1
|
Sindi HA, Hamouda RA, Abdel-Hamid MS, Alhazmi NM. Alginate Extracted from Azotobacter chroococcum Loaded in Selenium Nanoparticles: Insight on Characterization, Antifungal and Anticancer Activities. Polymers (Basel) 2024; 16:2065. [PMID: 39065382 PMCID: PMC11281124 DOI: 10.3390/polym16142065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer is a threatening disease that needs strong therapy with fewer side effects. A lot of different types of chemotherapy or chemo-drugs are used in cancer treatments but have many side effects. The increasing number of antibiotic-resistant microorganisms requires more study of new antimicrobial compounds and delivery and targeting strategies. This work aims to isolate and identify Azotobacter sp., and extract alginate from Azotobacter sp. As well as fabricating selenium nanoparticles using ascorbic acid as reducing agent (As/Se-NPs), and loading extracted alginate with selenium nanoparticles (Alg-Se-NCMs). The As/Se-NPs and Alg-Se-NCMs were categorized by TEM, EDX, UV-Vis spectrophotometry, FT-IR, and zeta potential. The antifungal activities of both As/Se-NPs and Alg-Se-NCMs were investigated against some human pathogen fungi that cause skin infection such as Aspergillus niger (RCMB 002005), Aspergillus fumigatus (RCMB 002008), Cryptococcus neoformans (RCMB 0049001), Candida albicans (RCMB 005003), and Penicillium marneffei (RCMB 001002). The anticancer activities were determined against HCT-116 colorectal cancer and Hep G2 human liver cancer cells. UV spectra of As/Se-NPs and Alg-Se-NCMs confirmed a surface plasmon resonance at 269 and 296 nm, and zeta potential has negative charges -37.2 and -38.7 mV,. Both As/Se-NPs and Alg-Se-NCMs were hexagonal, size ranging from 16.52 to 97.06 and 17.29 to 44.2. Alg-Se-NCMs had anticancer activities against HCT-116 and HepG2. The Alg-Se-NCMs possessed the highest antifungal activities against Cryptococcus neoformans, followed by Aspergillus niger, but did not possess any activities against Penicillium marneffei. Alginate-capped selenium nanoparticles can be used as antifungal and anticancer treatments.
Collapse
Affiliation(s)
- Hebah A. Sindi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (H.A.S.)
| | - Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
| | - Marwa S. Abdel-Hamid
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
| | - Nuha M. Alhazmi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (H.A.S.)
| |
Collapse
|
2
|
Zhang L, Sathiyaseelan A, Zhang X, Lu Y, Wang MH. Development and Analysis of Silver Nitroprusside Nanoparticle-Incorporated Sodium Alginate Films for Banana Browning Prevention. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:292. [PMID: 38334563 PMCID: PMC10856574 DOI: 10.3390/nano14030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Banana (Musa acuminate) has been popular among consumers worldwide due to its rich nutrients and minerals. However, bananas are highly susceptible to the physical and biological factors that lead to postharvest loss during transportation and storage. In this work, novel sodium alginate (SA) films incorporated with silver nitroprusside nanoparticles (AgNNPs) were prepared to extend the shelf life of bananas through antibacterial and antioxidant coating. The results exhibited that AgNNPs were cubical and that their size was <500 nm, with metal composition being Ag and Fe. Additionally, the incorporation of AgNNPs in the SA film was seen in FE-SEM and zeta analysis, with an average size of about 365.6 nm. Furthermore, the functional and crystalline properties of AgNNPs were assessed through FTIR and XRD. Transmittance testing of the SA-AgNNPs films confirmed they have good UV barrier properties. SA-AgNNPs films exhibited excellent high antibacterial activity against foodborne pathogens including L. monocytogenes, S. enterica, and E. coli at the concentration of 500 µg/mL. Moreover, during the storage of bananas, SA-AgNNPs nanocomposite coatings act as a barrier to microbial contamination and slow down the ripening of bananas. As a result, compared with SA-coated and uncoated bananas, SA-AgNNPs-coated bananas exhibited the lowest weight loss and lowest total bacterial colonies, thus greatly extending their shelf life. Particularly when coated with SA-AgNNPs films, total bacterial colonies (TBC) in the banana peel and pulp were as low as 1.13 × 103 and 51 CUF/g on the ninth day of storage, respectively. Our work offers an efficient strategy to improve the quality of bananas during the postharvest period, with extensive applications in fruit preservation and food packing.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
- KIIT (Kangwon Institute of Inclusive Technology), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Facile one-pot synthesis of silver nanoparticles embedded alginate beads: synthesis, characterization and antimicrobial activity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Naseem K, Tahir MH, Farooqi F, Manzoor S, Khan SU. Strategies adopted for the preparation of sodium alginate–based nanocomposites and their role as catalytic, antibacterial, and antifungal agents. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Alginate extracted from the marine brown algae is a massively utilized biopolymer in multiple fields such as microreactors for the fabrication of metal nanoparticles along with other polymeric and nonpolymeric materials to enhance their mechanical strength. These sodium alginate (Na-Alg)-based fabricated nanocomposites find applications in the field of catalysis and biological treatment as antibacterial/antifungal agent due to the synergistic properties of Na-Alg and fabricated metal nanoparticles (NPs). Na-Alg offers mechanical strength and nanoparticles provide high reactivity due to their small size. Sodium alginate exhibits hydroxyl and carboxylate functional groups that can easily interact with the metal nanoparticles to form composite particles. The research on the preparation of Na-Alg–based nanoparticles and nanoaggregates have been started recently but developed quickly due to their extensive applications in different fields. This review article encircles different methods of preparation of sodium alginate–based metal nanocomposites; analytical techniques reported to monitor the formation of these nanocomposites and used to characterize these nanocomposites as well as applications of these nanocomposites as catalyst, antibacterial, and antifungal agent.
Collapse
Affiliation(s)
- Khalida Naseem
- Department of Basic and Applied Chemistry , Faculty of Science and Technology, University of Central Punjab , Lahore 54000 , Pakistan
| | - Mudassir Hussain Tahir
- Department of Chemistry, Division of Sciences and Technology , University of Education , Lahore 54000 , Pakistan
- Bonn-Rhein-Sieg University of Applied Sciences , Von-Liebig-Str. 20 , D-53359 Rheinbach , Germany
| | - Fatima Farooqi
- Department of Basic and Applied Chemistry , Faculty of Science and Technology, University of Central Punjab , Lahore 54000 , Pakistan
| | - Suryyia Manzoor
- Institute of Chemical Sciences, Bahauddin Zakayria University , Multan 60800 , Pakistan
| | - Saba Urooge Khan
- Institute of Polymer and Textile Engineering, University of the Punjab , Lahore 54590 , Pakistan
| |
Collapse
|
5
|
Kabeerdass N, Al Otaibi A, Rajendran M, Manikandan A, Kashmery HA, Rahman MM, Madhu P, Khan A, Asiri AM, Mathanmohun M. Bacillus-Mediated Silver Nanoparticle Synthesis and Its Antagonistic Activity against Bacterial and Fungal Pathogens. Antibiotics (Basel) 2021; 10:1334. [PMID: 34827271 PMCID: PMC8614847 DOI: 10.3390/antibiotics10111334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
In this article, the supernatant of the soil-borne pathogen Bacillus mn14 was used as the catalyst for the synthesis of AgNPs. The antibacterial and antifungal activity of Bs-AgNPs was evaluated, in which S. viridans and R. solani showed susceptibility at 70 µL and 100 µL concentrations. Enzyme properties of the isolates, according to minimal inhibitory action and a growth-enhancing hormone-indole acetic acid (IAA) study of the isolates, were expressed in TLC as a purple color with an Rf value of 0.7. UV/Vis spectroscopy revealed the presence of small-sized AgNPs, with a surface plasmon resonance (SPR) peak at 450 nm. The particle size analyzer identified the average diameter of the particles as 40.2 nm. The X-ray diffraction study confirmed the crystalline nature and face-centered cubic type of the silver nanoparticle. Scanning electron microscopy characterized the globular, small, round shape of the silver nanoparticle. AFM revealed the two-dimensional topology of the silver nanoparticle with a characteristic size ranging around 50 nm. Confocal microscopy showed the cell-wall disruption of S. viridans treated with Bs-AgNPs. High-content screening and compound microscopy revealed the destruction of mycelia of R. solani after exposure to Bs-AgNPs. Furthermore, the Bs-AgNPs cured sheath blight disease by reducing lesion length and enhancing root and shoot length in Oryza sativa seeds. This soil-borne pathogen Bacillus-mediated synthesis approach of AgNPs appears to be cost-efficient, ecofriendly, and farmer-friendly, representing an easy way of providing valuable nutritious edibles in the future.
Collapse
Affiliation(s)
- Nivedhitha Kabeerdass
- Department of Microbiology, Muthayammal College of Arts & Science, Rasipuram, Namakkal DT 637408, Tamil Nadu, India;
| | - Ahmed Al Otaibi
- Chemistry Department, Faculty of Science, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia;
| | - Manikandan Rajendran
- Department of Biotechnology, Padmavani Arts and Science College for Women, Salem 636011, Tamil Nadu, India;
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai 600073, Tamil Nadu, India;
- Centre for Catalysis and Renewable Energy, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai 600073, Tamil Nadu, India
| | - Heba A. Kashmery
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - P. Madhu
- Department of Mechanical Engineering, Malnad College of Engineering, Hassan, Visvesvaraya Technological University, Belagavi 590018, Karnataka, India;
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maghimaa Mathanmohun
- Department of Microbiology, Muthayammal College of Arts & Science, Rasipuram, Namakkal DT 637408, Tamil Nadu, India;
| |
Collapse
|
6
|
Sharmin N, Pang C, Sone I, Walsh JL, Fernández CG, Sivertsvik M, Fernández EN. Synthesis of Sodium Alginate-Silver Nanocomposites Using Plasma Activated Water and Cold Atmospheric Plasma Treatment. NANOMATERIALS 2021; 11:nano11092306. [PMID: 34578622 PMCID: PMC8472623 DOI: 10.3390/nano11092306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
In this study, sodium alginate (SA)-based, eco-friendly nanocomposites films were synthesized for potential food packaging applications using silver nitrate (AgNO3) as the metal precursor, reactive nitrogen and oxygen species (RNOS) created within plasma activated water (PAW), or through cold plasma treatment (CP) as reducing agent and SA as stabilizing agent. The formation of silver nanoparticles (AgNPs) was confirmed via the absorption peaks observed between 440 and 450 nm in UV-vis spectroscopy. The tensile strength (TS) and tensile modulus (TM) of the nanocomposite films were significantly higher than those of the SA films. An increase in the TS was also observed as the AgNP concentration was increased from 1 to 5 mM. The storage modulus (G’) of the nanocomposite solution was higher than that of the SA solution. The synthesis of AgNPs resulted both in a higher solution viscosity and a more marked shear-thinning effect. The synthesized AgNPs showed antimicrobial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The AgNPs were spherical in shape with an average size of 22 nm.
Collapse
Affiliation(s)
- Nusrat Sharmin
- Department of Food Safety and Quality, Nofima AS, Osloveien 1, 1430 Ås, Norway
- Correspondence:
| | - Chengheng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China;
| | - Izumi Sone
- Department of Processing Technology, Nofima AS, Richard Johnsens Gate 4, 4021 Stavanger, Norway; (I.S.); (M.S.); (E.N.F.)
| | - James Leon Walsh
- Centre for Plasma Microbiology, Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3BX, UK;
| | | | - Morten Sivertsvik
- Department of Processing Technology, Nofima AS, Richard Johnsens Gate 4, 4021 Stavanger, Norway; (I.S.); (M.S.); (E.N.F.)
| | - Estefanía Noriega Fernández
- Department of Processing Technology, Nofima AS, Richard Johnsens Gate 4, 4021 Stavanger, Norway; (I.S.); (M.S.); (E.N.F.)
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
7
|
Fakher SN, Kashi FJ. Microbial Synthesized Ag/AgCl Nanoparticles Using Staphylococcus pasteuri sp. nov., ZAR1: Antimutagenicity, Antimicrobial Agent. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01879-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Bin-Meferij MM, Hamida RS. Biofabrication And Antitumor Activity Of Silver Nanoparticles Utilizing Novel Nostoc sp. Bahar M. Int J Nanomedicine 2019; 14:9019-9029. [PMID: 31819416 PMCID: PMC6881505 DOI: 10.2147/ijn.s230457] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/03/2019] [Indexed: 12/17/2022] Open
Abstract
Background Over recent years, green chemistry procedures have been developed to synthesize nanoparticles in eco-friendlier and less expensive ways. These procedures use natural sources such as bacteria, fungi, yeast, plants, actinomycetes, algae, or cyanobacteria, or use biomolecules such as proteins, vitamins, or pigments instead of chemical materials to fabricate salt precursors into nanoparticles. Methodology In the current investigation, we developed an effective, inexpensive, nontoxic method to synthesize silver nanoparticles (SNPs) using the cellular extract of a novel strain of cyanobacterium, Nostoc sp. Bahar M. SNPs were characterized using ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The antitumor properties of the biogenic SNPs were tested against Caco-2 cells using a cell proliferation assay and inverted light microscopy. Results The new strain Nostoc sp. Bahar M was able to fabricate small SNPs from silver nitrate through an eco-friendly and inexpensive biosynthesis process. SNPs synthesis was accompanied by a color transformation from pale yellow to dark brown. Ultraviolet spectroscopy showed an absorption peak at 403 nm, confirming SNPs formation. X-ray diffraction analysis indicated that the SNPs had a face-centered cubic crystalline structure. Fourier-transform infrared spectroscopy was used to identify a protein that may play an important role in SNPs biosynthesis. Scanning and transmission electron micrographs showed that the SNPs were uniformly distributed and spherical in shape, with an average diameter of 14.9 nm. Cytotoxicity assays showed that SNPs exhibited a significant dose-dependent cytotoxic activity against human colon cancer cells with an IC50 of 150 μg/mL. Conclusion Nostoc sp. Bahar M provided an eco-friendly route for fabricating SNPs, which have cytotoxic activity toward Caco-2 cells.
Collapse
Affiliation(s)
| | - Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Sarker NC, Borhan M, Fortuna AM, Rahman S. Understanding gaseous reduction in swine manure resulting from nanoparticle treatments under anaerobic storage conditions. J Environ Sci (China) 2019; 82:179-191. [PMID: 31133263 DOI: 10.1016/j.jes.2019.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Manure is an impending source of carbon (C), sulfur (S) and water (H2O). Consequently, microbial populations utilize these constituents to produce methane (CH4), carbon dioxide (CO2), greenhouse gases (GHGs), and hydrogen sulfide (H2S). Application of nanoparticles (NPs) to stored manure is an emerging GHG mitigation technique. In this study, two NPs: nano zinc oxide (nZnO) and nano silver (nAg) were tested in swine manure stored under anaerobic conditions to determine their effectiveness in mitigating gaseous emissions and total gas production. The biological sources of gas production, i.e., microbial populations were characterized via Quantitative Polymerase Chain Reaction (qPCR) analysis. Additionally, pH, redox, and VFAs were determined using standard methods. Each treatment of the experiment was replicated three times and NPs were applied at a dose of 3 g/L of manure. Also, headspace gas from all treatment replicates were analyzed for CH4 and CO2 gas concentrations using an SRI-8610 Gas Chromatograph and H2S concentrations were measured using a Jerome 631X meter. Nanoparticles tested in this study reduced the cumulative gas volume by 16%-79% compared to the control. Among the NPs tested, only nZnO consistently reduced GHG concentrations by 37%-97%. Reductions in H2S concentrations ranged from 87% to 97%. Gaseous reductions were likely due to decreases in the activity and numbers of specific gas producing methanogenic archaea and sulfate reducing bacterial (SRB) species.
Collapse
Affiliation(s)
- Niloy Chandra Sarker
- Agricultural and Biosystems Engineering Department, North Dakota State University, Fargo, ND 58108, USA
| | - Md Borhan
- Agricultural and Biosystems Engineering Department, North Dakota State University, Fargo, ND 58108, USA
| | - Ann-Marie Fortuna
- USDA-ARS, Grazinglands Research Laboratory, 7207 West, Sheyenne Street, El Reno, OK 73036, USA
| | - Shafiqur Rahman
- Agricultural and Biosystems Engineering Department, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
10
|
Grumezescu AM, Stoica AE, Dima-Bălcescu MȘ, Chircov C, Gharbia S, Baltă C, Roșu M, Herman H, Holban AM, Ficai A, Vasile BS, Andronescu E, Chifiriuc MC, Hermenean A. Electrospun Polyethylene Terephthalate Nanofibers Loaded with Silver Nanoparticles: Novel Approach in Anti-Infective Therapy. J Clin Med 2019; 8:E1039. [PMID: 31315266 PMCID: PMC6679131 DOI: 10.3390/jcm8071039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/29/2022] Open
Abstract
Polyethylene terephthalate (PET) is a major pollutant polymer, due to its wide use in food packaging and fiber production industries worldwide. Currently, there is great interest for recycling the huge amount of PET-based materials, derived especially from the food and textile industries. In this study, we applied the electrospinning technique to obtain nanostructured fibrillary membranes based on PET materials. Subsequently, the recycled PET networks were decorated with silver nanoparticles through the chemical reduction method for antimicrobial applications. After the characterization of the materials in terms of crystallinity, chemical bonding, and morphology, the effect against Gram-positive and Gram-negative bacteria, as well as fungal strains, was investigated. Furthermore, in vitro and in vivo biocompatibility tests were performed in order to open up potential biomedical applications, such as wound dressings or implant coatings. Silver-decorated fibers showed lower cytotoxicity and inflammatory effects and increased antibiofilm activity, thus highlighting the potential of these systems for antimicrobial purposes.
Collapse
Affiliation(s)
- Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- ICUB, Research Institute of Bucharest University, University of Bucharest, 030018 Bucharest, Romania
| | - Alexandra Elena Stoica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | | | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Sami Gharbia
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Cornel Baltă
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Marcel Roșu
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Hildegard Herman
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Alina Maria Holban
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- ICUB, Research Institute of Bucharest University, University of Bucharest, 030018 Bucharest, Romania
| | - Anca Hermenean
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310045 Arad, Romania
| |
Collapse
|
11
|
Rodríguez Nuñez YA, Castro RI, Arenas FA, López-Cabaña ZE, Carreño G, Carrasco-Sánchez V, Marican A, Villaseñor J, Vargas E, Santos LS, Durán-Lara EF. Preparation of Hydrogel/Silver Nanohybrids Mediated by Tunable-Size Silver Nanoparticles for Potential Antibacterial Applications. Polymers (Basel) 2019; 11:polym11040716. [PMID: 31010156 PMCID: PMC6523894 DOI: 10.3390/polym11040716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/25/2019] [Accepted: 04/16/2019] [Indexed: 01/20/2023] Open
Abstract
In this study, a versatile synthesis of silver nanoparticles of well-defined size by using hydrogels as a template and stabilizer of nanoparticle size is reported. The prepared hydrogels are based on polyvinyl alcohol and maleic acid as crosslinker agents. Three hydrogels with the same nature were synthesized, however, the crosslinking degree was varied. The silver nanoparticles were synthesized into each prepared hydrogel matrix achieving three significant, different-sized nanoparticles that were spherical in shape with a narrow size distribution. It is likely that the polymer network stabilized the nanoparticles. It was determined that the hydrogel network structure can control the size and shape of the nanoparticles. The hydrogel/silver nanohybrids were characterized by swelling degree, Thermal Gravimetric Analysis (TGA), Fourier Transform Infrared (FT-IR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscope (TEM). Antibacterial activity against Staphylococcus aureus was evaluated, confirming antimicrobial action of the encapsulated silver nanoparticles into the hydrogels.
Collapse
Affiliation(s)
- Yeray A Rodríguez Nuñez
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Ricardo I Castro
- Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción e Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Felipe A Arenas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 8320000, Chile
| | - Zoraya E López-Cabaña
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Gustavo Carreño
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile
- Bio & NanoMaterials Lab| Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Verónica Carrasco-Sánchez
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Adolfo Marican
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile
- Bio & NanoMaterials Lab| Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Jorge Villaseñor
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Esteban Vargas
- Center for the Development of Nanoscience and Nanotechnology, Santiago 8320000, Chile
| | - Leonardo S Santos
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Esteban F Durán-Lara
- Bio & NanoMaterials Lab| Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile.
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile.
| |
Collapse
|
12
|
Medical and Microbial Applications of Controlled Shape of Silver Nanoparticles Prepared by Ionizing Radiation. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00622-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Nie X, Wang L, Wang Q, Lei J, Hong W, Huang B, Zhang C. Effect of a Sodium Alginate Coating Infused with Tea Polyphenols on the Quality of Fresh Japanese Sea Bass (Lateolabrax japonicas) Fillets. J Food Sci 2018; 83:1695-1700. [PMID: 29799117 DOI: 10.1111/1750-3841.14184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 12/01/2022]
Abstract
Sodium alginate (SA) and tea polyphenols (TP) are natural preservatives commonly used in the food industry, including the production of fish products. The effect of SA coating infused with TP on the quality of fresh Japanese sea bass (Lateolabrax japonicas) fillets was evaluated over a 20-day period at 4 °C. SA (1.5%, w/v) or TP (0.5%, w/v) treatment alone, and the SA coating infused with TP (SA-TP) all reduced microbial counts, with the SA-TP providing the greatest effect. Fish fillet samples treated with SA-TP had significantly lower levels of total volatile basic nitrogen, lipid oxidation, and protein decomposition during the storage period, relative to the remaining treatments. The samples treated with SA-TP had the highest sensory quality rating as well. Collectively, sodium alginate coating infused with tea polyphenols may represent a promising treatment for preservation of Japanese sea bass fillets during cold storage. PRACTICAL APPLICATION The sodium alginate-tea polyphenols composite coating has strong potential to be used as a new biopreservative for maintaining fish fillet quality.
Collapse
Affiliation(s)
- Xiaobao Nie
- College of Ocean and Earth Sciences, Xiamen Univ., Xiamen, 361102, China.,Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Jinan, 250103, China
| | - Lihong Wang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Jinan, 250103, China.,the National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China
| | - Qi Wang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Jinan, 250103, China.,the National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China
| | - Jilin Lei
- Yellow Sea Fisheries Research Inst., Chinese Acad. of Fishery Sciences, Qingdao, 266071, China
| | - Wanshu Hong
- College of Ocean and Earth Sciences, Xiamen Univ., Xiamen, 361102, China
| | - Baosheng Huang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Jinan, 250103, China.,the National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China
| | - Changfeng Zhang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Jinan, 250103, China.,the National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China
| |
Collapse
|
14
|
Soares MRPS, Corrêa RO, Stroppa PHF, Marques FC, Andrade GFS, Corrêa CC, Brandão MAF, Raposo NRB. Biosynthesis of silver nanoparticles using Caesalpinia ferrea (Tul.) Martius extract: physicochemical characterization, antifungal activity and cytotoxicity. PeerJ 2018; 6:e4361. [PMID: 29576936 PMCID: PMC5863706 DOI: 10.7717/peerj.4361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Green synthesis is an ecological technique for the production of well characterized metallic nanoparticles using plants. This study investigated the synthesis of silver nanoparticles (AgNPs) using a Caesalpinia ferrea seed extract as a reducing agent. METHODS The formation of AgNPs was identified by instrumental analysis, including ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) of the AgNPs, and surface-enhanced Raman scattering (SERS) spectra of rhodamine-6G (R6G). We studied the physicochemical characterization of AgNPs, evaluated them as an antifungal agent against Candida albicans, Candida kruzei, Candida glabrata and Candida guilliermondii, and estimated their minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values. Lastly, this study evaluated the cytotoxicity of the AgNPs in murine L929 fibroblasts cells using an MTT assay. RESULTS The UV-Vis spectroscopy, SERS, SEM and XRD results confirmed the rapid formation of spheroidal 30-50 nm AgNPs. The MIC and MFC values indicated the antifungal potential of AgNPs against most of the fungi studied and high cell viability in murine L929 fibroblasts. In addition, this study demonstrated that C. ferrea seed extracts may be used for the green synthesis of AgNPs at room temperature for the treatment of candidiasis.
Collapse
Affiliation(s)
- Mônica R. P. S. Soares
- Núcleo de Pesquisa e Inovação em Ciências da Saúde (NUPICS)—Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Rafael O. Corrêa
- Núcleo de Pesquisa e Inovação em Ciências da Saúde (NUPICS)—Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Flávia C. Marques
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gustavo F. S. Andrade
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Charlane C. Corrêa
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Marcos Antônio F. Brandão
- Núcleo de Pesquisa e Inovação em Ciências da Saúde (NUPICS)—Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Nádia R. B. Raposo
- Núcleo de Pesquisa e Inovação em Ciências da Saúde (NUPICS)—Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
15
|
van Geelen L, Meier D, Rehberg N, Kalscheuer R. (Some) current concepts in antibacterial drug discovery. Appl Microbiol Biotechnol 2018; 102:2949-2963. [PMID: 29455386 DOI: 10.1007/s00253-018-8843-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
The rise of multidrug resistance in bacteria rendering pathogens unresponsive to many clinical drugs is widely acknowledged and considered a critical global healthcare issue. There is broad consensus that novel antibacterial chemotherapeutic options are extremely urgently needed. However, the development pipeline of new antibacterial drug lead structures is poorly filled and not commensurate with the scale of the problem since the pharmaceutical industry has shown reduced interest in antibiotic development in the past decades due to high economic risks and low profit expectations. Therefore, academic research institutions have a special responsibility in finding novel treatment options for the future. In this mini review, we want to provide a broad overview of the different approaches and concepts that are currently pursued in this research field.
Collapse
Affiliation(s)
- Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Dieter Meier
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Nidja Rehberg
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany.
| |
Collapse
|
16
|
Buszewski B, Rațiu IA, Milanowski M, Pomastowski P, Ligor T. The effect of biosilver nanoparticles on different bacterial strains' metabolism reflected in their VOCs profiles. J Breath Res 2018; 12:027105. [PMID: 28742064 DOI: 10.1088/1752-7163/aa820f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of silver nanoparticles has become in recent years a growing interest for many researchers, due to their bacteriostatic and bactericidal properties and synergetic effects when they are used together with antibiotics, for an increased efficiency and less adverse reactions in the treatment of bacterial infections. Gas chromatography coupled with mass spectrometry (GC-MS), which is considered 'the golden standard' in chemical analysis, has proven to be a reliable instrument, perfectly suitable for clinical analysis. In this work, three bacterial strains, Escherichia coli (E. coli), Klebsiella oxytoca (K. oxytoca) and Staphylococcus saccharolyticus (S. saccharolyticus) were treated with biosilver nanoparticles (bioAgNPs). Headspace and GC-MS analysis was used for the detection of volatile metabolites. We observed decreased amounts of alcohols and carbonyl components (mainly ketones) in K. oxytoca and S. saccharolyticus bacteria incubated with silver. In contrast, biosilver nanoparticles added to E. coli increased the amount of VOCs, mainly hydrocarbons and alcohols. Our results have successfully demonstrated that the treatment of bacterial strains with bioAgNPs has a direct influence on their VOC profiles, by modifying the number of metabolic markers. Connected with this, the inhibition of bacteria is supposed, and consequently both the bacteriostatic and/or bactericidal effects of bioAgNPs on all three bacterial strains investigated were revealed.
Collapse
Affiliation(s)
- B Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland. Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | | | | | | | | |
Collapse
|
17
|
Sonker AS, 0 R, Pathak J, 0 R, Kannaujiya VK, Sinha RP. Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2. CANADIAN JOURNAL OF BIOTECHNOLOGY 2017. [DOI: 10.24870/cjb.2017-000103] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
18
|
Spadari CDC, Lopes LB, Ishida K. Potential Use of Alginate-Based Carriers As Antifungal Delivery System. Front Microbiol 2017; 8:97. [PMID: 28194145 PMCID: PMC5276814 DOI: 10.3389/fmicb.2017.00097] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major public health problem, growing in number and severity in recent decades due to an increase of immunocompromised patients. The use of therapeutic agents available to treat these fungal infections is limited by their toxicity, low bioavailability, antifungal resistance, and high cost of treatment. Thus, it becomes extremely important to search for new therapeutic options. The use of polymeric systems as drug carriers has emerged as a promising alternative to conventional formulations for antifungals. Alginate is a natural polymer that has been explored in the last decade for development of drug delivery systems due to its non-toxicity, biodegradability, biocompatibility, low cost, mucoadhesive, and non-immunogenic properties. Several antifungal agents have been incorporated in alginate-based delivery systems, including micro and nanoparticles, with great success, displaying promising in vitro and in vivo results for antifungal activities, reduction in the toxicity and the total drug dose used in the treatment, and improved bioavailability. This review aims at discussing the potential use and benefits of alginate-based nanocarriers and other delivery systems containing antifungal agents in the therapy of fungal infections.
Collapse
Affiliation(s)
- Cristina de Castro Spadari
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Luciana B Lopes
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Kelly Ishida
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| |
Collapse
|