
Abstract
Neurosurgery is complex surgery that requires a strategy that maximizes the removal of tumors and minimizes complications; thus, a safe environment during surgery should be guaranteed. In this study, we aimed to verify the safety of brain surgery using intraoperative magnetic resonance imaging (iMRI), based on surgical experience since 2000. Thus, we retrospectively examined 2,018 surgical procedures that utilized iMRI performed in the operating room at Tokyo Women's Medical University Hospital between March 2000 and October 2019. As per our data, glioma constituted the majority of the cases (1,711 cases, 84.8%), followed by cavernous hemangioma (61 cases, 3.0%), metastatic brain tumor (37 cases, 1.8%), and meningioma (31 cases, 1.5%). In total, 1,704 patients who underwent glioma removal were analyzed for mortality within 30 days of surgery and for reoperation rates and the underlying causes within 24 hours and 30 days of surgery. As per our analysis, only one death out of all the glioma cases (0.06%) was reported within the 30-day period. Meanwhile, reoperation within 30 days was performed in 37 patients (2.2%) due to postoperative bleeding in 17 patients (1.0%), infection in 12 patients (0.7%), hydrocephalus in 6 patients (0.4%), cerebrospinal fluid (CSF) leakage in 1 patient, and brain edema in 1 patient (0.06%). Of these, 14 cases (0.8%) of reoperation were performed within 24 hours, that is, 13 cases (0.8%) due to postoperative bleeding and 1 case (0.06%) due to acute hydrocephalus. Mortality rate within 30 days was less than 0.1%. Thus, information-guided surgery with iMRI can improve the safety of surgical resections, including those of gliomas.
Collapse
Affiliation(s)
- Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women's Medical University
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University
- Center for Advanced Medical Engineering Research and Development, Kobe University
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women's Medical University
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University
| | - Taiichi Saito
- Department of Neurosurgery, Tokyo Women's Medical University
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University
| | | | - Manabu Tamura
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University
| | | |
Collapse
|
3
|
Tsuzuki S, Muragaki Y, Maruyama T, Saito T, Nitta M, Tamura M, Kawamata T. Localization and symptoms associated with removal of negative motor area during awake surgery. Br J Neurosurg 2023:1-9. [PMID: 37855108 DOI: 10.1080/02688697.2023.2271082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND In awake surgery, cortical mapping may identify the negative motor area (NMA). However, since speech arrest occurs regardless of whether the NMA or the frontal language area (FLA) is stimulated, the presence of speech arrest alone does not distinguish the NMA from the FLA. Furthermore, the exact location and function of the NMA is not well understood. The purpose of this study was to more accurately locate the NMA in a group of cases in which the NMA and FLA could be identified in different brain gyri, and to describe symptoms in cases in which the NMA was removed. METHODS There were 18 cases of awake surgery at our institution between 2000 and 2013 in which cortical stimulation allowed identification of FLA and NMA in separate brain gyri. In these cases, the pre- and post-removal mapping results were projected onto a 3D model postoperatively. We investigated the symptoms and social rehabilitation in a case in which the tumour invaded the same brain gyrus as the NMA and the NMA had to be resected in combination with the tumour. RESULTS In cases where the NMA and FLA could be identified in different brain gyri, NMA was localized inferior to the precentral gyrus in all cases. In four cases where NMA was removed with the tumour, apraxia of speech was observed during the surgery; the same symptoms persisted after it, but it improved within a few months, and the patients were able to return to work. CONCLUSION In cases where NMA and FLA could be identified separately by awake mapping, the NMA was commonly localized inferior to the precentral gyrus. When NMAs were resected in combination with tumour invasion, they did not lead to serious, long-term complications.
Collapse
Affiliation(s)
- Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
- Center for Advanced Medical Engineering Research and Development, Kobe University, Kobe, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Taiichi Saito
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Manabu Tamura
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Tamura M, Kurihara H, Saito T, Nitta M, Maruyama T, Tsuzuki S, Fukui A, Koriyama S, Kawamata T, Muragaki Y. Combining Pre-operative Diffusion Tensor Images and Intraoperative Magnetic Resonance Images in the Navigation Is Useful for Detecting White Matter Tracts During Glioma Surgery. Front Neurol 2022; 12:805952. [PMID: 35126299 PMCID: PMC8812689 DOI: 10.3389/fneur.2021.805952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose We developed a navigation system that superimposes the fractional anisotropy (FA) color map of pre-operative diffusion tensor imaging (DTI) and intraoperative magnetic resonance imaging (MRI). The current study aimed to investigate the usefulness of this system for neurophysiological monitoring and examination under awake craniotomy during tumor removal. Method A total of 10 glioma patients (4 patients with right-side tumors; 5 men and 5 women; average age, 34 years) were evaluated. Among them, the tumor was localized to the frontal lobe, insular cortex, and parietal lobe in 8, 1, and 1 patient, respectively. There were 3 patients who underwent surgery on general anesthesia, while 7 patients underwent awake craniotomy. The index of DTI anisotropy taken pre-operatively (magnetic field: 3 tesla, 6 motion probing gradient directions) was analyzed as a color map (FA color map) and concurrently co-registered in the intraoperative MRI within the navigation. In addition to localization of the bipolar coagulator and the cortical stimulator for brain mapping on intraoperative MRI, the pre-operative FA color map was also concurrently integrated and displayed on the navigation monitor. This white matter nerve functional information was confirmed directly by using neurological examination and referring to the electrophysiological monitoring. Results Intraoperative MRI, integrated pre-operative FA color map, and microscopic surgical view were displayed on one screen in all 10 patients, and white matter fibers including the pyramidal tract were displayed as a reference in blue. Regarding motor function, motor-evoked potential was monitored as appropriate in all cases, and removal was possible while directly confirming motor symptoms under awake craniotomy. Furthermore, the white matter fibers including the superior longitudinal fasciculus were displayed in green. Importantly, it was useful not only to localize the resection site, but to identify language-related, eye movement-related, and motor fibers at the electrical stimulation site. All motor and/or language white matter tracts were identified and visualized with the co-registration and then with an acceptable post-operative neurological outcome. Conclusion Co-registering an intraoperative MR images and a pre-operative FA color map is a practical and useful method to predict the localization of critical white matter nerve functions intraoperatively in glioma surgery.
Collapse
Affiliation(s)
- Manabu Tamura
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Kurihara
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Taiichi Saito
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Nitta
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunsuke Tsuzuki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
- *Correspondence: Yoshihiro Muragaki
| |
Collapse
|
5
|
Missey F, Botzanowski B, Migliaccio L, Acerbo E, Głowacki ED, Williamson A. Organic electrolytic photocapacitors for stimulation of the mouse somatosensory cortex. J Neural Eng 2021; 18. [PMID: 34749345 DOI: 10.1088/1741-2552/ac37a6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022]
Abstract
Objective.For decades electrical stimulation has been used in neuroscience to investigate brain networks and been deployed clinically as a mode of therapy. Classically, all methods of electrical stimulation require implanted electrodes to be connected in some manner to an apparatus which provides power for the stimulation itself.Approach. We show the use of novel organic electronic devices, specifically organic electrolytic photocapacitors (OEPCs), which can be activated when illuminated with deep-red wavelengths of light and correspondingly do not require connections with external wires or power supplies when implanted at various depthsin vivo. Main results. We stimulated cortical brain tissue of mice with devices implanted subcutaneously, as well as beneath both the skin and skull to demonstrate a wireless stimulation of the whisker motor cortex. Devices induced both a behavior response (whisker movement) and a sensory response in the corresponding sensory cortex. Additionally, we showed that coating OEPCs with a thin layer of a conducting polymer formulation (PEDOT:PSS) significantly increases their charge storage capacity, and can be used to further optimize the applied photoelectrical stimulation.Significance. Overall, this new technology can provide an on-demand electrical stimulation by simply using an OEPC and a deep-red wavelength illumination. Wires and interconnects to provide power to implanted neurostimulation electrodes are often problematic in freely-moving animal research and with implanted electrodes for long-term therapy in patients. Our wireless brain stimulation opens new perspectives for wireless electrical stimulation for applications in fundamental neurostimulation and in chronic therapy.
Collapse
Affiliation(s)
- Florian Missey
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Boris Botzanowski
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Ludovico Migliaccio
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.,Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France.,Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Wu HL, Hsu PC, Hsu SPC, Lin CF, Liao KK, Yang KM, Chou CL, Yang TF. Correlation between intraoperative mapping and monitoring and functional outcomes following supratentorial glioma surgery. Tzu Chi Med J 2021; 33:395-398. [PMID: 34760637 PMCID: PMC8532584 DOI: 10.4103/tcmj.tcmj_270_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Intraoperative neurophysiological monitoring (IONM) has long been regarded as the "gold standard" when resecting a supratentorial glioma, as it facilitates the goals of maximal tumor resection and preservation of sensorimotor function. The purpose of the present study was to evaluate the ability of motor evoked potentials (MEPs) monitoring or subcortical mapping (SCM), alone or in combination, to predict postoperative functional outcomes in glioma surgery. MATERIALS AND METHODS We retrospectively reviewed patients with supratentorial glioma that underwent craniotomy for tumor removal with IONM. Statistical analyses were used to evaluate whether the following criteria correlated with postoperative functional outcomes: Reduced amplitude (>50% reduction) or disappearance of MEPs (criterion 1), SCM with a stimulation intensity threshold less than 3 mA (criterion 2), the presence of both two phenomena (criterion 3), or either one of the two phenomena (criterion 4). RESULTS Ninety-two patients were included in this study, of whom 15 sustained new postoperative deficits, 4 experienced improved functional status, and 73 were unchanged. Postoperative functional status correlated significantly with all four criteria, and especially with criterion 3 (r = 0.647, P = 0.000). Sensitivity of IONM was better if using criteria 2 and 4, but specificity was better if using criteria 1 and 3. Criterion 3 had the most favorable overall results. CONCLUSION Using statistical methodology, our study indicates that concomitant interpretation of MEPs and SCM is the most accurate predictor of functional outcomes following supratentorial glioma surgery. However, accurate interpretations of the monitoring results by experienced neurophysiologists are essential.
Collapse
Affiliation(s)
- Han-Lin Wu
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Cheng Hsu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Sanford P. C. Hsu
- Department of Neurosurgery, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Fu Lin
- Department of Neurosurgery, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kwong-Kum Liao
- Department of Neurosurgery, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kai-Ming Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Liang Chou
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsui-Fen Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Saito T, Muragaki Y, Tamura M, Maruyama T, Nitta M, Tsuzuki S, Fukui A, Kawamata T. Correlation between localization of supratentorial glioma to the precentral gyrus and difficulty in identification of the motor area during awake craniotomy. J Neurosurg 2021; 134:1490-1499. [PMID: 32357342 DOI: 10.3171/2020.2.jns193471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Identification of the motor area during awake craniotomy is crucial for preservation of motor function when resecting gliomas located within or close to the motor area or the pyramidal tract. Nevertheless, sometimes the surgeon cannot identify the motor area during awake craniotomy. However, the factors that influence failure to identify the motor area have not been elucidated. The aim of this study was to assess whether tumor localization was correlated with a negative cortical response in motor mapping during awake craniotomy in patients with gliomas located within or close to the motor area or pyramidal tract. METHODS Between April 2000 and May 2019 at Tokyo Women's Medical University, awake craniotomy was performed to preserve motor function in 137 patients with supratentorial glioma. Ninety-one of these patients underwent intraoperative cortical motor mapping for a primary glioma located within or close to the motor area or pyramidal tract and were enrolled in the study. MRI was used to evaluate whether or not the tumors were localized to or involved the precentral gyrus. The authors performed motor functional mapping with electrical stimulation during awake craniotomy and evaluated the correlation between identification of the motor area and various clinical characteristics, including localization to the precentral gyrus. RESULTS Thirty-four of the 91 patients had tumors that were localized to the precentral gyrus. The mean extent of resection was 89.4%. Univariate analyses revealed that identification of the motor area correlated significantly with age and localization to the precentral gyrus. Multivariate analyses showed that older age (≥ 45 years), larger tumor volume (> 35.5 cm3), and localization to the precentral gyrus were significantly correlated with failure to identify the motor area (p = 0.0021, 0.0484, and 0.0015, respectively). Localization to the precentral gyrus showed the highest odds ratio (14.135) of all regressors. CONCLUSIONS Identification of the motor area can be difficult when a supratentorial glioma is localized to the precentral gyrus. The authors' findings are important when performing awake craniotomy for glioma located within or close to the motor area or the pyramidal tract. A combination of transcortical motor evoked potential monitoring and awake craniotomy including subcortical motor mapping may be needed for removal of gliomas showing negative responses in the motor area to preserve the motor-related subcortical fibers.
Collapse
Affiliation(s)
| | - Yoshihiro Muragaki
- 1Department of Neurosurgery and
- 2Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Manabu Tamura
- 2Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- 1Department of Neurosurgery and
- 2Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
8
|
Pendharkar AV, Rezaii PG, Ho AL, Sussman ES, Li G, Desai AM. Functional Mapping for Glioma Surgery: A Propensity-Matched Analysis of Outcomes and Cost. World Neurosurg 2020; 137:e328-e335. [PMID: 32028000 DOI: 10.1016/j.wneu.2020.01.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To compare clinical outcomes and payments between glioma resections with and without functional mapping. METHODS The Thomas Reuters MarketScan national longitudinal database was used to identify patients undergoing resection of supratentorial primary malignant glioma with or without functional mapping between 2007 and 2016. Patients were stratified into mapped and unmapped (conventional) groups and subsequently propensity-matched based on demographics, clinical comorbidities, and surgical characteristics (i.e., use of stereotactic navigation, microscope, and intratumoral chemotherapy). Outcomes and charges were compared between matched groups using bivariate analyses. RESULTS A total of 14,037 patients were identified, of whom 796 (6.0%) received functional mapping. Propensity matching (1:1) resulted in 796 mapped patients and 796 propensity-matched controls. Thirty-day postoperative rates of new-onset seizures, cerebral edema, hemorrhage, and neurologic deficits were significantly lower for the functional mapping group (all P < 0.05). Functional mapping was also associated with shorter hospital length of stay (P = 0.0144), lower 30-day rates of emergency department visits (P = 0.0001), and fewer reoperations (P = 0.0068). Total costs of initial admission were not significantly different between groups. CONCLUSIONS Intraoperative functional mapping during glioma resection was associated with decreased complications, reoperations, emergency department visits, and shorter lengths of stay. Furthermore, total charges of mapped resections were not significantly different from those of conventional resections. These findings support the usefulness of functional mapping for resection of supratentorial primary malignant gliomas.
Collapse
Affiliation(s)
- Arjun V Pendharkar
- Department of Neurosurgery, Stanford University, Stanford, California, USA.
| | - Paymon G Rezaii
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Allen L Ho
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Eric S Sussman
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Atman M Desai
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
The role of tailored intraoperative neurophysiological monitoring in glioma surgery: a single institute experience. J Neurooncol 2020; 146:459-467. [PMID: 32020476 DOI: 10.1007/s11060-019-03347-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Glioma surgery near the functional area is still a dilemma. Intraoperative neurophysiologic monitoring (IONM) and functional mapping can play a role to maximize the extent of resection (EOR), while minimizing the risk of sequelae. We herein review the utility of tailored intraoperative mapping and monitoring in patients undergoing glioma surgery in our institute. METHODS Patients were divided into two groups on the basis of application tailored IONM (group A, 2013-2017, n = 53) or not (group B, 2008-2012, n = 49) between January 2008 and December 2017. The setup, tailored IONM protocols, surgery, and clinical results of all patients with eloquent glioma were analyzed with the EOR, functionality scores, overall survival (OS) and progression-free survival (PFS) retrospectively. RESULTS The 102 patients were considered eligible for analysis. High grade and low grade gliomas accounted for 73 (72%) and 29 (28%) cases, respectively. There was a positive association between the application of neuromonitor and post-operative functional preservation, but no significant statistical differences over the EOR, OS and PFS between the two groups. CONCLUSIONS In our experience, tailored intraoperative functional mapping provides an effective neurological function preservation. Routine implementation of neurophysiological monitoring with adequate pre-operative planning and intraoperative teamwork in eloquent glioma can get more satisfied functional preservation. Due to the maturation and experience of our IONM team may also be the variation factor, prospective studies with a more prominent sample and proper multivariate analysis will be expected to determine the real benefit.
Collapse
|
10
|
Nakamura T, Ogiwara T, Goto T, Fujii Y, Miyaoka Y, Hanaoka Y, Horiuchi T, Hongo K. Clinical Experience of Endoscopic Endonasal Approach in the Innovative, Newly Developed Operating Room "Smart Cyber Operating Theater (SCOT)". World Neurosurg 2019; 134:293-296. [PMID: 31715411 DOI: 10.1016/j.wneu.2019.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND When medical devices and equipment in an operating room are connected to a network, vast amounts of data concerning the progress of the operation and the patient's condition can be comprehensively processed to improve the precision and safety of the surgical procedure. To make this possible, a next-generation networked operating room, "Smart Cyber Operating Theater" (SCOT), has been developed with medical-engineer cooperation. SCOT integrates stand-alone medical devices using the "OPeLiNK" communication interface. Using OPeLiNK, medical devices are connected and various data, such as intraoperative magnetic resonance imaging, neuromonitoring, biochemical monitoring, and navigation system, are integrated and displayed in the same timeline. CASE DESCRIPTION The authors succeeded in clinical tumor resection via the endoscopic endonasal approach using the SCOT system in a 79-year-old man with a large nonfunctioning pituitary adenoma. The surgeons performed the operation while sharing information in real time between all staff in the operating room and supervising expert surgeons at the surgical strategy desk. Any decisions, such as intraoperative surgical procedures, were made with discussion between the operating room and the surgical strategy desk. The patient's postoperative course was uneventful. CONCLUSIONS This is the first case report of endoscopic endonasal approach performed successfully in the SCOT. Further developments in this technology may lead to innovations in not only microscopic neurosurgery but also endoscopic neurosurgery.
Collapse
Affiliation(s)
- Takuya Nakamura
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshihiro Ogiwara
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Tetsuya Goto
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yu Fujii
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshinari Miyaoka
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiki Hanaoka
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tetsuyoshi Horiuchi
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazuhiro Hongo
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
11
|
Tamura M, Sato I, Maruyama T, Ohshima K, Mangin JF, Nitta M, Saito T, Yamada H, Minami S, Masamune K, Kawamata T, Iseki H, Muragaki Y. Integrated datasets of normalized brain with functional localization using intra-operative electrical stimulation. Int J Comput Assist Radiol Surg 2019; 14:2109-2122. [PMID: 30955195 DOI: 10.1007/s11548-019-01957-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/01/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of this study was to transform brain mapping data into a digitized intra-operative MRI and integrated brain function dataset for predictive glioma surgery considering tumor resection volume, as well as the intra-operative and postoperative complication rates. METHODS Brain function data were transformed into digitized localizations on a normalized brain using a modified electric stimulus probe after brain mapping. This normalized brain image with functional information was then projected onto individual patient's brain images including predictive brain function data. RESULTS Log data were successfully acquired using a medical device integrated into intra-operative MR images, and digitized brain function was converted to a normalized brain data format in 13 cases. For the electrical stimulation positions in which patients showed speech arrest (SA), speech impairment (SI), motor and sensory responses during cortical mapping processes in awake craniotomy, the data were tagged, and the testing task and electric current for the stimulus were recorded. There were 13 SA, 7 SI, 8 motor and 4 sensory responses (32 responses) in total. After evaluation of transformation accuracy in 3 subjects, the first transformation from intra- to pre-operative MRI using non-rigid registration was calculated as 2.6 ± 1.5 and 2.1 ± 0.9 mm, examining neighboring sulci on the electro-stimulator position and the cortex surface near each tumor, respectively; the second transformation from pre-operative to normalized brain was 1.7 ± 0.8 and 1.4 ± 0.5 mm, respectively, representing acceptable accuracy. CONCLUSION This image integration and transformation method for brain normalization should facilitate practical intra-operative brain mapping. In the future, this method may be helpful for pre-operatively or intra-operatively predicting brain function.
Collapse
Affiliation(s)
- Manabu Tamura
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 (TWIns) Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan. .,Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Ikuma Sato
- Faculty of System Information Science Engineering, Future University Hakodate, 116-2 Kamedanakano-cho, Hakodate City, Hokkaido, 041-8655, Japan
| | - Takashi Maruyama
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 (TWIns) Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.,Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kazuma Ohshima
- Faculty of System Information Science Engineering, Future University Hakodate, 116-2 Kamedanakano-cho, Hakodate City, Hokkaido, 041-8655, Japan
| | - Jean-François Mangin
- The Computer Assisted Neuroimaging Laboratory, Neurospin, Biomedical Imaging Institute, CEA, Centre d'études de Saclay, 91191, Gif-Sur-Yvette, France
| | - Masayuki Nitta
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 (TWIns) Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.,Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Taiichi Saito
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroyuki Yamada
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 (TWIns) Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shinji Minami
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 (TWIns) Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ken Masamune
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 (TWIns) Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroshi Iseki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 (TWIns) Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yoshihiro Muragaki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 (TWIns) Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.,Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
12
|
Fukutomi Y, Yoshimitsu K, Tamura M, Masamune K, Muragaki Y. Quantitative Evaluation of Efficacy of Intraoperative Examination Monitor for Awake Surgery. World Neurosurg 2019; 126:e432-e438. [PMID: 30825617 DOI: 10.1016/j.wneu.2019.02.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND When brain tumors are located near the language area, a test to assess language function is required. During the test, it is practical to display combined information obtained from all the equipment so that the surgeon can confirm the patient's response to the tasks. We developed the intraoperative examination monitor for awake surgery (IEMAS) mainly to combine all information so that the language function test could be performed efficiently. The IEMAS has proved to be useful in clinical settings; however, no quantitative evaluation has been performed. This study aimed to demonstrate the clinical usefulness of the IEMAS through comparison of cases with and without IEMAS use in language function test simulation. METHODS The language function test simulator was created to eliminate any uncertain factors, such as symptoms, which vary among patients. Neurosurgeons participated in the test, and the usefulness of the IEMAS was investigated. We analyzed test duration and number of information exchanges between surgeon and examiner. RESULTS Total test duration with IEMAS use was significantly shorter than without IEMAS use (116.1 ± 23.1 seconds vs. 147.8 ± 48.7 seconds; P < 0.02). The number of information exchanges between surgeon and examiner was significantly lower with IEMAS use than without IEMAS use (0.2 ± 0.6 times vs. 16.1 ± 15.6 times; P < 0.02). CONCLUSIONS We compared cases with and without IEMAS use. Total test duration decreased with IEMAS use, and number of information exchanges was reduced, thus demonstrating the usefulness of the IEMAS.
Collapse
Affiliation(s)
- Yoshihiro Fukutomi
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan; Zendai Kogyo Corporation, Tokyo, Japan
| | - Kitaro Yoshimitsu
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Manabu Tamura
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan; Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Ken Masamune
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan; Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
13
|
Saito T, Muragaki Y, Tamura M, Maruyama T, Nitta M, Tsuzuki S, Kawamata T. Impact of connectivity between the pars triangularis and orbitalis on identifying the frontal language area in patients with dominant frontal gliomas. Neurosurg Rev 2018; 43:537-545. [PMID: 30415305 DOI: 10.1007/s10143-018-1052-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/04/2018] [Accepted: 11/01/2018] [Indexed: 11/30/2022]
Abstract
We have previously revealed that identification of the frontal language area (FLA) can be difficult in patients with dominant frontal glioma involving the pars triangularis (PT). The present study added new cases and performed additional analyses. We noticed a new finding that the presence of extension to the pars orbitalis (POr) was associated with negative response to the FLA. The aim of the present study was to evaluate the impact of PT involvement with extension to the POr on the failure to identify the FLA. From 2000 to 2017, awake craniotomy was performed on 470 patients. Of these patients, the present study included 148 consecutive patients with frontal glioma on the dominant side. We evaluated whether tumors involved the PT or extended to the POr. Thirty one of 148 patients showed involvement of the PT, and we examined the detailed characteristics of these 31 patients. The rate of negative response for the FLA was 61% in patients with involvement of the PT. In 31 patients with frontal glioma involving the PT, univariate analyses showed significant correlation between extension to the POr and failure to identify the FLA (P = 0.0070). Similarly, multivariate analysis showed only extension to the POr correlated significantly with failure to identify the FLA (P = 0.0129). We found new evidence that extension to the POr which impacts connectivity between the PT and POr correlated significantly with negative response to the FLA of patients with dominant frontal glioma.
Collapse
Affiliation(s)
- Taiichi Saito
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Manabu Tamura
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
14
|
Okamoto J, Masamune K, Iseki H, Muragaki Y. Development concepts of a Smart Cyber Operating Theater (SCOT) using ORiN technology. ACTA ACUST UNITED AC 2018; 63:31-37. [DOI: 10.1515/bmt-2017-0006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/24/2017] [Indexed: 11/15/2022]
Abstract
AbstractCurrently, networking has not progressed in the treatment room. Almost every medical device in the treatment room operates as a stand-alone device. In this project, we aim to develop a networked operating room called “Smart Cyber Operating Theater (SCOT)”. Medical devices are connected using Open Resource interface for the Network (ORiN) technology. In this paper, we describe the concept of the SCOT project. SCOT is integrated using the communication interface ORiN, which was originally developed for industry. One feature of ORiN is that the system can be constructed flexibly. ORiN creates abstracts of the same type of devices and increases the robustness of the system for device exchange. By using ORiN technology, we are developing new applications, such as decision-making navigation or a precision guided treatment system.
Collapse
|
15
|
Glenn C, Conner AK, Rahimi M, Briggs RG, Baker C, Sughrue M. Common Disconnections in Glioma Surgery: An Anatomic Description. Cureus 2017; 9:e1778. [PMID: 29255657 PMCID: PMC5732013 DOI: 10.7759/cureus.1778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Within the surgical treatment of glioma, extended survival is predicated upon extent of resection which is limited by proximity and/or invasion of eloquent structures. Diffusion tensor imaging (DTI) tractography is a very useful tool for guiding supramaximal surgical resection while preserving eloquence. Although gliomas can vary significantly in size, shape, and invasion of functionally significant brain tissue, typical surgical disconnection patterns emerge. In this study, our typical surgical paradigm is outlined. We describe our surgical philosophy for resecting gliomas supramaximally summarized as define, divide, and destroy with the adjuvant utilization of neuronavigation and DTI. We describe the most common disconnections involved in glioma surgery at our institution; specifically, delineating tumor disconnections involving the medial posterior frontal, lateral posterior frontal, posterior temporal, anterior occipital, medial parietal, and insular regions. Although gliomas are highly variable, common patterns emerge in relation to the necessary disconnections required to preserve eloquent brain while maximizing the extent of resection.
Collapse
Affiliation(s)
- Chad Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| | - Meherzad Rahimi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| | - Cordell Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| | - Michael Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| |
Collapse
|
16
|
Lee SJ, Hwang SC, Im SB, Kim BT. Surgical Resection of Non-Glial Tumors in the Motor Cortex. Brain Tumor Res Treat 2016; 4:70-76. [PMID: 27867915 PMCID: PMC5114195 DOI: 10.14791/btrt.2016.4.2.70] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/28/2016] [Accepted: 07/12/2016] [Indexed: 11/20/2022] Open
Abstract
Background Direct surgery to resect tumors in the motor cortex could improve neurological symptoms or cause novel motor weakness. The present study describes the neurological outcomes of patients after the surgical resection of non-glial tumors in the primary motor cortex. Methods The present study included 25 patients who had pathologically confirmed non-glial tumors in the motor cortex for which they underwent surgery. Tumor location was verified using anatomical landmarks on preoperative magnetic resonance imaging scans. All surgeries involved a craniotomy and tumor resection, especially use of the sulcal dissecting approach for intra-axial tumors. Results Of the 25 patients, 10 exhibited metastasis, 13 had a meningioma, and 2 had a cavernous malformation. Motor weakness and seizures were the most common symptoms, while 3 patients experienced only a headache. The tumor size was less than 20 mm in 4 patients, 20–40 mm in 14, and greater than 40 mm in seven. Of the 25 patients, 13 exhibited motor weakness prior to the operation, but most of these symptoms (76.9%) improved following surgery. On the other hand, eight patients experienced seizures prior to the surgery, and in three of these patients (37.5%), the seizures were not controlled after the surgery. In terms of surgical complications, a postoperative hematoma developed in one of the meningioma patients, and the patient's hemiparesis was aggravated. Conclusion The present findings show that careful and meticulous resection of non-glial tumors in the motor cortex can improve preoperative neurological signs, but it cannot completely control seizure activity.
Collapse
Affiliation(s)
- Seong-Jong Lee
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sun-Chul Hwang
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Soo Bin Im
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Bum-Tae Kim
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
17
|
Kinoshita M, Miyashita K, Tsutsui T, Furuta T, Nakada M. Critical Neural Networks in Awake Surgery for Gliomas. Neurol Med Chir (Tokyo) 2016; 56:674-686. [PMID: 27250817 PMCID: PMC5221778 DOI: 10.2176/nmc.ra.2016-0069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
From the embarrassing character commonly infiltrating eloquent brain regions, the surgical resection of glioma remains challenging. Owing to the recent development of in vivo visualization techniques for the human brain, white matter regions can be delineated using diffusion tensor imaging (DTI) as a routine clinical practice in neurosurgery. In confirmation of the results of DTI tractography, a direct electrical stimulation (DES) substantially influences the investigation of cortico-subcortical networks, which can be identified via specific symptoms elicited in the concerned white matter tracts (eg., the arcuate fascicle, superior longitudinal fascicles, inferior fronto-occipital fascicle, inferior longitudinal fascicle, frontal aslant tract, sensori-motor tracts, optic radiation, and so forth). During awake surgery for glioma using DES, it is important to identify the anatomo-functional structure of white matter tracts to identify the surgical boundaries of brain regions not only to achieve maximal resection of the glioma but also to maximally preserve quality of life. However, the risk exists that neurosurgeons may be misled by the inability of DTI to visualize the actual anatomy of the white matter fibers, resulting in inappropriate decisions regarding surgical boundaries. This review article provides information of the critical neuronal network that is necessary to identify and understand in awake surgery for glioma, with special references to white matter tracts and the author's experiences.
Collapse
|
18
|
Saito T, Muragaki Y, Maruyama T, Tamura M, Nitta M, Tsuzuki S, Konishi Y, Kamata K, Kinno R, Sakai KL, Iseki H, Kawamata T. Difficulty in identification of the frontal language area in patients with dominant frontal gliomas that involve the pars triangularis. J Neurosurg 2016; 125:803-811. [PMID: 26799301 DOI: 10.3171/2015.8.jns151204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Identification of language areas using functional brain mapping is sometimes impossible using current methods but essential to preserve language function in patients with gliomas located within or near the frontal language area (FLA). However, the factors that influence the failure to detect language areas have not been elucidated. The present study evaluated the difficulty in identifying the FLA in dominant-side frontal gliomas that involve the pars triangularis (PT) to determine the factors that influenced failed positive language mapping. METHODS Awake craniotomy was performed on 301 patients from April 2000 to October 2013 at Tokyo Women's Medical University. Recurrent cases were excluded, and patients were also excluded if motor mapping indicated their glioma was in or around the motor area on the dominant or nondominant side. Eighty-two consecutive cases of primary frontal glioma on the dominant side were analyzed for the present study. MRI was used for all patients to evaluate whether tumors involved the PT and to perform language functional mapping with a bipolar electrical stimulator. Eighteen of 82 patients (mean age 39 ± 13 years) had tumors that showed involvement of the PT, and the detailed characteristics of these 18 patients were examined. RESULTS The FLA could not be identified with intraoperative brain mapping in 14 (17%) of 82 patients; 11 (79%) of these 14 patients had a tumor involving the PT. The negative response rate in language mapping was only 5% in patients without involvement of the PT, whereas this rate was 61% in patients with involvement of the PT. Univariate analyses showed no significant correlation between identification of the FLA and sex, age, histology, or WHO grade. However, failure to identify the FLA was significantly correlated with involvement of the PT (p < 0.0001). Similarly, multivariate analyses with the logistic regression model showed that only involvement of the PT was significantly correlated with failure to identify the FLA (p < 0.0001). In 18 patients whose tumors involved the PT, only 1 patient had mild preoperative dysphasia. One week after surgery, language function worsened in 4 (22%) of 18 patients. Six months after surgery, 1 (5.6%) of 18 patients had a persistent mild speech deficit. The mean extent of resection was 90% ± 7.1%. Conclusions Identification of the FLA can be difficult in patients with frontal gliomas on the dominant side that involve the PT, but the positive mapping rate of the FLA was 95% in patients without involvement of the PT. These findings are useful for establishing a positive mapping strategy for patients undergoing awake craniotomy for the treatment of frontal gliomas on the dominant side. Thoroughly positive language mapping with subcortical electrical stimulation should be performed in patients without involvement of the PT. More careful continuous neurological monitoring combined with subcortical electrical stimulation is needed when removing dominant-side frontal gliomas that involve the PT.
Collapse
Affiliation(s)
- Taiichi Saito
- Departments of 1 Neurosurgery and.,CREST, Japan Science and Technology Agency, Tokyo
| | - Yoshihiro Muragaki
- Departments of 1 Neurosurgery and.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University.,CREST, Japan Science and Technology Agency, Tokyo
| | - Takashi Maruyama
- Departments of 1 Neurosurgery and.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University.,CREST, Japan Science and Technology Agency, Tokyo
| | - Manabu Tamura
- Departments of 1 Neurosurgery and.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University.,CREST, Japan Science and Technology Agency, Tokyo
| | - Masayuki Nitta
- Departments of 1 Neurosurgery and.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University.,CREST, Japan Science and Technology Agency, Tokyo
| | | | - Yoshiyuki Konishi
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University
| | | | - Ryuta Kinno
- CREST, Japan Science and Technology Agency, Tokyo.,Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo; and.,Division of Neurology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Kuniyoshi L Sakai
- CREST, Japan Science and Technology Agency, Tokyo.,Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo; and
| | - Hiroshi Iseki
- Departments of 1 Neurosurgery and.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University
| | | |
Collapse
|