1
|
Lima RB, Pankaj R, Ehlert ST, Finger P, Fröhlich A, Bayle V, Landrein B, Sampathkumar A, Figueiredo DD. Seed coat-derived brassinosteroid signaling regulates endosperm development. Nat Commun 2024; 15:9352. [PMID: 39472566 PMCID: PMC11522626 DOI: 10.1038/s41467-024-53671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
An angiosperm seed is formed by the embryo and endosperm, which are direct products of fertilization, and by the maternal seed coat. These tissues communicate with each other to ensure synchronized seed development. After fertilization, auxin produced in the endosperm is exported to the integuments where it drives seed coat formation. Here, we show that the seed coat signals back to the endosperm to promote its proliferation via the steroid hormones brassinosteroids (BR). We show that BR regulate cell wall-related processes in the seed coat and that the biophysical properties of this maternal organ determine the proliferation rate of the endosperm in a manner independent of the timing of its cellularization. We thus propose that maternal BR signaling tunes endosperm proliferation to seed coat expansion.
Collapse
Affiliation(s)
- Rita B Lima
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
| | - Rishabh Pankaj
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
| | - Sinah T Ehlert
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Pascal Finger
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Anja Fröhlich
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364, Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364, Lyon, France
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany
| | - Duarte D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, 14476, Potsdam, Germany.
| |
Collapse
|
2
|
Jarvis MC. Forces on and in the cell walls of living plants. PLANT PHYSIOLOGY 2023; 194:8-14. [PMID: 37403192 PMCID: PMC10762502 DOI: 10.1093/plphys/kiad387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023]
Abstract
Environmental influences and differential growth subject plants to mechanical forces. Forces on the whole plant resolve into tensile forces on its primary cell walls and both tensile and compression forces on the secondary cell wall layers of woody tissues. Forces on cell walls are further resolved into forces on cellulose microfibrils and the noncellulosic polymers between them. Many external forces on plants oscillate, with time constants that vary from seconds to milliseconds. Sound waves are a high-frequency example. Forces on the cell wall lead to responses that direct the oriented deposition of cellulose microfibrils and the patterned expansion of the cell wall, leading to complex cell and tissue morphology. Recent experiments have established many of the details of which cell wall polymers associate with one another in both primary and secondary cell walls, but questions remain about which of the interconnections are load bearing, especially in primary cell walls. Direct cellulose-cellulose interactions appear to have a more important mechanical role than was previously thought, and some of the noncellulosic polymers may have a role in keeping microfibrils apart rather than cross-linking them as formerly envisaged.
Collapse
Affiliation(s)
- Michael C Jarvis
- College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| |
Collapse
|
3
|
Kirchhelle C, Hamant O. Discretizing the cellular bases of plant morphogenesis: Emerging properties from subcellular and noisy patterning. Curr Opin Cell Biol 2023; 81:102159. [PMID: 36966612 DOI: 10.1016/j.ceb.2023.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 06/12/2023]
Abstract
A fundamental question in biology is how multicellular organisms robustly shape their organs. In the past decade, much progress has been made not just in identifying biochemical and biophysical factors underpinning morphogenesis, but also in analyzing their spatio-temporal dynamics. A remarkable outcome of such analyses is that morphogenesis involves high levels of heterogeneity and fluctuations at local scales. Although this could be considered as white noise to be averaged over time, there is increasing evidence that these heterogeneities and fluctuations are instructive cues for development. In this review, we highlight some of the new questions that such heterogeneities raise for plant morphogenesis. We also investigate their effects across scales, focusing on how subcellular heterogeneities contribute to organ shape robustness and evolvability.
Collapse
Affiliation(s)
- Charlotte Kirchhelle
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
4
|
Kalmbach L, Bourdon M, Belevich I, Safran J, Lemaire A, Heo JO, Otero S, Blob B, Pelloux J, Jokitalo E, Helariutta Y. Putative pectate lyase PLL12 and callose deposition through polar CALS7 are necessary for long-distance phloem transport in Arabidopsis. Curr Biol 2023; 33:926-939.e9. [PMID: 36805125 DOI: 10.1016/j.cub.2023.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/12/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
In plants, the phloem distributes photosynthetic products for metabolism and storage over long distances. It relies on specialized cells, the sieve elements, which are enucleated and interconnected through large so-called sieve pores in their adjoining cell walls. Reverse genetics identified PECTATE LYASE-LIKE 12 (PLL12) as critical for plant growth and development. Using genetic complementations, we established that PLL12 is required exclusively late during sieve element differentiation. Structural homology modeling, enzyme inactivation, and overexpression suggest a vital role for PLL12 in sieve-element-specific pectin remodeling. While short distance symplastic diffusion is unaffected, the pll12 mutant is unable to accommodate sustained plant development due to an incapacity to accommodate increasing hydraulic demands on phloem long-distance transport as the plant grows-a defect that is aggravated when combined with another sieve-element-specific mutant callose synthase 7 (cals7). Establishing CALS7 as a specific sieve pore marker, we investigated the subcellular dynamics of callose deposition in the developing sieve plate. Using fluorescent CALS7 then allowed identifying structural defects in pll12 sieve pores that are moderate at the cellular level but become physiologically relevant due to the serial arrangement of sieve elements in the sieve tube. Overall, pectin degradation through PLL12 appears subtle in quantitative terms. We therefore speculate that PLL12 may act as a regulator to locally remove homogalacturonan, thus potentially enabling further extracellular enzymes to access and modify the cell wall during sieve pore maturation.
Collapse
Affiliation(s)
- Lothar Kalmbach
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| | - Matthieu Bourdon
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Ilya Belevich
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Josip Safran
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Adrien Lemaire
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Jung-Ok Heo
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Sofia Otero
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Bernhard Blob
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Jérôme Pelloux
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ykä Helariutta
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
5
|
Höfte H. A dive into the cell wall with Arabidopsis. C R Biol 2023; 345:41-60. [PMID: 36847119 DOI: 10.5802/crbiol.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
One of the many legacies of the work of Michel Caboche is our understanding of plant cell wall synthesis and metabolism thanks to the use of Arabidopsis mutants. Here I describe how he was instrumental in initiating the genetic study of plant cell walls. I also show, with a few examples for cellulose and pectins, how this approach has led to important new insights in cell wall synthesis and how the metabolism of pectins contributes to plant growth and morphogenesis. I also illustrate the limitations of the use of mutants to explain processes at the scale of cells, organs or whole plants in terms of the physico-chemical properties of cell wall polymers. Finally, I sketch how new approaches can cope with these limitations.
Collapse
|
6
|
Haas KT, Wightman R, Peaucelle A, Höfte H. The role of pectin phase separation in plant cell wall assembly and growth. Cell Surf 2021; 7:100054. [PMID: 34141960 PMCID: PMC8185244 DOI: 10.1016/j.tcsw.2021.100054] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
A rapidly increasing body of literature suggests that many biological processes are driven by phase separation within polymer mixtures. Liquid-liquid phase separation can lead to the formation of membrane-less organelles, which are thought to play a wide variety of roles in cell metabolism, gene regulation or signaling. One of the characteristics of these systems is that they are poised at phase transition boundaries, which makes them perfectly suited to elicit robust cellular responses to often very small changes in the cell's "environment". Recent observations suggest that, also in the semi-solid environment of plant cell walls, phase separation not only plays a role in wall patterning, hydration and stress relaxation during growth, but also may provide a driving force for cell wall expansion. In this context, pectins, the major polyanionic polysaccharides in the walls of growing cells, appear to play a critical role. Here, we will discuss (i) our current understanding of the structure-function relationship of pectins, (ii) in vivo evidence that pectin modification can drive critical phase transitions in the cell wall, (iii) how such phase transitions may drive cell wall expansion in addition to turgor pressure and (iv) the periodic cellular processes that may control phase transitions underlying cell wall assembly and expansion.
Collapse
Affiliation(s)
- Kalina T. Haas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
7
|
Haas KT, Peaucelle A. Protocol for multicolor three-dimensional dSTORM data analysis using MATLAB-based script package Grafeo. STAR Protoc 2021; 2:100808. [PMID: 34541556 PMCID: PMC8437824 DOI: 10.1016/j.xpro.2021.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This protocol describes the step-by-step analysis of the multicolor (one-, two-, or three-color) two- and three-dimensional dSTORM (direct STochastic Optical Reconstruction Microscopy) data using MATLAB-based script package Grafeo. Grafeo primarily uses pointillist data visualization and analysis frameworks, including the nearest neighbors, approach, Voronoi tessellation, Delaunay triangulation, Ripley’s (K, L) and two-point correlation functions, and graph-based clustering. For complete details on the use and execution of this protocol, please refer to Peaucelle et al. (2020), Haas et al., 2018, Haas et al. (2020b). Multicolor 3D dSTORM data visualization using scatter plots and Voronoi Diagrams Procedure for data filtering Spatial statistics, cluster, and colocalization analysis Graph-based cluster analysis with Delaunay triangulation
Collapse
Affiliation(s)
- Kalina Tamara Haas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
8
|
Petrova A, Gorshkova T, Kozlova L. Gradients of cell wall nano-mechanical properties along and across elongating primary roots of maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1764-1781. [PMID: 33247728 DOI: 10.1093/jxb/eraa561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
To test the hypothesis that particular tissues can control root growth, we analysed the mechanical properties of cell walls belonging to different tissues of the apical part of the maize root using atomic force microscopy. The dynamics of properties during elongation growth were characterized in four consecutive zones of the root. Extensive immunochemical characterization and quantification were used to establish the polysaccharide motif(s) related to changes in cell wall mechanics. Cell transition from division to elongation was coupled to the decrease in the elastic modulus in all root tissues. Low values of moduli were retained in the elongation zone and increased in the late elongation zone. No relationship between the immunolabelling pattern and mechanical properties of the cell walls was revealed. When measured values of elastic moduli and turgor pressure were used in the computational simulation, this resulted in an elastic response of the modelled root and the distribution of stress and strain similar to those observed in vivo. In all analysed root zones, cell walls of the inner cortex displayed moduli of elasticity that were maximal or comparable with the maximal values among all tissues. Thus, we propose that the inner cortex serves as a growth-limiting tissue in maize roots.
Collapse
Affiliation(s)
- Anna Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Liudmila Kozlova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|