1
|
Kaluskar P, Bharadwaj D, Iyer KS, Dy C, Zheng M, Brogan DM. A Systematic Review to Compare Electrical, Magnetic, and Optogenetic Stimulation for Peripheral Nerve Repair. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:722-739. [PMID: 39381397 PMCID: PMC11456630 DOI: 10.1016/j.jhsg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 10/10/2024] Open
Abstract
The purpose of this systematic review was to assess the currently available evidence for the use of external stimulation to modulate neural activity and promote peripheral nerve regeneration. The most common external stimulations are electrical stimulation (ES), optogenetic stimulation (OS), and magnetic stimulation (MS). Understanding the comparative effectiveness of these stimulation methods is pivotal in advancing therapeutic interventions for peripheral nerve injuries. This systematic review focused on these three external stimulation modalities as potential strategies to enhance peripheral nerve repair (PNR). We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework to systematically evaluate and compare the efficiency of ES, OS, and MS in PNR. The review included studies published between 2018 and 2023 using ES, OS, or MS for PNR focused on enhancing recovery of peripheral nerve injuries in rodent models identified through PubMed and Google Scholar. The search strategies and inclusion criteria identified 19 studies (13 ES, 4 OS, and 2 MS) for detailed analysis, focusing on critical parameters such as functional recovery, histological outcomes, and electrophysiological data. Although ES demonstrated a consistent improvement in all the analyses, high-frequency repetitive MS (HFr-MS) emerged as a promising modality. HFr-MS demonstrated accelerated PNR, as histological and electrophysiological evidence indicated. In contrast, OS exhibited superior functional recovery outcomes. Notable limitations include constrained MS and OS data sets and the challenge of comparing relative improvements because of methodological diversity in evaluation techniques. Our findings underscore the potential of HFr-MS and OS in PNR while emphasizing the critical need for standardized testing protocols to facilitate meaningful cross-study comparisons. External stimulations have the potential to improve functional recovery in patients with nerve injury.
Collapse
Affiliation(s)
- Priya Kaluskar
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
- ARC Training Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Melbourne, Australia
| | - Dhruv Bharadwaj
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, the University of Western Australia, Perth, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, the University of Western Australia, Perth, Australia
| | - Christopher Dy
- Orthopaedic Surgery Division of Hand and Microsurgery, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - David M. Brogan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
2
|
Sahoo PK, Hanovice N, Ward P, Agrawal M, Smith TP, SiMa H, Dulin JN, Vaughn LS, Tuszynski M, Welshhans K, Benowitz L, English A, Houle JD, Twiss JL. Disruption of Core Stress Granule Protein Aggregates Promotes CNS Axon Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597743. [PMID: 38895344 PMCID: PMC11185597 DOI: 10.1101/2024.06.07.597743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Depletion or inhibition of core stress granule proteins, G3BP1 in mammals and TIAR-2 in C. elegans , increases axon regeneration in injured neurons that show spontaneous regeneration. Inhibition of G3BP1 by expression of its acidic or 'B-domain' accelerates axon regeneration after nerve injury bringing a potential therapeutic intervention to promote neural repair in the peripheral nervous system. Here, we asked if G3BP1 inhibition is a viable strategy to promote regeneration in the injured mammalian central nervous system where axons do not regenerate spontaneously. G3BP1 B-domain expression was found to promote axon regeneration in both the mammalian spinal cord and optic nerve. Moreover, a cell permeable peptide to a subregion of G3BP1's B-domain (rodent G3BP1 amino acids 190-208) accelerated axon regeneration after peripheral nerve injury and promoted the regrowth of reticulospinal axons into the distal transected spinal cord through a bridging peripheral nerve graft. The rodent and human G3BP1 peptides promoted axon growth from rodent and human neurons cultured on permissive substrates, and this function required alternating Glu/Asp-Pro repeats that impart a unique predicted tertiary structure. These studies point to G3BP1 granules as a critical impediment to CNS axon regeneration and indicate that G3BP1 granule disassembly represents a novel therapeutic strategy for promoting neural repair after CNS injury.
Collapse
|
3
|
Wariyar SS, Ward PJ. Application of Electrical Stimulation to Enhance Axon Regeneration Following Peripheral Nerve Injury. Bio Protoc 2023; 13:e4833. [PMID: 37817898 PMCID: PMC10560632 DOI: 10.21769/bioprotoc.4833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Enhancing axon regeneration is a major focus of peripheral nerve injury research. Although peripheral axons possess a limited ability to regenerate, their functional recovery is very poor. Various activity-based therapies like exercise, optical stimulation, and electrical stimulation as well as pharmacologic treatments can enhance spontaneous axon regeneration. In this protocol, we use a custom-built cuff to electrically stimulate the whole sciatic nerve for an hour prior to transection and repair. We used a Thy-1-YFP-H mouse to visualize regenerating axon profiles. We compared the regeneration of axons from nerves that were electrically stimulated to nerves that were not stimulated (untreated). Electrically stimulated nerves had longer axon growth than the untreated nerves. We detail how variations of this method can be used to measure acute axon growth.
Collapse
Affiliation(s)
- Supriya S. Wariyar
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Patricia J. Ward
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Angiogenesis is critical for the exercise-mediated enhancement of axon regeneration following peripheral nerve injury. Exp Neurol 2022; 353:114029. [DOI: 10.1016/j.expneurol.2022.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
|
5
|
English AW, Berglund K, Carrasco D, Goebel K, Gross RE, Isaacson R, Mistretta OC, Wynans C. Bioluminescent Optogenetics: A Novel Experimental Therapy to Promote Axon Regeneration after Peripheral Nerve Injury. Int J Mol Sci 2021; 22:ijms22137217. [PMID: 34281270 PMCID: PMC8269199 DOI: 10.3390/ijms22137217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
Functional recovery after peripheral nerve injury (PNI) is poor, mainly due to the slow and incomplete regeneration of injured axons. Experimental therapies that increase the excitability of the injured axons have proven remarkably successful in promoting regeneration, but their clinical applicability has been limited. Bioluminescent optogenetics (BL-OG) uses luminopsins, fusion proteins of light-generating luciferase and light-sensing ion channels that could be used to increase neuronal excitability if exposed to a suitable substrate. Excitatory luminopsins were expressed in motoneurons of transgenic mice and in wildtype mice transduced with adeno-associated viral vectors. Intraperitoneal administration of coelenterazine (CTZ), a known luciferase substrate, generated intense bioluminescence in peripheral axons. This bioluminescence increased motoneuron excitability. A single administration of CTZ immediately after sciatic nerve transection and repair markedly enhanced motor axon regeneration. Compound muscle action potentials were 3–4 times larger than controls by 4 weeks after injury. The results observed with transgenic mice were comparable to those of mice in which the luminopsin was expressed using viral vectors. Significantly more motoneurons had successfully reinnervated muscle targets four weeks after nerve injury in BL-OG treated mice than in controls. Bioluminescent optogenetics is a promising therapeutic approach to enhancing axon regeneration after PNI.
Collapse
Affiliation(s)
- Arthur W. English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (D.C.); (K.G.); (R.I.); (O.C.M.); (C.W.)
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence:
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.B.); (R.E.G.)
| | - Dario Carrasco
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (D.C.); (K.G.); (R.I.); (O.C.M.); (C.W.)
| | - Katharina Goebel
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (D.C.); (K.G.); (R.I.); (O.C.M.); (C.W.)
| | - Robert E. Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.B.); (R.E.G.)
| | - Robin Isaacson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (D.C.); (K.G.); (R.I.); (O.C.M.); (C.W.)
| | - Olivia C. Mistretta
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (D.C.); (K.G.); (R.I.); (O.C.M.); (C.W.)
| | - Carly Wynans
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (D.C.); (K.G.); (R.I.); (O.C.M.); (C.W.)
| |
Collapse
|
6
|
Application of electrical stimulation for peripheral nerve regeneration: Stimulation parameters and future horizons. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Ward PJ, Davey RA, Zajac JD, English AW. Neuronal androgen receptor is required for activity dependent enhancement of peripheral nerve regeneration. Dev Neurobiol 2021; 81:411-423. [PMID: 33864349 DOI: 10.1002/dneu.22826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/11/2022]
Abstract
Neuronal activity after nerve injury can enhance axon regeneration and the restoration of function. The mechanism for this enhancement relies in part on hormone receptors, and we previously demonstrated that systemic androgen receptor antagonism blocked the effect of exercise or electrical stimulation on enhancing axon regeneration after nerve injury in both sexes. Here, we tested the hypothesis that the site of this androgen receptor signaling is both neuronal and involves the classical, genomic signaling pathway. In vivo, dorsal root ganglion neurons successfully regenerate in response to activity-dependent neuronal activation, and conditional deletion of the DNA-binding domain of the androgen receptor in adults blocks this effect in males and females. Motoneurons in males and females also respond in this manner, but we also observed a sex difference. In vitro, cultured sensory dorsal root ganglion neurons respond to androgens via traditional androgen receptor signaling mechanisms leading to enhanced neurite growth and did not respond to a testosterone conjugate that is unable to cross the cell membrane. Given our previous observation of a requirement for activity-dependent androgen receptor signaling to promote regeneration in both sexes, we interpret our results to indicate that genomic neuronal androgen receptor signaling is required for activity-dependent axon regeneration in both sexes.
Collapse
Affiliation(s)
- Patricia J Ward
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Abstract
Peripheral nerve interfaces (PNIs) record and/or modulate neural activity of nerves, which are responsible for conducting sensory-motor information to and from the central nervous system, and for regulating the activity of inner organs. PNIs are used both in neuroscience research and in therapeutical applications such as precise closed-loop control of neuroprosthetic limbs, treatment of neuropathic pain and restoration of vital functions (e.g. breathing and bladder management). Implantable interfaces represent an attractive solution to directly access peripheral nerves and provide enhanced selectivity both in recording and in stimulation, compared to their non-invasive counterparts. Nevertheless, the long-term functionality of implantable PNIs is limited by tissue damage, which occurs at the implant-tissue interface, and is thus highly dependent on material properties, biocompatibility and implant design. Current research focuses on the development of mechanically compliant PNIs, which adapt to the anatomy and dynamic movements of nerves in the body thereby limiting foreign body response. In this paper, we review recent progress in the development of flexible and implantable PNIs, highlighting promising solutions related to materials selection and their associated fabrication methods, and integrated functions. We report on the variety of available interface designs (intraneural, extraneural and regenerative) and different modulation techniques (electrical, optical, chemical) emphasizing the main challenges associated with integrating such systems on compliant substrates.
Collapse
Affiliation(s)
- Valentina Paggi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland. Equally contributing authors
| | | | | | | |
Collapse
|