1
|
Wormser O, Perez Y, Dolgin V, Kamali B, Tangeman JA, Gradstein L, Yogev Y, Hadar N, Freund O, Drabkin M, Halperin D, Irron I, Grajales-Esquivel E, Del Rio-Tsonis K, Birnbaum RY, Akler G, Birk OS. IHH enhancer variant within neighboring NHEJ1 intron causes microphthalmia anophthalmia and coloboma. NPJ Genom Med 2023; 8:22. [PMID: 37580330 PMCID: PMC10425348 DOI: 10.1038/s41525-023-00364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
Genomic sequences residing within introns of few genes have been shown to act as enhancers affecting expression of neighboring genes. We studied an autosomal recessive phenotypic continuum of microphthalmia, anophthalmia and ocular coloboma, with no apparent coding-region disease-causing mutation. Homozygosity mapping of several affected Jewish Iranian families, combined with whole genome sequence analysis, identified a 0.5 Mb disease-associated chromosome 2q35 locus (maximal LOD score 6.8) harboring an intronic founder variant in NHEJ1, not predicted to affect NHEJ1. The human NHEJ1 intronic variant lies within a known specifically limb-development enhancer of a neighboring gene, Indian hedgehog (Ihh), known to be involved in eye development in mice and chickens. Through mouse and chicken molecular development studies, we demonstrated that this variant is within an Ihh enhancer that drives gene expression in the developing eye and that the identified variant affects this eye-specific enhancer activity. We thus delineate an Ihh enhancer active in mammalian eye development whose variant causes human microphthalmia, anophthalmia and ocular coloboma. The findings highlight disease causation by an intronic variant affecting the expression of a neighboring gene, delineating molecular pathways of eye development.
Collapse
Affiliation(s)
- Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Bahman Kamali
- Medical Advisory Committee, United Mashhadi Jewish Community of America, 54 Steamboat Rd., Great Neck, NY, 11024, USA
| | - Jared A Tangeman
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, 45056, USA
| | - Libe Gradstein
- Department of Ophthalmology, Soroka Medical Center and Clalit Health Services, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noam Hadar
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ofek Freund
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Inbar Irron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, 45056, USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, 45056, USA
| | - Ramon Y Birnbaum
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gidon Akler
- TOVANA Health, Houston, TX, USA.
- Precision Medicine Insights, P.C., Great Neck, NY, USA.
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Genetics Institute, Soroka Medical Center affiliated to Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
2
|
Sanketi BD, Kurpios NA. In Ovo Gain- and Loss-of-Function Approaches to Study Gut Morphogenesis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2438:163-181. [PMID: 35147942 DOI: 10.1007/978-1-0716-2035-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The polarity of cellular components is essential for cellular shape changes, oriented cell migration, and modulating intra- and intercellular mechanical forces. However, many aspects of polarized cell behavior-especially dynamic cell shape changes during the process of morphogenesis-are almost impossible to study in cells cultured in plastic dishes. Avian embryos have always been a treasured model system to study vertebrate morphogenesis for developmental biologists. Avian embryos recapitulate human biology particularly well in the early stages due to their flat disc gastruloids. Since avian embryos can be manipulated in ovo they present paramount opportunities for highly localized targeting of genetic mechanisms during cellular and developmental processes. Here, we review the application of these methods for both gain of function and loss of function of a gene of interest at a specific developmental stage during left-right (LR) asymmetric gut morphogenesis. These tools present a powerful premise to investigate various polarized cellular activities and molecular processes in vivo in a reproducible manner.
Collapse
Affiliation(s)
- Bhargav D Sanketi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Andrews DDT, Franz-Odendaal TA. Organotypic Culture Method to Study the Development Of Embryonic Chicken Tissues. J Vis Exp 2018. [PMID: 30199010 DOI: 10.3791/57619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The embryonic chicken is commonly used as a reliable model organism for vertebrate development. Its accessibility and short incubation period makes it ideal for experimentation. Currently, the study of these developmental pathways in the chicken embryo is conducted by applying inhibitors and drugs at localized sites and at low concentrations using a variety of methods. In vitro tissue culturing is a technique that enables the study of tissues separated from the host organism, while simultaneously bypassing many of the physical limitations present when working with whole embryos, such as the susceptibility of embryos to high doses of potentially lethal chemicals. Here, we present an organotypic culturing protocol for culturing the embryonic chicken half head in vitro, which presents new opportunities for the examination of developmental processes beyond the currently established methods.
Collapse
|
4
|
Trejo-Reveles V, McTeir L, Summers K, Rainger J. An analysis of anterior segment development in the chicken eye. Mech Dev 2018. [PMID: 29526791 DOI: 10.1016/j.mod.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Precise anterior segment (AS) development in the vertebrate eye is essential for maintaining ocular health throughout life. Disruptions to genetic programs can lead to severe structural AS disorders at birth, while more subtle AS defects may disrupt the drainage of ocular fluids and cause dysregulation of intraocular pressure homeostasis, leading to progressive vision loss. To date, the mouse has served as the major model to study AS development and pathogenesis. Here we present an accurate histological atlas of chick AS formation throughout eye development, with a focus on the formation of drainage structures. We performed expression analyses for a panel of known AS disorder genes, and showed that chick PAX6 was localized to cells of neural retina and surface ectoderm derived structures, displaying remarkable similarity to the mouse. We provide a comparison to mouse and humans for chick AS developmental sequences and structures and confirm that AS development shares common features in all three species, although the main AS structures in the chick are developed prior to hatching. These features enable the unique experimental advantages inherent to chick embryos, and we therefore propose the chick as an appropriate additional model for AS development and disease.
Collapse
Affiliation(s)
- Violeta Trejo-Reveles
- The Roslin Institute Chicken Embryology (RICE) group, The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Lynn McTeir
- The Roslin Institute Chicken Embryology (RICE) group, The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Kim Summers
- Mater Research Institute-UQ, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| | - Joe Rainger
- The Roslin Institute Chicken Embryology (RICE) group, The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
5
|
Blixt MKE, Konjusha D, Ring H, Hallböök F. Zinc finger gene nolz1 regulates the formation of retinal progenitor cells and suppresses the Lim3/Lhx3 phenotype of retinal bipolar cells in chicken retina. Dev Dyn 2017; 247:630-641. [PMID: 29139167 DOI: 10.1002/dvdy.24607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The zinc-finger transcription factor Nolz1 regulates spinal cord neuron development by interacting with the transcription factors Isl1, Lim1, and Lim3, which are also important for photoreceptors, horizontal and bipolar cells during retinal development. We, therefore, studied Nolz1 during retinal development. RESULTS Nolz1 expression was seen in two waves during development: one early (peak at embryonic day 3-4.5) in retinal progenitors and one late (embryonic day 8) in newly differentiated cells in the inner nuclear layer. Overexpression and knockdown showed that Nolz1 decreases proliferation and stimulates cell cycle withdrawal in retinal progenitors with effects on the generation of retinal ganglion cells, photoreceptors, and horizontal cells without triggering apoptosis. Overexpression of Nolz1 gave more p27 positive cells. Sustained overexpression of Nolz1 in the retina gave fewer Lim3/Lhx3 bipolar cells. CONCLUSIONS We conclude that Nolz1 has multiple functions during development and suggest a mechanism in which Nolz1 initially regulates the proliferation state of the retinal progenitor cells and then acts as a repressor that suppresses the Lim3/Lhx3 bipolar cell phenotype at the time of bipolar cell differentiation. Developmental Dynamics 247:630-641, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria K E Blixt
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Dardan Konjusha
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Henrik Ring
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Louie KW, Saera-Vila A, Kish PE, Colacino JA, Kahana A. Temporally distinct transcriptional regulation of myocyte dedifferentiation and Myofiber growth during muscle regeneration. BMC Genomics 2017; 18:854. [PMID: 29121865 PMCID: PMC5680785 DOI: 10.1186/s12864-017-4236-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tissue regeneration requires a series of steps, beginning with generation of the necessary cell mass, followed by cell migration into damaged area, and ending with differentiation and integration with surrounding tissues. Temporal regulation of these steps lies at the heart of the regenerative process, yet its basis is not well understood. The ability of zebrafish to dedifferentiate mature "post-mitotic" myocytes into proliferating myoblasts that in turn regenerate lost muscle tissue provides an opportunity to probe the molecular mechanisms of regeneration. RESULTS Following subtotal excision of adult zebrafish lateral rectus muscle, dedifferentiating residual myocytes were collected at two time points prior to cell cycle reentry and compared to uninjured muscles using RNA-seq. Functional annotation (GAGE or K-means clustering followed by GO enrichment) revealed a coordinated response encompassing epigenetic regulation of transcription, RNA processing, and DNA replication and repair, along with protein degradation and translation that would rewire the cellular proteome and metabolome. Selected candidate genes were phenotypically validated in vivo by morpholino knockdown. Rapidly induced gene products, such as the Polycomb group factors Ezh2 and Suz12a, were necessary for both efficient dedifferentiation (i.e. cell reprogramming leading to cell cycle reentry) and complete anatomic regeneration. In contrast, the late activated gene fibronectin was important for efficient anatomic muscle regeneration but not for the early step of myocyte cell cycle reentry. CONCLUSIONS Reprogramming of a "post-mitotic" myocyte into a dedifferentiated myoblast requires a complex coordinated effort that reshapes the cellular proteome and rewires metabolic pathways mediated by heritable yet nuanced epigenetic alterations and molecular switches, including transcription factors and non-coding RNAs. Our studies show that temporal regulation of gene expression is programmatically linked to distinct steps in the regeneration process, with immediate early expression driving dedifferentiation and reprogramming, and later expression facilitating anatomical regeneration.
Collapse
Affiliation(s)
- Ke'ale W Louie
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA
| | - Alfonso Saera-Vila
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA.
| | - Phillip E Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- University of Michigan Comprehensive Cancer Center, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA.
- University of Michigan Comprehensive Cancer Center, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|