1
|
Barut EN, Engin S, Yasar YK, Sezen SF. Riluzole, a neuroprotective agent, preserves erectile function following bilateral cavernous nerve injury in male rats. Int J Impot Res 2024; 36:275-282. [PMID: 36788353 DOI: 10.1038/s41443-023-00680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Neurogenic erectile dysfunction is a highly prevalent complication in men undergoing radical prostatectomy. The underlying mechanisms remain incompletely defined and the effective therapy has been limited. This study aimed to evaluate the protective effect of riluzole and the role of PKC β and excitatory amino acid transporters (EAATs) mediating this effect in a rat model of bilateral cavernous injury (BCNI). A total of 48 male Sprague-Dawley rats were divided into sham, BCNI (at 7, 15 days post-injury) and BCNI treated with riluzole (8 mg/kg/day) groups. Erectile function was measured as maximum intracavernosal pressure (mICP)/mean arterial pressure (MAP) and total ICP/MAP. Changes in protein expressions of phospho (p)-PKC β IIser660 and EAATs were analysed in penis and major pelvic ganglion with western blotting. BCNI decreased erectile function at 7 and 15 days post-injury (mICP/MAP at 4 V: 0.45 ± 0.06 vs 0.84 ± 0.07; 0.34 ± 0.04 vs 0.77 ± 0.04 respectively; p < 0.001) whereas riluzole treatment (for 15 days) preserved erectile function (mICP/MAP at 4 V: 0.62 ± 0.03 vs 0.34 ± 0.04; p < 0.01). The decline in the expression of p-PKC β IIser660 was observed in penis at 7 and 15 days post-injury (p = 0.0003, p = 0.0033), which was prevented by riluzole treatment for 15 days (p = 0.0464). While expressions of EAAT-1 and EAAT-2 decreased in major pelvic ganglion following BCNI (p = 0.0428, p = 0.002), riluzole treatment for 15 days prevented the decrease only in EAAT-2 expression (p = 0.0456). Riluzole improved erectile function via possibly interacting with PKC β II and glutamatergic pathways, as a potential therapeutic candidate for erectile dysfunction.
Collapse
Affiliation(s)
- Elif Nur Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Türkiye.
| | - Seckin Engin
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Türkiye
| | - Yesim Kaya Yasar
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Türkiye
- Karadeniz Technical University, Drug and Pharmaceutical Technology Application and Research Center, Trabzon, Türkiye
| | - Sena F Sezen
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Türkiye
- Karadeniz Technical University, Drug and Pharmaceutical Technology Application and Research Center, Trabzon, Türkiye
| |
Collapse
|
2
|
Klein H, Gallagher J, Demesa-Arevalo E, Abraham-Juárez MJ, Heeney M, Feil R, Lunn JE, Xiao Y, Chuck G, Whipple C, Jackson D, Bartlett M. Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022. [PMID: 34996873 DOI: 10.1101/2021.09.03.458935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
Affiliation(s)
- Harry Klein
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Joseph Gallagher
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | | | - MarÃa JazmÃn Abraham-Juárez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato 36821, Mexico
| | - Michelle Heeney
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - George Chuck
- Plant Gene Expression Center, University of California, Berkeley, CA 94710
| | - Clinton Whipple
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - David Jackson
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Madelaine Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003;
| |
Collapse
|
3
|
Abraham-Juárez MJ. Protein Immunoprecipitation in Maize. Bio Protoc 2019. [DOI: 10.21769/bioprotoc.3256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|