1
|
Fedeli V, Wang J, Cantagrel V, Saiardi A. Human plasma inositol hexakisphosphate (InsP 6 ) phosphatase identified as the Multiple Inositol Polyphosphate Phosphatase 1 (MINPP1). MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001390. [PMID: 39665074 PMCID: PMC11633940 DOI: 10.17912/micropub.biology.001390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Inositol hexakisphosphate (InsP 6 ), also known as phytic acid, is a potent chelator of bivalent cations. Intracellular InsP 6 molecules are associated with magnesium. Calcium is the prevalent bivalent cation outside the cell and its association with InsP 6 could lead to the formation of insoluble complexes. To avoid the formation of dangerous InsP 6 /Calcium precipitates in the bloodstream, mammals must possess a robust InsP 6 phosphatase in their plasma. Here we identify the Multiple Inositol Polyphosphate Phosphatase 1 ( MINPP1 ) as the InsP 6 phosphatase present in human plasma.
Collapse
Affiliation(s)
- Valeria Fedeli
- Laboratory for Molecular Cell Biology, London WC1E 6BT, UK, University College London, London, England, United Kingdom
| | - Jingyi Wang
- Laboratory for Molecular Cell Biology, London WC1E 6BT, UK, University College London, London, England, United Kingdom
| | - Vincent Cantagrel
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France, Université Paris Cité, Paris, Île-de-France, France
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, London WC1E 6BT, UK, University College London, London, England, United Kingdom
| |
Collapse
|
2
|
Ghosh S, Sanchez AM, Schwer B, Prucker I, Jork N, Jessen HJ, Shuman S. Activities and genetic interactions of fission yeast Aps1, a Nudix-type inositol pyrophosphatase and inorganic polyphosphatase. mBio 2024; 15:e0108424. [PMID: 38940614 PMCID: PMC11323792 DOI: 10.1128/mbio.01084-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Inositol pyrophosphate 1,5-IP8 regulates expression of a fission yeast phosphate homeostasis regulon, comprising phosphate acquisition genes pho1, pho84, and tgp1, via its action as an agonist of precocious termination of transcription of the upstream lncRNAs that repress PHO mRNA synthesis. 1,5-IP8 levels are dictated by a balance between the Asp1 N-terminal kinase domain that converts 5-IP7 to 1,5-IP8 and three inositol pyrophosphatases-the Asp1 C-terminal domain (a histidine acid phosphatase), Siw14 (a cysteinyl-phosphatase), and Aps1 (a Nudix enzyme). In this study, we report the biochemical and genetic characterization of Aps1 and an analysis of the effects of Asp1, Siw14, and Aps1 mutations on cellular inositol pyrophosphate levels. We find that Aps1's substrate repertoire embraces inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8. Aps1 displays a ~twofold preference for hydrolysis of 1-IP7 versus 5-IP7 and aps1∆ cells have twofold higher levels of 1-IP7 vis-à-vis wild-type cells. While neither Aps1 nor Siw14 is essential for growth, an aps1∆ siw14∆ double mutation is lethal on YES medium. This lethality is a manifestation of IP8 toxicosis, whereby excessive 1,5-IP8 drives derepression of tgp1, leading to Tgp1-mediated uptake of glycerophosphocholine. We were able to recover an aps1∆ siw14∆ mutant on ePMGT medium lacking glycerophosphocholine and to suppress the severe growth defect of aps1∆ siw14∆ on YES by deleting tgp1. However, the severe growth defect of an aps1∆ asp1-H397A strain could not be alleviated by deleting tgp1, suggesting that 1,5-IP8 levels in this double-pyrophosphatase mutant exceed a threshold beyond which overzealous termination affects other genes, which results in cytotoxicity. IMPORTANCE Repression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to changes in the metabolism of 1,5-IP8, a signaling molecule that acts as an agonist of precocious lncRNA termination. 1,5-IP8 is formed by phosphorylation of 5-IP7 and catabolized by inositol pyrophosphatases from three distinct enzyme families: Asp1 (a histidine acid phosphatase), Siw14 (a cysteinyl phosphatase), and Aps1 (a Nudix hydrolase). This study entails a biochemical characterization of Aps1 and an analysis of how Asp1, Siw14, and Aps1 mutations impact growth and inositol pyrophosphate pools in vivo. Aps1 catalyzes hydrolysis of inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8 in vitro, with a ~twofold preference for 1-IP7 over 5-IP7. aps1∆ cells have twofold higher levels of 1-IP7 than wild-type cells. An aps1∆ siw14∆ double mutation is lethal because excessive 1,5-IP8 triggers derepression of tgp1, leading to toxic uptake of glycerophosphocholine.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Isabel Prucker
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
| |
Collapse
|
3
|
Alpizar-Sosa E, Zimbres FM, Mantilla BS, Dickie EA, Wei W, Burle-Caldas GA, Filipe LNS, Van Bocxlaer K, Price HP, Ibarra-Meneses AV, Beaudry F, Fernandez-Prada C, Whitfield PD, Barrett MP, Denny PW. Evaluation of the Leishmania Inositol Phosphorylceramide Synthase as a Drug Target Using a Chemical and Genetic Approach. ACS Infect Dis 2024; 10:2913-2928. [PMID: 39023360 PMCID: PMC11320567 DOI: 10.1021/acsinfecdis.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere.
Collapse
Affiliation(s)
| | - Flavia M. Zimbres
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Brian S. Mantilla
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Emily A. Dickie
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Wenbin Wei
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Gabriela A. Burle-Caldas
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
- Departamento
de Bioquímica e Imunologia, Universidade
Federal de Minas Gerais, Caixa Postal 486 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Laura N. S. Filipe
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Katrien Van Bocxlaer
- York
Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5NG, U.K.
| | - Helen P. Price
- School
of Life Sciences, Keele University, Staffordshire, ST5 5BG, U.K.
| | - Ana V. Ibarra-Meneses
- Département
de Pathologie et Microbiologie, Faculté de Médecine
Vétérinaire, Université
de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Francis Beaudry
- Département
de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Christopher Fernandez-Prada
- Département
de Pathologie et Microbiologie, Faculté de Médecine
Vétérinaire, Université
de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Philip D. Whitfield
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Michael P. Barrett
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Paul W. Denny
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| |
Collapse
|
4
|
Chowdhury S, Chakraborty MP, Roy S, Dey BP, Gangopadhyay K, Das R. E41K mutation activates Bruton's tyrosine kinase by stabilizing an inositol hexakisphosphate-dependent invisible dimer. J Biol Chem 2024; 300:107535. [PMID: 38971313 PMCID: PMC11338949 DOI: 10.1016/j.jbc.2024.107535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
Bruton's tyrosine kinase (BTK) regulates diverse cellular signaling of the innate and adaptive immune system in response to microbial pathogens. Downregulation or constitutive activation of BTK is reported in patients with autoimmune diseases or various B-cell leukemias. BTK is a multidomain protein tyrosine kinase that adopts an Src-like autoinhibited conformation maintained by the interaction between the kinase and PH-TH domains. The PH-TH domain plays a central role in regulating BTK function. BTK is activated by binding to PIP3 at the plasma membrane upon stimulation by the B-cell receptor (BCR). The PIP3 binding allows dimerization of the PH-TH domain and subsequent transphosphorylation of the activation loop. Alternatively, a recent study shows that the multivalent T-cell-independent (TI) antigen induces BCR response by activating BTK independent of PIP3 binding. It was proposed that a transiently stable IP6-dependent PH-TH dimer may activate BTK during BCR activation by the TI antigens. However, no IP6-dependent PH-TH dimer has been identified yet. Here, we investigated a constitutively active PH-TH mutant (E41K) to determine if the elusive IP6-dependent PH-TH dimer exists. We showed that the constitutively active E41K mutation activates BTK by stabilizing the IP6-dependent PH-TH dimer. We observed that a downregulating mutation in the PH-TH domain (R28H) linked to X-linked agammaglobulinemia impairs BTK activation at the membrane and in the cytosol by preventing PH-TH dimerization. We conclude that the IP6 dynamically remodels the BTK active fraction between the membrane and the cytoplasm. Stimulating with IP6 increases the cytosolic fraction of the activated BTK.
Collapse
Affiliation(s)
- Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Bipra Prasad Dey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India; Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| |
Collapse
|
5
|
Borghi F, Azevedo C, Johnson E, Burden JJ, Saiardi A. A mammalian model reveals inorganic polyphosphate channeling into the nucleolus and induction of a hyper-condensate state. CELL REPORTS METHODS 2024; 4:100814. [PMID: 38981472 PMCID: PMC11294840 DOI: 10.1016/j.crmeth.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Inorganic polyphosphate (polyP) is a ubiquitous polymer that controls fundamental processes. To overcome the absence of a genetically tractable mammalian model, we developed an inducible mammalian cell line expressing Escherichia coli polyphosphate kinase 1 (EcPPK1). Inducing EcPPK1 expression prompted polyP synthesis, enabling validation of polyP analytical methods. Virtually all newly synthesized polyP accumulates within the nucleus, mainly in the nucleolus. The channeled polyP within the nucleolus results in the redistribution of its markers, leading to altered rRNA processing. Ultrastructural analysis reveals electron-dense polyP structures associated with a hyper-condensed nucleolus resulting from an exacerbation of the liquid-liquid phase separation (LLPS) phenomena controlling this membraneless organelle. The selective accumulation of polyP in the nucleoli could be interpreted as an amplification of polyP channeling to where its physiological function takes place. Indeed, quantitative analysis of several mammalian cell lines confirms that endogenous polyP accumulates within the nucleolus.
Collapse
Affiliation(s)
- Filipy Borghi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Cristina Azevedo
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jemima J Burden
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Haykir B, Moser SO, Pastor-Arroyo EM, Schnitzbauer U, Radvanyi Z, Prucker I, Qiu D, Fiedler D, Saiardi A, Jessen HJ, Hernando N, Wagner CA. The Ip6k1 and Ip6k2 Kinases Are Critical for Normal Renal Tubular Function. J Am Soc Nephrol 2024; 35:441-455. [PMID: 38317282 PMCID: PMC11000740 DOI: 10.1681/asn.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/24/2023] [Indexed: 02/07/2024] Open
Abstract
SIGNIFICANCE STATEMENT Kidneys are gatekeepers of systemic inorganic phosphate balance because they control urinary phosphate excretion. In yeast and plants, inositol hexakisphosphate kinases (IP6Ks) are central to regulate phosphate metabolism, whereas their role in mammalian phosphate homeostasis is mostly unknown. We demonstrate in a renal cell line and in mice that Ip6k1 and Ip6k2 are critical for normal expression and function of the major renal Na + /Pi transporters NaPi-IIa and NaPi-IIc. Moreover, Ip6k1/2-/- mice also show symptoms of more generalized kidney dysfunction. Thus, our results suggest that IP6Ks are essential for phosphate metabolism and proper kidney function in mammals. BACKGROUND Inorganic phosphate is an essential mineral, and its plasma levels are tightly regulated. In mammals, kidneys are critical for maintaining phosphate homeostasis through mechanisms that ultimately regulate the expression of the Na + /Pi cotransporters NaPi-IIa and NaPi-IIc in proximal tubules. Inositol pyrophosphate 5-IP 7 , generated by IP6Ks, is a main regulator of phosphate metabolism in yeast and plants. IP6Ks are conserved in mammals, but their role in phosphate metabolism in vivo remains unexplored. METHODS We used in vitro (opossum kidney cells) and in vivo (renal tubular-specific Ip6k1/2-/- mice) models to analyze the role of IP6K1/2 in phosphate homeostasis in mammals. RESULTS In both systems, Ip6k1 and Ip6k2 are responsible for synthesis of 5-IP 7 . Depletion of Ip6k1/2 in vitro reduced phosphate transport and mRNA expression of Na + /Pi cotransporters, and it blunts phosphate transport adaptation to changes in ambient phosphate. Renal ablation of both kinases in mice also downregulates the expression of NaPi-IIa and NaPi-IIc and lowered the uptake of phosphate into proximal renal brush border membranes. In addition, the absence of Ip6k1 and Ip6k2 reduced the plasma concentration of fibroblast growth factor 23 and increased bone resorption, despite of which homozygous males develop hypophosphatemia. Ip6k1/2-/- mice also show increased diuresis, albuminuria, and hypercalciuria, although the morphology of glomeruli and proximal brush border membrane seemed unaffected. CONCLUSIONS Depletion of renal Ip6k1/2 in mice not only altered phosphate homeostasis but also dysregulated other kidney functions.
Collapse
Affiliation(s)
- Betül Haykir
- Switzerland and National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - Seraina Olivia Moser
- Switzerland and National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - Eva Maria Pastor-Arroyo
- Switzerland and National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - Udo Schnitzbauer
- Switzerland and National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - Zsuzsa Radvanyi
- Switzerland and National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - Isabel Prucker
- The Center for Integrative Biological Signalling Studies, Institute of Organic Chemistry and CIBSS, University of Freiburg, Freiburg, Germany
| | - Danye Qiu
- The Center for Integrative Biological Signalling Studies, Institute of Organic Chemistry and CIBSS, University of Freiburg, Freiburg, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Henning J. Jessen
- The Center for Integrative Biological Signalling Studies, Institute of Organic Chemistry and CIBSS, University of Freiburg, Freiburg, Germany
| | - Nati Hernando
- Switzerland and National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - Carsten A. Wagner
- Switzerland and National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
7
|
Venegas-Solis F, Staliunaite L, Rudolph E, Münch CCS, Yu P, Freibert SA, Maeda T, Zimmer CL, Möbs C, Keller C, Kaufmann A, Bauer S. A type I interferon regulatory network for human plasmacytoid dendritic cells based on heparin, membrane-bound and soluble BDCA-2. Proc Natl Acad Sci U S A 2024; 121:e2312404121. [PMID: 38478694 PMCID: PMC10963015 DOI: 10.1073/pnas.2312404121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/10/2024] [Indexed: 03/27/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) produce type I interferons (IFNs) after sensing viral/bacterial RNA or DNA by toll-like receptor (TLR) 7 or TLR9, respectively. However, aberrant pDCs activation can cause adverse effects on the host and contributes to the pathogenesis of type I IFN-related autoimmune diseases. Here, we show that heparin interacts with the human pDCs-specific blood dendritic cell antigen 2 (BDCA-2) but not with related lectins such as DCIR or dectin-2. Importantly, BDCA-2-heparin interaction depends on heparin sulfation and receptor glycosylation and results in inhibition of TLR9-driven type I IFN production in primary human pDCs and the pDC-like cell line CAL-1. This inhibition is mediated by unfractionated and low-molecular-weight heparin, as well as endogenous heparin from plasma, suggesting that the local blood environment controls the production of IFN-α in pDCs. Additionally, we identified an activation-dependent soluble form of BDCA-2 (solBDCA-2) in human plasma that functions as heparin antagonist and thereby increases TLR9-driven IFN-α production in pDCs. Of importance, solBDCA-2 levels in the serum were increased in patients with scrub typhus (an acute infectious disease caused by Orientia tsutsugamushi) compared to healthy control subjects and correlated with anti-dsDNA antibodies titers. In contrast, solBDCA-2 levels in plasma from patients with bullous pemphigoid or psoriasis were reduced. In summary, this work identifies a regulatory network consisting of heparin, membrane-bound and solBDCA-2 modulating TLR9-driven IFN-α production in pDCs. This insight into pDCs function and regulation may have implications for the treatment of pDCs-related autoimmune diseases.
Collapse
Affiliation(s)
- Francisco Venegas-Solis
- Institute for Immunology, Philipps-Universität Marburg, Biomedizinisches Forschungszentrum Marburg, Marburg35043, Germany
| | - Laura Staliunaite
- Institute for Immunology, Philipps-Universität Marburg, Biomedizinisches Forschungszentrum Marburg, Marburg35043, Germany
| | - Elisa Rudolph
- Institute for Immunology, Philipps-Universität Marburg, Biomedizinisches Forschungszentrum Marburg, Marburg35043, Germany
| | - Carina Chan-Song Münch
- Institute of Virology, Philipps-Universität Marburg, Biomedizinisches Forschungszemtrum Marburg, Marburg35043, Germany
| | - Philipp Yu
- Institute for Immunology, Philipps-Universität Marburg, Biomedizinisches Forschungszentrum Marburg, Marburg35043, Germany
| | - Sven-A. Freibert
- Institute for Cytobiology, Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg35032, Germany
- Core Facility “Protein Biochemistry and Spectroscopy”, Philipps-Universität Marburg, Marburg35032, Germany
| | - Takahiro Maeda
- Department of Island and Community Medicine, Island Medical Research Institute, Nagasaki University Graduate School of Biomedical Science, Nagasaki852-8523, Japan
| | - Christine L. Zimmer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg35043, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg35043, Germany
| | - Christian Keller
- Institute of Virology, Philipps-Universität Marburg, Biomedizinisches Forschungszemtrum Marburg, Marburg35043, Germany
| | - Andreas Kaufmann
- Institute for Immunology, Philipps-Universität Marburg, Biomedizinisches Forschungszentrum Marburg, Marburg35043, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-Universität Marburg, Biomedizinisches Forschungszentrum Marburg, Marburg35043, Germany
| |
Collapse
|
8
|
Ritter K, Jork N, Unmüßig AS, Köhn M, Jessen HJ. Assigning the Absolute Configuration of Inositol Poly- and Pyrophosphates by NMR Using a Single Chiral Solvating Agent. Biomolecules 2023; 13:1150. [PMID: 37509185 PMCID: PMC10377360 DOI: 10.3390/biom13071150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Inositol phosphates constitute a family of highly charged messenger molecules that play diverse roles in cellular processes. The various phosphorylation patterns they exhibit give rise to a vast array of different compounds. To fully comprehend the biological interconnections, the precise molecular identification of each compound is crucial. Since the myo-inositol scaffold possesses an internal mirror plane, enantiomeric pairs can be formed. Most commonly employed methods for analyzing InsPs have been geared towards resolving regioisomers, but they have not been capable of resolving enantiomers. In this study, we present a general approach for enantiomer assignment using NMR measurements. To achieve this goal, we used 31P-NMR in the presence of L-arginine amide as a chiral solvating agent, which enables the differentiation of enantiomers. Using chemically synthesized standard compounds allows for an unambiguous assignment of the enantiomers. This method was applied to highly phosphorylated inositol pyrophosphates, as well as to lowly phosphorylated inositol phosphates and bisphosphonate analogs. Our method will facilitate the assignment of biologically relevant isomers when isolating naturally occurring compounds from biological specimens.
Collapse
Affiliation(s)
- Kevin Ritter
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Anne-Sophie Unmüßig
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Maja Köhn
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- BIOSS-Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast. Cell 2023; 186:748-763.e15. [PMID: 36758548 DOI: 10.1016/j.cell.2023.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023]
Abstract
Although many prokaryotes have glycolysis alternatives, it's considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism.
Collapse
|
10
|
Tu-Sekine B, Kim SF. The Inositol Phosphate System-A Coordinator of Metabolic Adaptability. Int J Mol Sci 2022; 23:6747. [PMID: 35743190 PMCID: PMC9223660 DOI: 10.3390/ijms23126747] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
All cells rely on nutrients to supply energy and carbon building blocks to support cellular processes. Over time, eukaryotes have developed increasingly complex systems to integrate information about available nutrients with the internal state of energy stores to activate the necessary processes to meet the immediate and ongoing needs of the cell. One such system is the network of soluble and membrane-associated inositol phosphates that coordinate the cellular responses to nutrient uptake and utilization from growth factor signaling to energy homeostasis. In this review, we discuss the coordinated interactions of the inositol polyphosphates, inositol pyrophosphates, and phosphoinositides in major metabolic signaling pathways to illustrate the central importance of the inositol phosphate signaling network in nutrient responses.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21224, USA;
| | - Sangwon F. Kim
- Department of Medicine and Neuroscience, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Sander CL, Luu J, Kim K, Furkert D, Jang K, Reichenwallner J, Kang M, Lee HJ, Eger BT, Choe HW, Fiedler D, Ernst OP, Kim YJ, Palczewski K, Kiser PD. Structural evidence for visual arrestin priming via complexation of phosphoinositols. Structure 2022; 30:263-277.e5. [PMID: 34678158 PMCID: PMC8818024 DOI: 10.1016/j.str.2021.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
Visual arrestin (Arr1) terminates rhodopsin signaling by blocking its interaction with transducin. To do this, Arr1 translocates from the inner to the outer segment of photoreceptors upon light stimulation. Mounting evidence indicates that inositol phosphates (InsPs) affect Arr1 activity, but the Arr1-InsP molecular interaction remains poorly defined. We report the structure of bovine Arr1 in a ligand-free state featuring a near-complete model of the previously unresolved C-tail, which plays a crucial role in regulating Arr1 activity. InsPs bind to the N-domain basic patch thus displacing the C-tail, suggesting that they prime Arr1 for interaction with rhodopsin and help direct Arr1 translocation. These structures exhibit intact polar cores, suggesting that C-tail removal by InsP binding is insufficient to activate Arr1. These results show how Arr1 activity can be controlled by endogenous InsPs in molecular detail.
Collapse
Affiliation(s)
- Christopher L Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Jennings Luu
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
| | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kiyoung Jang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - MinSoung Kang
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Daejeon 34114, Republic of Korea
| | - Ho-Jun Lee
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hui-Woog Choe
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yong Ju Kim
- Department of Lifestyle Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; Department of Oriental Medicine Resources, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Krzysztof Palczewski
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Chemistry and Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA
| | - Philip D Kiser
- Department of Ophthalmology and the Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA.
| |
Collapse
|
12
|
Isomer-selective analysis of inositol phosphates with differential isotope labelling by phosphate methylation using liquid chromatography with tandem mass spectrometry. Anal Chim Acta 2022; 1191:339286. [PMID: 35033253 DOI: 10.1016/j.aca.2021.339286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022]
Abstract
Inositol phosphates belong to a family of structurally diverse signaling molecules playing crucial role in Ca2+ release from intracellular storage vesicles. There are many possibilities of phosphorylation, including their degree and position. Inositol (1,4,5) trisphosphate has been well recognized as the most important second messenger among this family. It remains a challenge to analyse the entire inositol phosphate metabolite family due to its structural complexity, high polarity, and high phosphate density. In this study, we have established an improved UHPLC-ESI-MS/MS method based on a differential isotope labelling methylation strategy. An SPE extraction kit composed of TiO2 and PTFE filter was employed for sample preparation which provided good extraction performance. Samples were methylated (light label) to neutralize the phosphate groups and give better performance in liquid chromatography. Regioisomers and inositol phosphates differing in their number of phosphate residues were successfully separated after optimization on a core-shell cholesterylether-bonded RP-type column (Cosmocore 2.6Cholester) using methanol as organic modifier. Triple quadrupole MS detection was based on selected reaction monitoring (SRM) acquisition with characteristic fragments. Stable isotope labeling methylation was performed to generate internal standards (heavy label). Limits of quantification from 0.32 to 0.89 pmol on column was achieved. This method was validated to be suitable for inositol phosphate profiling in biological samples. After application in cultured HeLa cells, NIST SRM1950 plasma, and human platelets, distinct inositol profiles were obtained. This newly established method exhibited improved analytical performance, holding the potential to advance the understanding of inositol phosphate signaling.
Collapse
|
13
|
Riemer E, Qiu D, Laha D, Harmel RK, Gaugler P, Gaugler V, Frei M, Hajirezaei MR, Laha NP, Krusenbaum L, Schneider R, Saiardi A, Fiedler D, Jessen HJ, Schaaf G, Giehl RFH. ITPK1 is an InsP 6/ADP phosphotransferase that controls phosphate signaling in Arabidopsis. MOLECULAR PLANT 2021; 14:1864-1880. [PMID: 34274522 PMCID: PMC8573591 DOI: 10.1016/j.molp.2021.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 05/20/2023]
Abstract
In plants, phosphate (Pi) homeostasis is regulated by the interaction of PHR transcription factors with stand-alone SPX proteins, which act as sensors for inositol pyrophosphates. In this study, we combined different methods to obtain a comprehensive picture of how inositol (pyro)phosphate metabolism is regulated by Pi and dependent on the inositol phosphate kinase ITPK1. We found that inositol pyrophosphates are more responsive to Pi than lower inositol phosphates, a response conserved across kingdoms. Using the capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS) we could separate different InsP7 isomers in Arabidopsis and rice, and identify 4/6-InsP7 and a PP-InsP4 isomer hitherto not reported in plants. We found that the inositol pyrophosphates 1/3-InsP7, 5-InsP7, and InsP8 increase several fold in shoots after Pi resupply and that tissue-specific accumulation of inositol pyrophosphates relies on ITPK1 activities and MRP5-dependent InsP6 compartmentalization. Notably, ITPK1 is critical for Pi-dependent 5-InsP7 and InsP8 synthesis in planta and its activity regulates Pi starvation responses in a PHR-dependent manner. Furthermore, we demonstrated that ITPK1-mediated conversion of InsP6 to 5-InsP7 requires high ATP concentrations and that Arabidopsis ITPK1 has an ADP phosphotransferase activity to dephosphorylate specifically 5-InsP7 under low ATP. Collectively, our study provides new insights into Pi-dependent changes in nutritional and energetic states with the synthesis of regulatory inositol pyrophosphates.
Collapse
Affiliation(s)
- Esther Riemer
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Danye Qiu
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Debabrata Laha
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, UK; Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560 012, India
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Department of Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| | - Philipp Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Verena Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Michael Frei
- Institute of Agronomy and Crop Physiology, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Nargis Parvin Laha
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Lukas Krusenbaum
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Robin Schneider
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Department of Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| | - Henning J Jessen
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany.
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany.
| |
Collapse
|
14
|
Zhang X, Li N, Zhang J, Zhang Y, Yang X, Luo Y, Zhang B, Xu Z, Zhu Z, Yang X, Yan Y, Lin B, Wang S, Chen D, Ye C, Ding Y, Lou M, Wu Q, Hou Z, Zhang K, Liang Z, Wei A, Wang B, Wang C, Jiang N, Zhang W, Xiao G, Ma C, Ren Y, Qi X, Han W, Wang C, Rao F. 5-IP 7 is a GPCR messenger mediating neural control of synaptotagmin-dependent insulin exocytosis and glucose homeostasis. Nat Metab 2021; 3:1400-1414. [PMID: 34663975 DOI: 10.1038/s42255-021-00468-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
5-diphosphoinositol pentakisphosphate (5-IP7) is a signalling metabolite linked to various cellular processes. How extracellular stimuli elicit 5-IP7 signalling remains unclear. Here we show that 5-IP7 in β cells mediates parasympathetic stimulation of synaptotagmin-7 (Syt7)-dependent insulin release. Mechanistically, vagal stimulation and activation of muscarinic acetylcholine receptors triggers Gαq-PLC-PKC-PKD-dependent signalling and activates IP6K1, the 5-IP7 synthase. Whereas both 5-IP7 and its precursor IP6 compete with PIP2 for binding to Syt7, Ca2+ selectively binds 5-IP7 with high affinity, freeing Syt7 to enable fusion of insulin-containing vesicles with the cell membrane. β-cell-specific IP6K1 deletion diminishes insulin secretion and glucose clearance elicited by muscarinic stimulation, whereas mice carrying a phosphorylation-mimicking, hyperactive IP6K1 mutant display augmented insulin release, congenital hyperinsulinaemia and obesity. These phenotypes are absent in mice lacking Syt7. Our study proposes a new conceptual framework for inositol pyrophosphate physiology in which 5-IP7 acts as a GPCR second messenger at the interface between peripheral nervous system and metabolic organs, transmitting Gq-coupled GPCR stimulation to unclamp Syt7-dependent, and perhaps other, exocytotic events.
Collapse
Affiliation(s)
- Xiaozhe Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Na Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yanshen Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yifan Luo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bobo Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhixue Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhenhua Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuyan Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Yan
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Biao Lin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Da Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Caichao Ye
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Yan Ding
- National Institute of Biological Sciences, Beijing, China
| | - Mingliang Lou
- National Institute of Biological Sciences, Beijing, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing, China
| | - Zhanfeng Hou
- National Institute of Biological Sciences, Beijing, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Ziming Liang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Anqi Wei
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Jiang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wenqing Zhang
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
- Center for Neuro-Metabolism and Regeneration Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chao Wang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Feng Rao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
15
|
An insight into phytic acid biosynthesis and its reduction strategies to improve mineral bioavailability. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00371-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
16
|
Lin H, Yan Y, Luo Y, So WY, Wei X, Zhang X, Yang X, Zhang J, Su Y, Yang X, Zhang B, Zhang K, Jiang N, Chow BKC, Han W, Wang F, Rao F. IP 6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion. Nat Commun 2021; 12:2461. [PMID: 33911083 PMCID: PMC8080631 DOI: 10.1038/s41467-021-22941-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
COP1 and COP9 signalosome (CSN) are the substrate receptor and deneddylase of CRL4 E3 ligase, respectively. How they functionally interact remains unclear. Here, we uncover COP1–CSN antagonism during glucose-induced insulin secretion. Heterozygous Csn2WT/K70E mice with partially disrupted binding of IP6, a CSN cofactor, display congenital hyperinsulinism and insulin resistance. This is due to increased Cul4 neddylation, CRL4COP1 E3 assembly, and ubiquitylation of ETV5, an obesity-associated transcriptional suppressor of insulin secretion. Hyperglycemia reciprocally regulates CRL4-CSN versus CRL4COP1 assembly to promote ETV5 degradation. Excessive ETV5 degradation is a hallmark of Csn2WT/K70E, high-fat diet-treated, and ob/ob mice. The CRL neddylation inhibitor Pevonedistat/MLN4924 stabilizes ETV5 and remediates the hyperinsulinemia and obesity/diabetes phenotypes of these mice. These observations were extended to human islets and EndoC-βH1 cells. Thus, a CRL4COP1-ETV5 proteolytic checkpoint licensing GSIS is safeguarded by IP6-assisted CSN-COP1 competition. Deregulation of the IP6-CSN-CRL4COP1-ETV5 axis underlies hyperinsulinemia and can be intervened to reduce obesity and diabetic risk. Mediators of insulin signalling are targets of cullin-RING ubiquitin ligases (CRL) that mediate protein degradation, but the role of protein degradation in insulin signalling is incompletely understood. Here, the authors identified a glucose-responsive CRL4-COP1-ETV5 proteolytic axis that promotes insulin secretion, and is inhibited under hypoglycemia.
Collapse
Affiliation(s)
- Hong Lin
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuan Yan
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yifan Luo
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wing Yan So
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Xiayun Wei
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaozhe Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoli Yang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jun Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Su
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiuyan Yang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Bobo Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kangjun Zhang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Nan Jiang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | | | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, China
| | - Feng Rao
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Mantilla BS, Do Amaral LD, Jessen HJ, Docampo R. The Inositol Pyrophosphate Biosynthetic Pathway of Trypanosoma cruzi. ACS Chem Biol 2021; 16:283-292. [PMID: 33411501 PMCID: PMC10466500 DOI: 10.1021/acschembio.0c00759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inositol phosphates (IPs) are phosphorylated derivatives of myo-inositol involved in the regulation of several cellular processes through their interaction with specific proteins. Their synthesis relies on the activity of specific kinases that use ATP as phosphate donor. Here, we combined reverse genetics and liquid chromatography coupled to mass spectrometry (LC-MS) to dissect the inositol phosphate biosynthetic pathway and its metabolic intermediates in the main life cycle stages (epimastigotes, cell-derived trypomastigotes, and amastigotes) of Trypanosoma cruzi, the etiologic agent of Chagas disease. We found evidence of the presence of highly phosphorylated IPs, like inositol hexakisphosphate (IP6), inositol heptakisphosphate (IP7), and inositol octakisphosphate (IP8), that were not detected before by HPLC analyses of the products of radiolabeled exogenous inositol. The kinases involved in their synthesis (inositol polyphosphate multikinase (TcIPMK), inositol 5-phosphate kinase (TcIP5K), and inositol 6-phosphate kinase (TcIP6K)) were also identified. TcIPMK is dispensable in epimastigotes, important for the synthesis of polyphosphate, and critical for the virulence of the infective stages. TcIP5K is essential for normal epimastigote growth, while TcIP6K mutants displayed defects in epimastigote motility and growth. Our results demonstrate the relevance of highly phosphorylated IPs in the life cycle of T. cruzi.
Collapse
Affiliation(s)
- Brian S. Mantilla
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Leticia D. Do Amaral
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Henning J. Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
18
|
Inositol phosphates promote HIV-1 assembly and maturation to facilitate viral spread in human CD4+ T cells. PLoS Pathog 2021; 17:e1009190. [PMID: 33476323 PMCID: PMC7853515 DOI: 10.1371/journal.ppat.1009190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
Gag polymerization with viral RNA at the plasma membrane initiates HIV-1 assembly. Assembly processes are inefficient in vitro but are stimulated by inositol (1,3,4,5,6) pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) metabolites. Previous studies have shown that depletion of these inositol phosphate species from HEK293T cells reduced HIV-1 particle production but did not alter the infectivity of the resulting progeny virions. Moreover, HIV-1 substitutions bearing Gag/CA mutations ablating IP6 binding are noninfectious with destabilized viral cores. In this study, we analyzed the effects of cellular depletion of IP5 and IP6 on HIV-1 replication in T cells in which we disrupted the genes encoding the kinases required for IP6 generation, IP5 2-kinase (IPPK) and Inositol Polyphosphate Multikinase (IPMK). Knockout (KO) of IPPK from CEM and MT-4 cells depleted cellular IP6 in both T cell lines, and IPMK disruption reduced the levels of both IP5 and IP6. In the KO lines, HIV-1 spread was delayed relative to parental wild-type (WT) cells and was rescued by complementation. Virus release was decreased in all IPPK or IPMK KO lines relative to WT cells. Infected IPMK KO cells exhibited elevated levels of intracellular Gag protein, indicative of impaired particle assembly. IPMK KO compromised virus production to a greater extent than IPPK KO suggesting that IP5 promotes HIV-1 particle assembly in IPPK KO cells. HIV-1 particles released from infected IPPK or IPMK KO cells were less infectious than those from WT cells. These viruses exhibited partially cleaved Gag proteins, decreased virion-associated p24, and higher frequencies of aberrant particles, indicative of a maturation defect. Our data demonstrate that IP6 enhances the quantity and quality of virions produced from T cells, thereby preventing defects in HIV-1 replication.
Collapse
|
19
|
Analytical Methods for Determination of Phytic Acid and Other Inositol Phosphates: A Review. Molecules 2020; 26:molecules26010174. [PMID: 33396544 PMCID: PMC7795710 DOI: 10.3390/molecules26010174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
From the early precipitation-based techniques, introduced more than a century ago, to the latest development of enzymatic bio- and nano-sensor applications, the analysis of phytic acid and/or other inositol phosphates has never been a straightforward analytical task. Due to the biomedical importance, such as antinutritional, antioxidant and anticancer effects, several types of methodologies were investigated over the years to develop a reliable determination of these intriguing analytes in many types of biological samples; from various foodstuffs to living cell organisms. The main aim of the present work was to critically overview the development of the most relevant analytical principles, separation and detection methods that have been applied in order to overcome the difficulties with specific chemical properties of inositol phosphates, their interferences, absence of characteristic signal (e.g., absorbance), and strong binding interactions with (multivalent) metals and other biological molecules present in the sample matrix. A systematical and chronological review of the applied methodology and the detection system is given, ranging from the very beginnings of the classical gravimetric and titrimetric analysis, through the potentiometric titrations, chromatographic and electrophoretic separation techniques, to the use of spectroscopic methods and of the recently reported fluorescence and voltammetric bio- and nano-sensors.
Collapse
|
20
|
Qiu D, Wilson MS, Eisenbeis VB, Harmel RK, Riemer E, Haas TM, Wittwer C, Jork N, Gu C, Shears SB, Schaaf G, Kammerer B, Fiedler D, Saiardi A, Jessen HJ. Analysis of inositol phosphate metabolism by capillary electrophoresis electrospray ionization mass spectrometry. Nat Commun 2020; 11:6035. [PMID: 33247133 PMCID: PMC7695695 DOI: 10.1038/s41467-020-19928-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
The analysis of myo-inositol phosphates (InsPs) and myo-inositol pyrophosphates (PP-InsPs) is a daunting challenge due to the large number of possible isomers, the absence of a chromophore, the high charge density, the low abundance, and the instability of the esters and anhydrides. Given their importance in biology, an analytical approach to follow and understand this complex signaling hub is desirable. Here, capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry (ESI-MS) is implemented to analyze complex mixtures of InsPs and PP-InsPs with high sensitivity. Stable isotope labeled (SIL) internal standards allow for matrix-independent quantitative assignment. The method is validated in wild-type and knockout mammalian cell lines and in model organisms. SIL-CE-ESI-MS enables the accurate monitoring of InsPs and PP-InsPs arising from compartmentalized cellular synthesis pathways, by feeding cells with either [13C6]-myo-inositol or [13C6]-D-glucose. In doing so, we provide evidence for the existence of unknown inositol synthesis pathways in mammals, highlighting the potential of this method to dissect inositol phosphate metabolism and signalling. Myo-Inositol phosphates (InsPs) and pyrophosphates (PP-InsPs) are important second messengers but their analysis remains challenging. Here, the authors develop a capillary electrophoresis-mass spectrometry method for the identification and quantitation of InsP and PP-InsP isomers in cells and tissues.
Collapse
Affiliation(s)
- Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany.
| | - Miranda S Wilson
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Verena B Eisenbeis
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Esther Riemer
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Christopher Wittwer
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Stephen B Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Bernd Kammerer
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany. .,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
21
|
Zhang X, Shi S, Su Y, Yang X, He S, Yang X, Wu J, Zhang J, Rao F. Suramin and NF449 are IP5K inhibitors that disrupt inositol hexakisphosphate-mediated regulation of cullin-RING ligase and sensitize cancer cells to MLN4924/pevonedistat. J Biol Chem 2020; 295:10281-10292. [PMID: 32493769 DOI: 10.1074/jbc.ra120.014375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
Inositol hexakisphosphate (IP6) is an abundant metabolite synthesized from inositol 1,3,4,5,6-pentakisphosphate (IP5) by the single IP5 2-kinase (IP5K). Genetic and biochemical studies have shown that IP6 usually functions as a structural cofactor in protein(s) mediating mRNA export, DNA repair, necroptosis, 3D genome organization, HIV infection, and cullin-RING ligase (CRL) deneddylation. However, it remains unknown whether pharmacological perturbation of cellular IP6 levels affects any of these processes. Here, we performed screening for small molecules that regulate human IP5K activity, revealing that the antiparasitic drug and polysulfonic compound suramin efficiently inhibits IP5K in vitro and in vivo The results from docking experiments and biochemical validations suggested that the suramin targets IP5K in a distinct bidentate manner by concurrently binding to the ATP- and IP5-binding pockets, thereby inhibiting both IP5 phosphorylation and ATP hydrolysis. NF449, a suramin analog with additional sulfonate moieties, more potently inhibited IP5K. Both suramin and NF449 disrupted IP6-dependent sequestration of CRL by the deneddylase COP9 signalosome, thereby affecting CRL activity cycle and component dynamics in an IP5K-dependent manner. Finally, nontoxic doses of suramin, NF449, or NF110 exacerbate the loss of cell viability elicited by the neddylation inhibitor and clinical trial drug MLN4924/pevonedistat, suggesting synergistic ef-fects. Suramin and its analogs provide structural templates for designing potent and specific IP5K inhibitors, which could be used in combination therapy along with MLN4924/pevonedistat. IP5K is a potential mechanistic target of suramin, accounting for suramin's therapeutic effects.
Collapse
Affiliation(s)
- Xiaozhe Zhang
- College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shaodong Shi
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Su
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoli Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Sining He
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiuyan Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jing Wu
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Feng Rao
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Lin H, Zhang X, Liu L, Fu Q, Zang C, Ding Y, Su Y, Xu Z, He S, Yang X, Wei X, Mao H, Cui Y, Wei Y, Zhou C, Du L, Huang N, Zheng N, Wang T, Rao F. Basis for metabolite-dependent Cullin-RING ligase deneddylation by the COP9 signalosome. Proc Natl Acad Sci U S A 2020; 117:4117-4124. [PMID: 32047038 PMCID: PMC7049131 DOI: 10.1073/pnas.1911998117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Cullin-RING ligases (CRLs) are the largest family of ubiquitin E3s activated by neddylation and regulated by the deneddylase COP9 signalosome (CSN). The inositol polyphosphate metabolites promote the formation of CRL-CSN complexes, but with unclear mechanism of action. Here, we provide structural and genetic evidence supporting inositol hexakisphosphate (IP6) as a general CSN cofactor recruiting CRLs. We determined the crystal structure of IP6 in complex with CSN subunit 2 (CSN2), based on which we identified the IP6-corresponding electron density in the cryoelectron microscopy map of a CRL4A-CSN complex. IP6 binds to a cognate pocket formed by conserved lysine residues from CSN2 and Rbx1/Roc1, thereby strengthening CRL-CSN interactions to dislodge the E2 CDC34/UBE2R from CRL and to promote CRL deneddylation. IP6 binding-deficient Csn2K70E/K70E knockin mice are embryonic lethal. The same mutation disabled Schizosaccharomyces pombe Csn2 from rescuing UV-hypersensitivity of csn2-null yeast. These data suggest that CRL transition from the E2-bound active state to the CSN-bound sequestered state is critically assisted by an interfacial IP6 small molecule, whose metabolism may be coupled to CRL-CSN complex dynamics.
Collapse
Affiliation(s)
- Hong Lin
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Xiaozhe Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Li Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Qiuyu Fu
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Chuanlong Zang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, 300071 Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071 Tianjin, China
| | - Yan Ding
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Yang Su
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Zhixue Xu
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Sining He
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Xiaoli Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Xiayun Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Haibin Mao
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195
| | - Yasong Cui
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Yi Wei
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, 300071 Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071 Tianjin, China
| | - Lilin Du
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Niu Huang
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Ning Zheng
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195
| | - Tao Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China;
| | - Feng Rao
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China;
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| |
Collapse
|
23
|
Mallery DL, Faysal KMR, Kleinpeter A, Wilson MSC, Vaysburd M, Fletcher AJ, Novikova M, Böcking T, Freed EO, Saiardi A, James LC. Cellular IP 6 Levels Limit HIV Production while Viruses that Cannot Efficiently Package IP 6 Are Attenuated for Infection and Replication. Cell Rep 2019; 29:3983-3996.e4. [PMID: 31851928 PMCID: PMC6931105 DOI: 10.1016/j.celrep.2019.11.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/11/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022] Open
Abstract
HIV-1 hijacks host proteins to promote infection. Here we show that HIV is also dependent upon the host metabolite inositol hexakisphosphate (IP6) for viral production and primary cell replication. HIV-1 recruits IP6 into virions using two lysine rings in its immature hexamers. Mutation of either ring inhibits IP6 packaging and reduces viral production. Loss of IP6 also results in virions with highly unstable capsids, leading to a profound loss of reverse transcription and cell infection. Replacement of one ring with a hydrophobic isoleucine core restores viral production, but IP6 incorporation and infection remain impaired, consistent with an independent role for IP6 in stable capsid assembly. Genetic knockout of biosynthetic kinases IPMK and IPPK reveals that cellular IP6 availability limits the production of diverse lentiviruses, but in the absence of IP6, HIV-1 packages IP5 without loss of infectivity. Together, these data suggest that IP6 is a critical cofactor for HIV-1 replication.
Collapse
Affiliation(s)
- Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - K M Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney NSW, Australia
| | - Alex Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Miranda S C Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Adam J Fletcher
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Mariia Novikova
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney NSW, Australia
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
24
|
Laha D, Parvin N, Hofer A, Giehl RFH, Fernandez-Rebollo N, von Wirén N, Saiardi A, Jessen HJ, Schaaf G. Arabidopsis ITPK1 and ITPK2 Have an Evolutionarily Conserved Phytic Acid Kinase Activity. ACS Chem Biol 2019; 14:2127-2133. [PMID: 31525024 DOI: 10.1021/acschembio.9b00423] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diphospho-myo-inositol polyphosphates, also termed inositol pyrophosphates, are molecular messengers containing at least one high-energy phosphoanhydride bond and regulate a wide range of cellular processes in eukaryotes. While inositol pyrophosphates InsP7 and InsP8 are present in different plant species, both the identity of enzymes responsible for InsP7 synthesis and the isomer identity of plant InsP7 remain unknown. This study demonstrates that Arabidopsis ITPK1 and ITPK2 catalyze the phosphorylation of phytic acid (InsP6) to the symmetric InsP7 isomer 5-InsP7 and that the InsP6 kinase activity of ITPK enzymes is evolutionarily conserved from humans to plants. We also show by 31P nuclear magnetic resonance that plant InsP7 is structurally identical to the in vitro InsP6 kinase products of ITPK1 and ITPK2. Our findings lay the biochemical and genetic basis for uncovering physiological processes regulated by 5-InsP7 in plants.
Collapse
Affiliation(s)
- Debabrata Laha
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, United Kingdom
| | - Nargis Parvin
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany
| | - Alexandre Hofer
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Ricardo F. H. Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Nicolas Fernandez-Rebollo
- Center for Plant Molecular Biology, Department of Plant Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Nicolaus von Wirén
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, United Kingdom
| | - Henning J. Jessen
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany
| |
Collapse
|
25
|
Wilson MS, Jessen HJ, Saiardi A. The inositol hexakisphosphate kinases IP6K1 and -2 regulate human cellular phosphate homeostasis, including XPR1-mediated phosphate export. J Biol Chem 2019; 294:11597-11608. [PMID: 31186349 PMCID: PMC6663863 DOI: 10.1074/jbc.ra119.007848] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/04/2019] [Indexed: 01/08/2023] Open
Abstract
Phosphate's central role in most biochemical reactions in a living organism requires carefully maintained homeostasis. Although phosphate homeostasis in mammals has long been studied at the organismal level, the intracellular mechanisms controlling phosphate metabolism are not well-understood. Inositol pyrophosphates have emerged as important regulatory elements controlling yeast phosphate homeostasis. To verify whether inositol pyrophosphates also regulate mammalian cellular phosphate homeostasis, here we knocked out inositol hexakisphosphate kinase (IP6K) 1 and IP6K2 to generate human HCT116 cells devoid of any inositol pyrophosphates. Using PAGE and HPLC analysis, we observed that the IP6K1/2-knockout cells have nondetectable levels of the IP6-derived IP7 and IP8 and also exhibit reduced synthesis of the IP5-derived PP-IP4. Nucleotide analysis showed that the knockout cells contain increased amounts of ATP, whereas the Malachite green assay found elevated levels of free intracellular phosphate. Furthermore, [32Pi] pulse labeling experiments uncovered alterations in phosphate flux, with both import and export of phosphate being decreased in the knockout cells. Functional analysis of the phosphate exporter xenotropic and polytropic retrovirus receptor 1 (XPR1) revealed that it is regulated by inositol pyrophosphates, which can bind to its SPX domain. We conclude that IP6K1 and -2 together control inositol pyrophosphate metabolism and thereby physiologically regulate phosphate export and other aspects of mammalian cellular phosphate homeostasis.
Collapse
Affiliation(s)
- Miranda S Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
26
|
Harmel RK, Puschmann R, Nguyen Trung M, Saiardi A, Schmieder P, Fiedler D. Harnessing 13C-labeled myo-inositol to interrogate inositol phosphate messengers by NMR. Chem Sci 2019; 10:5267-5274. [PMID: 31191882 PMCID: PMC6540952 DOI: 10.1039/c9sc00151d] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
The analysis of inositol poly- and pyrophosphates, an important group of eukaryotic messengers, is enabled by applying 13C-labeled inositol.
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are an important group of metabolites and mediate a wide range of processes in eukaryotic cells. To elucidate the functions of these molecules, robust techniques for the characterization of inositol phosphate metabolism are required, both at the biochemical and the cellular level. Here, a new tool-set is reported, which employs uniformly 13C-labeled compounds ([13C6]myo-inositol, [13C6]InsP5, [13C6]InsP6, and [13C6]5PP-InsP5), in combination with commonly accessible NMR technology. This approach permitted the detection and quantification of InsPs and PP-InsPs within complex mixtures and at physiological concentrations. Specifically, the enzymatic activity of IP6K1 could be monitored in vitro in real time. Metabolic labeling of mammalian cells with [13C6]myo-inositol enabled the analysis of cellular pools of InsPs and PP-InsPs, and uncovered high concentrations of 5PP-InsP5 in HCT116 cells, especially in response to genetic and pharmacological perturbation. The reported method greatly facilitates the analysis of this otherwise spectroscopically silent group of molecules, and holds great promise to comprehensively analyze inositol-based signaling molecules under normal and pathological conditions.
Collapse
Affiliation(s)
- Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Robert Puschmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology , University College London , London , UK
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany .
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle-Straße 10 , 13125 Berlin , Germany . .,Institute of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| |
Collapse
|