1
|
Arthur TD, Joshua IN, Nguyen JP, D'Antonio-Chronowska A, Frazer KA, D'Antonio M. IFN-γ activates an immune-like regulatory network in the cardiac vascular endothelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592380. [PMID: 38746472 PMCID: PMC11092750 DOI: 10.1101/2024.05.03.592380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The regulatory mechanisms underlying the response to pro-inflammatory cytokines during myocarditis are poorly understood. Here, we use iPSC-derived cardiovascular progenitor cells (CVPCs) to model the response to interferon gamma (IFN-γ) during myocarditis. We generate RNA-seq and ATAC-seq for four CVPCs that were treated with IFN-γ and compare them with paired untreated controls. Transcriptional differences after treatment show that IFN-γ initiates an innate immune cell-like response in the vascular cardiac endothelium. IFN-γ treatment also shifts the CVPC transcriptome towards the adult coronary artery and aorta profiles and expands the relative endothelial cell population in all four CVPC lines. Analysis of the accessible chromatin shows that IFN-γ is a potent chromatin remodeler and establishes an IRF-STAT immune-cell like regulatory network. Our findings reveal insights into the endothelial-specific protective mechanisms during myocarditis.
Collapse
|
2
|
Arthur TD, Nguyen JP, D'Antonio-Chronowska A, Jaureguy J, Silva N, Henson B, Panopoulos AD, Belmonte JCI, D'Antonio M, McVicker G, Frazer KA. Multi-omic QTL mapping in early developmental tissues reveals phenotypic and temporal complexity of regulatory variants underlying GWAS loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588874. [PMID: 38645112 PMCID: PMC11030419 DOI: 10.1101/2024.04.10.588874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Most GWAS loci are presumed to affect gene regulation, however, only ∼43% colocalize with expression quantitative trait loci (eQTLs). To address this colocalization gap, we identify eQTLs, chromatin accessibility QTLs (caQTLs), and histone acetylation QTLs (haQTLs) using molecular samples from three early developmental (EDev) tissues. Through colocalization, we annotate 586 GWAS loci for 17 traits by QTL complexity, QTL phenotype, and QTL temporal specificity. We show that GWAS loci are highly enriched for colocalization with complex QTL modules that affect multiple elements (genes and/or peaks). We also demonstrate that caQTLs and haQTLs capture regulatory variations not associated with eQTLs and explain ∼49% of the functionally annotated GWAS loci. Additionally, we show that EDev-unique QTLs are strongly depleted for colocalizing with GWAS loci. By conducting one of the largest multi-omic QTL studies to date, we demonstrate that many GWAS loci exhibit phenotypic complexity and therefore, are missed by traditional eQTL analyses.
Collapse
|
3
|
Nguyen JP, Arthur TD, Fujita K, Salgado BM, Donovan MKR, Matsui H, Kim JH, D'Antonio-Chronowska A, D'Antonio M, Frazer KA. eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk. Nat Commun 2023; 14:6928. [PMID: 37903777 PMCID: PMC10616100 DOI: 10.1038/s41467-023-42560-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
The impact of genetic regulatory variation active in early pancreatic development on adult pancreatic disease and traits is not well understood. Here, we generate a panel of 107 fetal-like iPSC-derived pancreatic progenitor cells (iPSC-PPCs) from whole genome-sequenced individuals and identify 4065 genes and 4016 isoforms whose expression and/or alternative splicing are affected by regulatory variation. We integrate eQTLs identified in adult islets and whole pancreas samples, which reveal 1805 eQTL associations that are unique to the fetal-like iPSC-PPCs and 1043 eQTLs that exhibit regulatory plasticity across the fetal-like and adult pancreas tissues. Colocalization with GWAS risk loci for pancreatic diseases and traits show that some putative causal regulatory variants are active only in the fetal-like iPSC-PPCs and likely influence disease by modulating expression of disease-associated genes in early development, while others with regulatory plasticity likely exert their effects in both the fetal and adult pancreas by modulating expression of different disease genes in the two developmental stages.
Collapse
Affiliation(s)
- Jennifer P Nguyen
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Timothy D Arthur
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kyohei Fujita
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bianca M Salgado
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Margaret K R Donovan
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Ji Hyun Kim
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, South Korea
| | | | - Matteo D'Antonio
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
D'Antonio M, Nguyen JP, Arthur TD, Matsui H, D'Antonio-Chronowska A, Frazer KA. Fine mapping spatiotemporal mechanisms of genetic variants underlying cardiac traits and disease. Nat Commun 2023; 14:1132. [PMID: 36854752 PMCID: PMC9975214 DOI: 10.1038/s41467-023-36638-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
The causal variants and genes underlying thousands of cardiac GWAS signals have yet to be identified. Here, we leverage spatiotemporal information on 966 RNA-seq cardiac samples and perform an expression quantitative trait locus (eQTL) analysis detecting eQTLs considering both eGenes and eIsoforms. We identify 2,578 eQTLs associated with a specific developmental stage-, tissue- and/or cell type. Colocalization between eQTL and GWAS signals of five cardiac traits identified variants with high posterior probabilities for being causal in 210 GWAS loci. Pulse pressure GWAS loci are enriched for colocalization with fetal- and smooth muscle- eQTLs; pulse rate with adult- and cardiac muscle- eQTLs; and atrial fibrillation with cardiac muscle- eQTLs. Fine mapping identifies 79 credible sets with five or fewer SNPs, of which 15 were associated with spatiotemporal eQTLs. Our study shows that many cardiac GWAS variants impact traits and disease in a developmental stage-, tissue- and/or cell type-specific fashion.
Collapse
Affiliation(s)
- Matteo D'Antonio
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Jennifer P Nguyen
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Timothy D Arthur
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | | | - Kelly A Frazer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Liu R, Lee J, Tchoe Y, Pre D, Bourhis AM, D'Antonio-Chronowska A, Robin G, Lee SH, Ro YG, Vatsyayan R, Tonsfeldt KJ, Hossain LA, Phipps ML, Yoo J, Nogan J, Martinez JS, Frazer KA, Bang AG, Dayeh SA. Ultra-Sharp Nanowire Arrays Natively Permeate, Record, and Stimulate Intracellular Activity in Neuronal and Cardiac Networks. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2108378. [PMID: 35603230 PMCID: PMC9122115 DOI: 10.1002/adfm.202108378] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 05/25/2023]
Abstract
We report innovative scalable, vertical, ultra-sharp nanowire arrays that are individually addressable to enable long-term, native recordings of intracellular potentials. Stable amplitudes of intracellular potentials from 3D tissue-like networks of neurons and cardiomyocytes are obtained. Individual electrical addressability is necessary for high-fidelity intracellular electrophysiological recordings. This study paves the way toward predictive, high-throughput, and low-cost electrophysiological drug screening platforms.
Collapse
Affiliation(s)
- Ren Liu
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Deborah Pre
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew M Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Gaelle Robin
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sang Heon Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yun Goo Ro
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karen J Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Reproductive Science and Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lorraine A Hossain
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - M Lisa Phipps
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jinkyoung Yoo
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - John Nogan
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Jennifer S Martinez
- Center for Materials Interfaces in Research and Applications and Department of Applied Physics and Materials Science, Northern Arizona University, 624 S. Knoles Dr. Flagstaff, AZ 86011
| | - Kelly A Frazer
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|