1
|
Csordás G, Weaver D, Várnai P, Hajnóczky G. Supralinear Dependence of the IP 3 Receptor-to-Mitochondria Local Ca 2+ Transfer on the Endoplasmic Reticulum Ca 2+ Loading. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241229273. [PMID: 38362008 PMCID: PMC10868505 DOI: 10.1177/25152564241229273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Calcium signal propagation from endoplasmic reticulum (ER) to mitochondria regulates a multitude of mitochondrial and cell functions, including oxidative ATP production and cell fate decisions. Ca2+ transfer is optimal at the ER-mitochondrial contacts, where inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) can locally expose the mitochondrial Ca2+ uniporter (mtCU) to high [Ca2+] nanodomains. The Ca2+ loading state of the ER (Ca2 + ER) can vary broadly in physiological and pathological scenarios, however, the correlation between Ca2 + ER and the local Ca2+ transfer is unclear. Here, we studied IP3-induced Ca2+ transfer to mitochondria at different Ca2 + ER in intact and permeabilized RBL-2H3 cells via fluorescence measurements of cytoplasmic [Ca2+] ([Ca2+]c) and mitochondrial matrix [Ca2+] ([Ca2+]m). Preincubation of intact cells in high versus low extracellular [Ca2+] caused disproportionally greater increase in [Ca2+]m than [Ca2+]c responses to IP3-mobilizing agonist. Increasing Ca2 + ER by small Ca2+ boluses in suspensions of permeabilized cells supralinearly enhanced the mitochondrial Ca2+ uptake from IP3-induced Ca2+ release. The IP3-induced local [Ca2+] spikes exposing the mitochondrial surface measured using a genetically targeted sensor appeared to linearly correlate with Ca2 + ER, indicating that amplification happened in the mitochondria. Indeed, overexpression of an EF-hand deficient mutant of the mtCU gatekeeper MICU1 reduced the cooperativity of mitochondrial Ca2+ uptake. Interestingly, the IP3-induced [Ca2+]m signal plateaued at high Ca2 + ER, indicating activation of a matrix Ca2+ binding/chelating species. Mitochondria thus seem to maintain a "working [Ca2+]m range" via a low-affinity and high-capacity buffer species, and the ER loading steeply enhances the IP3R-linked [Ca2+]m signals in this working range.
Collapse
Affiliation(s)
- György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Péter Várnai
- Department of Physiology, Semmelweis Medical University, Budapest, Hungary
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
De Mario A, Tosatto A, Hill JM, Kriston-Vizi J, Ketteler R, Vecellio Reane D, Cortopassi G, Szabadkai G, Rizzuto R, Mammucari C. Identification and functional validation of FDA-approved positive and negative modulators of the mitochondrial calcium uniporter. Cell Rep 2021; 35:109275. [PMID: 34161774 PMCID: PMC8242467 DOI: 10.1016/j.celrep.2021.109275] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial calcium uniporter (MCU), the highly selective channel responsible for mitochondrial Ca2+ entry, plays important roles in physiology and pathology. However, only few pharmacological compounds directly and selectively modulate its activity. Here, we perform high-throughput screening on a US Food and Drug Administration (FDA)-approved drug library comprising 1,600 compounds to identify molecules modulating mitochondrial Ca2+ uptake. We find amorolfine and benzethonium to be positive and negative MCU modulators, respectively. In agreement with the positive effect of MCU in muscle trophism, amorolfine increases muscle size, and MCU silencing is sufficient to blunt amorolfine-induced hypertrophy. Conversely, in the triple-negative breast cancer cell line MDA-MB-231, benzethonium delays cell growth and migration in an MCU-dependent manner and protects from ceramide-induced apoptosis, in line with the role of mitochondrial Ca2+ uptake in cancer progression. Overall, we identify amorolfine and benzethonium as effective MCU-targeting drugs applicable to a wide array of experimental and disease conditions. We screen an FDA-approved drug library for mitochondrial Ca2+ uptake modulators Amorolfine and benzethonium modulate MCU activity Amorolfine increases MCU-dependent mitochondrial metabolism and muscle size Benzethonium decreases MCU-dependent cancer cell growth and migration
Collapse
Affiliation(s)
- Agnese De Mario
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Anna Tosatto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Julia Marie Hill
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- Bioinformatics Image Core (BIONIC), MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Robin Ketteler
- Cell Signalling and Autophagy Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Gino Cortopassi
- Department of Molecular Bioscience, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK; Francis Crick Institute, London WC1E 6BT, UK
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; Myology Center (CIR-Myo), University of Padua, 35131 Padua, Italy.
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; Myology Center (CIR-Myo), University of Padua, 35131 Padua, Italy.
| |
Collapse
|
3
|
Di Marco G, Vallese F, Jourde B, Bergsdorf C, Sturlese M, De Mario A, Techer-Etienne V, Haasen D, Oberhauser B, Schleeger S, Minetti G, Moro S, Rizzuto R, De Stefani D, Fornaro M, Mammucari C. A High-Throughput Screening Identifies MICU1 Targeting Compounds. Cell Rep 2021; 30:2321-2331.e6. [PMID: 32075766 PMCID: PMC7034061 DOI: 10.1016/j.celrep.2020.01.081] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial Ca2+ uptake depends on the mitochondrial calcium uniporter (MCU) complex, a highly selective channel of the inner mitochondrial membrane (IMM). Here, we screen a library of 44,000 non-proprietary compounds for their ability to modulate mitochondrial Ca2+ uptake. Two of them, named MCU-i4 and MCU-i11, are confirmed to reliably decrease mitochondrial Ca2+ influx. Docking simulations reveal that these molecules directly bind a specific cleft in MICU1, a key element of the MCU complex that controls channel gating. Accordingly, in MICU1-silenced or deleted cells, the inhibitory effect of the two compounds is lost. Moreover, MCU-i4 and MCU-i11 fail to inhibit mitochondrial Ca2+ uptake in cells expressing a MICU1 mutated in the critical amino acids that forge the predicted binding cleft. Finally, these compounds are tested ex vivo, revealing a primary role for mitochondrial Ca2+ uptake in muscle growth. Overall, MCU-i4 and MCU-i11 represent leading molecules for the development of MICU1-targeting drugs. An HTS identifies MCU-i4 and MCU-i11 as negative modulators of the MCU MCU-i4 and MCU-i11 bind MICU1 MICU1 is required for the activity of MCU-i4 and MCU-i11 MCU-i4 and MCU-i11 impair muscle cell growth
Collapse
Affiliation(s)
- Giulia Di Marco
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Benjamin Jourde
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Mattia Sturlese
- Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | | | - Dorothea Haasen
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Berndt Oberhauser
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Simone Schleeger
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Giulia Minetti
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Stefano Moro
- Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Mara Fornaro
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland.
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.
| |
Collapse
|