1
|
Hirashima T, W P S, Noda T. Collective sperm movement in mammalian reproductive tracts. Semin Cell Dev Biol 2025; 166:13-21. [PMID: 39675229 DOI: 10.1016/j.semcdb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Mammalian sperm cells travel from their origin in the male reproductive tract to fertilization in the female tract through a complex process driven by coordinated mechanical and biochemical mechanisms. Recent experimental and theoretical advances have illuminated the collective behaviors of sperm both in vivo and in vitro. However, our understanding of the underlying mechano-chemical processes remains incomplete. This review integrates current insights into sperm group movement, examining both immotile and motile states, which are essential for passive transport and active swimming through the reproductive tracts. We provide an overview of the current understanding of collective sperm movement, focusing on the experimental and theoretical mechanisms behind these behaviors. We also explore how sperm motility is regulated through the coordination of mechanical and chemical processes. Emerging evidence highlights the mechanosensitive properties of a sperm flagellum, suggesting that mechanical stimuli regulate flagellar beating at both individual and collective levels. This self-regulatory, mechano-chemical system reflects a broader principle observed in multicellular systems, offering a system-level insight into the regulation of motility and collective dynamics in biological systems.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore.
| | - Sound W P
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Taichi Noda
- Division of Reproductive Biology, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
2
|
Harima R, Hara K, Tanemura K. TCTEX1D2 is essential for sperm flagellum formation in mice. Sci Rep 2025; 15:2413. [PMID: 39827215 PMCID: PMC11743150 DOI: 10.1038/s41598-024-83424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Flagella and cilia are widely conserved motile structures, in mammalian, sperm possess flagella. Large protein complexes called dynein, including cytoplasmic dynein 2 and axonemal dynein, play a role in the formation of cilia and flagella. The function of each subunit component of dynein complexes in sperm flagellum formation remains unclear. One such subunit is TCTEX1D2. Co-immunoprecipitation studies showed that TCTEX1D2 interacted with cytoplasmic dynein 2 subunits WDR34, WDR60, and DYNLT1 in the testes. Furthermore, TCTEX1D2 also interacted with WDR63 and WDR78, subunits of inner dynein arm, which is axonemal dynein. Tctex1d2-/- mice generated in this study exhibited male infertility due to flagellar dysplasia, and the axonemal structures were disrupted inside the flagella. Further, the localization of cytoplasmic dynein 2 subunits was abnormal in in Tctex1d2-/- mice. In contrast, the motile cilia of Tctex1d2-/- mice were normal. Overall, we revealed that TCTEX1D2 is important for the assembly of cytoplasmic dynein 2 and inner dynein arm and functions in two distinct dynein complexes during mouse sperm flagellum formation. This is only in sperm flagellum formation, not in cilia formation.
Collapse
Affiliation(s)
- Ryua Harima
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.
- Laboratory of Reproductive Technology (Repro-SOLEIL), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.
| |
Collapse
|
3
|
Wang Z, Fang K, Wan Y, Yin Y, Li M, Xu K, Li T, Cao Y, Lv Y, Lu G, Liu H, Huang T. TTC6-Mediated Stabilization of the Flagellum Annulus Ensures the Rapid and Directed Motion of Sperm. Cells 2023; 12:2091. [PMID: 37626901 PMCID: PMC10453820 DOI: 10.3390/cells12162091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sperm motility and structural integrity are essential for successful fertilization in vivo, and any hindrance of the correct assembly of the axoneme and peri-axonemal structures in the sperm flagellum can lead to fertility problems. While there has been considerable advancement in studying diseases related to the flagellum, the underlying mechanisms that control sperm movement are not yet fully understood. In this study, we reveal that the tetratricopeptide repeat protein 6 (Ttc6) gene, expressed mainly in the testes, plays a crucial role in maintaining male fertility in mice. We further demonstrate that the knockout of Ttc6 in mice results in decreased sperm motility and induces an abnormal circular swimming pattern, consequently leading to male subfertility. Morphological analysis showed an atypical hairpin-like appearance of the spermatozoa, and ultrastructural studies showed unsheathed flagella at the juncture between the midpiece and principal piece. Collectively, these findings suggest that TTC6 plays an essential role in maintaining the stability of the annulus region of the sperm flagellum, thus ensuring the swift and directed motion of sperm.
Collapse
Affiliation(s)
- Ziqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Kailun Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Yanling Wan
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Yingying Yin
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Ke Xu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Tongtong Li
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
- The Model Animal Research Centre, Shandong University, Jinan 250010, China
| | - Yue Lv
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Shandong Key Laboratory of Reproductive Medicine, Shandong First Medical University, Jinan 250012, China
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| |
Collapse
|
4
|
Won MM, Krüger T, Engstler M, Burleigh BA. The Intracellular Amastigote of Trypanosoma cruzi Maintains an Actively Beating Flagellum. mBio 2023; 14:e0355622. [PMID: 36840555 PMCID: PMC10128032 DOI: 10.1128/mbio.03556-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Throughout its complex life cycle, the uniflagellate parasitic protist, Trypanosoma cruzi, adapts to different host environments by transitioning between elongated motile extracellular stages and a nonmotile intracellular amastigote stage that replicates in the cytoplasm of mammalian host cells. Intracellular T. cruzi amastigotes retain a short flagellum that extends beyond the opening of the flagellar pocket with access to the extracellular milieu. Contrary to the long-held view that the T. cruzi amastigote flagellum is inert, we report that this organelle is motile and displays quasiperiodic beating inside mammalian host cells. Kymograph analysis determined an average flagellar beat frequency of ~0.7 Hz for intracellular amastigotes and similar beat frequencies for extracellular amastigotes following their isolation from host cells. Inhibitor studies reveal that flagellar motility in T. cruzi amastigotes is critically dependent on parasite mitochondrial oxidative phosphorylation. These novel observations reveal that flagellar motility is an intrinsic property of T. cruzi amastigotes and suggest that this organelle may play an active role in the parasite infection process. IMPORTANCE Understanding the interplay between intracellular pathogens and their hosts is vital to the development of new treatments and preventive strategies. The intracellular "amastigote" stage of the Chagas disease parasite, Trypanosoma cruzi, is a critical but understudied parasitic life stage. Previous work established that cytosolically localized T. cruzi amastigotes engage physically and selectively with host mitochondria using their short, single flagellum. The current study was initiated to examine the dynamics of the parasite flagellum-host mitochondrial interaction through live confocal imaging and led to the unexpected discovery that the T. cruzi amastigote flagellum is motile.
Collapse
Affiliation(s)
- Madalyn M. Won
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Timothy Krüger
- Department of Cell and Developmental Biology, Biozentrum, University of Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biozentrum, University of Würzburg, Germany
| | - Barbara A. Burleigh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Arora S, Rana M, Sachdev A, D’Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023. [DOI: 10.1007/s12038-023-00326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
6
|
Lin L, Tijjani I, Guo H, An Q, Cao J, Chen X, Liu W, Wang Z, Norvienyeku J. Cytoplasmic dynein1 intermediate-chain2 regulates cellular trafficking and physiopathological development in Magnaporthe oryzae. iScience 2023; 26:106050. [PMID: 36866040 PMCID: PMC9971887 DOI: 10.1016/j.isci.2023.106050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
The cytoplasmic dynein 1, a minus end-directed motor protein, is an essential microtubule-based molecular motor that mediates the movement of molecules to intracellular destinations in eukaryotes. However, the role of dynein in the pathogenesis of Magnaporthe oryzae is unknown. Here, we identified cytoplasmic dynein 1 intermediate-chain 2 genes in M. oryzae and functionally characterized it using genetic manipulations, and biochemical approaches. We observed that targeted the deletion of MoDYNC1I2 caused significant vegetative growth defects, abolished conidiation, and rendered the ΔModync1I2 strains non-pathogenic. Microscopic examinations revealed significant defects in microtubule network organization, nuclear positioning, and endocytosis ΔModync1I2 strains. MoDync1I2 is localized exclusively to microtubules during fungal developmental stages but co-localizes with the histone OsHis1 in plant nuclei upon infection. The exogenous expression of a histone gene, MoHis1, restored the homeostatic phenotypes of ΔModync1I2 strains but not pathogenicity. These findings could facilitate the development of dynein-directed remedies for managing the rice blast disease.
Collapse
Affiliation(s)
- Lily Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ibrahim Tijjani
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hengyuan Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Qiuli An
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaying Cao
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zonghua Wang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China,Institute of Oceanography, Minjiang University, Fuzhou 350108, China,Corresponding author
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China,Corresponding author
| |
Collapse
|
7
|
Meindl C, Absenger-Novak M, Jeitler R, Roblegg E, Fröhlich E. Assessment of Carbon Nanotubes on Barrier Function, Ciliary Beating Frequency and Cytokine Release in In Vitro Models of the Respiratory Tract. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:682. [PMID: 36839050 PMCID: PMC9962067 DOI: 10.3390/nano13040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The exposure to inhaled carbon nanotubes (CNT) may have adverse effects on workers upon chronic exposure. In order to assess the toxicity of inhaled nanoparticles in a physiologically relevant manner, an air-liquid interface culture of mono and cocultures of respiratory cells and assessment in reconstructed bronchial and alveolar tissues was used. The effect of CNT4003 reference particles applied in simulated lung fluid was studied in bronchial (Calu-3 cells, EpiAirway™ and MucilAir™ tissues) and alveolar (A549 +/-THP-1 and EpiAlveolar™ +/-THP-1) models. Cytotoxicity, transepithelial electrical resistance, interleukin 6 and 8 secretion, mucociliary clearance and ciliary beating frequency were used as readout parameters. With the exception of increased secretion of interleukin 6 in the EpiAlveolar™ tissues, no adverse effects of CNT4003 particles, applied at doses corresponding to the maximum estimated lifetime exposure of workers, in the bronchial and alveolar models were noted, suggesting no marked differences between the models. Since the doses for whole-life exposure were applied over a shorter time, it is not clear if the interleukin 6 increase in the EpiAlveolar™ tissues has physiological relevance.
Collapse
Affiliation(s)
- Claudia Meindl
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Markus Absenger-Novak
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Ramona Jeitler
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| |
Collapse
|
8
|
Arora S, Rana M, Sachdev A, D'Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023; 48:8. [PMID: 36924208 PMCID: PMC10005925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The past few decades have seen a rise in research on vertebrate cilia and ciliopathy, with interesting collaborations between basic and clinical scientists. This work includes studies on ciliary architecture, composition, evolution, and organelle generation and its biological role. The human body has cells that harbour any of the following four types of cilia: 9+0 motile, 9+0 immotile, 9+2 motile, and 9+2 immotile. Depending on the type, cilia play an important role in cell/fluid movement, mating, sensory perception, and development. Defects in cilia are associated with a wide range of human diseases afflicting the brain, heart, kidneys, respiratory tract, and reproductive system. These are commonly known as ciliopathies and affect millions of people worldwide. Due to their complex genetic etiology, diagnosis and therapy have remained elusive. Although model organisms like Chlamydomonas reinhardtii have been a useful source for ciliary research, reports of a fascinating and rewarding translation of this research into mammalian systems, especially humans, are seen. The current review peeks into one of the complex features of this organelle, namely its birth, the common denominators across the formation of both 9+0 and 9+2 ciliary types, the molecules involved in ciliogenesis, and the steps that go towards regulating their assembly and disassembly.
Collapse
Affiliation(s)
- Shashank Arora
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai 400098, India
| | | | | | | |
Collapse
|
9
|
Beepat SS, Davy SK, Oakley CA, Mashini A, Peng L, Bell JJ. Increased cellular detoxification, cytoskeletal activities and protein transport explain physiological stress in a lagoon sponge. J Exp Biol 2021; 224:273478. [PMID: 34661236 DOI: 10.1242/jeb.242820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
Abstract
Tropical lagoon-inhabiting organisms live in highly irradiated ecosystems and are particularly susceptible to thermal stress resulting from climate change. However, despite living close to their thermal maxima, stress response mechanisms found in these organisms are poorly understood. We used a novel physiological-proteomic approach for sponges to describe the stress response mechanisms of the lagoon-inhabiting sponge Amphimedon navalis, when exposed to elevated seawater temperatures of +2°C and +4°C relative to a 26°C ambient temperature for 4 weeks. After 4 weeks of thermal exposure, the buoyant weight of the sponge experienced a significant decline, while its pumping rates and oxygen consumption rates significantly increased. Proteome dynamics revealed 50 differentially abundant proteins in sponges exposed to elevated temperature, suggesting that shifts in the sponge proteome were potential drivers of physiological dysfunction. Thermal stress promoted an increase in detoxification proteins, such as catalase, suggesting that an excess of reactive oxygen species in sponge cells was responsible for the significant increase in oxygen consumption. Elevated temperature also disrupted cellular growth and cell proliferation, promoting the loss of sponge biomass, and the high abundance of multiple α-tubulin chain proteins also indicated an increase in cytoskeletal activities within sponge cells, which may have induced the increase in sponge pumping rate. Our results show that sustained thermal exposure in susceptible lagoonal sponges may induce significant disruption of cellular homeostasis, leading to physiological dysfunction, and that a combined physiological-proteomic approach may provide new insights into physiological functions and cellular processes occurring in sponges.
Collapse
Affiliation(s)
- Sandeep S Beepat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Amirhossein Mashini
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
10
|
Wei X, Sha Y, Wei Z, Zhu X, He F, Zhang X, Liu W, Wang Y, Lu Z. Bi-allelic mutations in DNAH7 cause asthenozoospermia by impairing the integrality of axoneme structure. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1300-1309. [PMID: 34476482 DOI: 10.1093/abbs/gmab113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 11/13/2022] Open
Abstract
Asthenozoospermia is the most common cause of male infertility. Dynein protein arms play a crucial role in the motility of both the cilia and flagella, and defects in these proteins generally impair the axoneme structure and cause primary ciliary dyskinesia. But relatively little is known about the influence of dynein protein arm defects on sperm flagella function. Here, we recruited 85 infertile patients with idiopathic asthenozoospermia and identified bi-allelic mutations in DNAH7 (NM_018897.3) from three patients using whole-exome sequencing. These variants are rare, highly pathogenic, and very conserved. The spermatozoa from the patients with DNAH7 bi-allelic mutations showed specific losses in the inner dynein arms. The expression of DNAH7 in the spermatozoa from the DNAH7-defective patients was significantly decreased, but these patients were able to have their children via intra-cytoplasmic sperm injection treatment. Our study is the first to demonstrate that bi-allelic mutations in DNAH7 may impair the integrality of axoneme structure, affect sperm motility, and cause asthenozoospermia in humans. These findings may extend the spectrum of etiological genes and provide new clues for the diagnosis and treatment of patients with asthenozoospermia.
Collapse
Affiliation(s)
- Xiaoli Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Yanwei Sha
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital and School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zijie Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Xingshen Zhu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Fengming He
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Xiaoya Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Wensheng Liu
- Obstetrics and Gynecology Center, Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yifeng Wang
- Obstetrics and Gynecology Center, Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Sakamoto C, Fujinoki M, Kitazawa M, Obayashi S. Serotonergic signals enhanced hamster sperm hyperactivation. J Reprod Dev 2021; 67:241-250. [PMID: 33980767 PMCID: PMC8423610 DOI: 10.1262/jrd.2020-108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the present study, we investigated the regulatory mechanisms underlying sperm hyperactivation enhanced by 5-hydroxytryptamine (5-HT) in hamsters. First, we examined the types of 5-HT
receptors that regulate hyperactivation. Hyperactivation was significantly enhanced by 5-HT2A and 5-HT4 receptor agonists. Moreover, the results of the motility assay
revealed that 5-HT2A, 5-HT3, and 5-HT4 receptor agonists significantly decreased the velocity and/or amplitude of sperm. Under 5-HT2 receptor
stimulation, hyperactivation was associated with phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3) receptor, soluble adenylate cyclase (sAC), and protein kinase A (PKA).
In contrast, under 5-HT4 receptor stimulation, hyperactivation was associated with transmembrane adenylate cyclase (tmAC), sAC, PKA, and CatSper channels. Accordingly, under the
condition that sperm are hyperactivated, 5-HT likely stimulates PLC/IP3 receptor signals via the 5-HT2A receptor and tmAC/PKA/CatSper channel signals via the
5-HT4 receptor. After sAC and PKA are activated by these stimulations, sperm hyperactivation is enhanced.
Collapse
Affiliation(s)
- Chiyori Sakamoto
- Department of Obstetrics and Gynecology, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Masakatsu Fujinoki
- Research Lab. of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Masafumi Kitazawa
- Department of Obstetrics and Gynecology, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Satoshi Obayashi
- Department of Obstetrics and Gynecology, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
12
|
Kubo-Irie M, Hirai M, Irie M, Mohri H. Postulated Process of Axoneme Organization in the Male Gametogenesis of Malaria Parasite Plasmodium berghei. Zoolog Sci 2021; 38:187-192. [PMID: 33812358 DOI: 10.2108/zs200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/13/2020] [Indexed: 11/17/2022]
Abstract
The ultrastructural features of axoneme organization within the cytoplasm and exflagellation were investigated in detail in microgametes of a malaria parasite, Plasmodium berghei, by electron and fluorescence microscopy. The kinetosomes (basal bodies) of the microgamete were characterized by an electron dense mass in which singlet microtubules (MTs) were embedded. Around the kinetosomes, several singlet and doublet MTs were recognized in transverse sections. Incomplete doublets with growing B-tubule were also observed. As precursors of the axoneme, arrays of over three doublets showed a tendency to encircle the central pair MTs. Some of the doublet MTs were already equipped with inner and outer dynein arms. In the microgamete, which lacks an intraflagellar transport (IFT) system, self-assembly of microtubular and associated components appeared to proceed stepwise from singlet MTs through arrays of one to nine doublet MTs, surrounding the central pair, to form the complete axoneme in a quite short time. At exflagellation, some extra doublets were occasionally included between the axoneme and the flagellar membrane. At high magnification, the outer dynein arm of the Plasmodium microgamete had a pistol-like shape representing a three-headed dynein molecule like that of other Alveolata.
Collapse
Affiliation(s)
- Miyoko Kubo-Irie
- Biological Laboratory, The Open University of Japan, Wakaba, Mihama-ku, Chiba 261-8506, Japan,
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masaru Irie
- Department of Computer Science, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hideo Mohri
- Department of Biological Science, Graduate School of Arts and Sciences, the University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
13
|
Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020; 26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis-the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review-protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.
Collapse
Affiliation(s)
- Christiane Pleuger
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Mari S Lehti
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | | | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
14
|
CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module. Nat Commun 2020; 11:5520. [PMID: 33139725 PMCID: PMC7606486 DOI: 10.1038/s41467-020-19113-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/25/2020] [Indexed: 11/08/2022] Open
Abstract
Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45−/− mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module. The mechanism by which adenosine monophosphate modulates dynein ATPase-mediated ciliary and flagellar beating remains obscure. Here the authors identify an axonemal module including cilia and flagella associated protein 45 that supports adenine nucleotide homeostasis and underlies a human ciliopathy
Collapse
|
15
|
Wu M, Wang P, Gao M, Shen D, Zhao Q. Transcriptome analysis of the eggs of the silkworm pale red egg (rep-1) mutant at 36 hours after oviposition. PLoS One 2020; 15:e0237242. [PMID: 32764803 PMCID: PMC7413551 DOI: 10.1371/journal.pone.0237242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/22/2020] [Indexed: 12/04/2022] Open
Abstract
The egg stage is one of the most critical periods in the life history of silkworms, during which physiological processes such as sex determination, tissue organ formation and differentiation, diapause and pigmentation occur. In addition, egg color gradually emerges around 36h after oviposition. The red egg mutant rep-1, which was recently discovered in the C1(H) wild-type, C1(H) exhibits a brown egg color. In this study, the transcriptome of the eggs was analyzed 36h after oviposition. Between the rep-1 mutant and the C1(H) wild-type, 800 differentially expressed genes (DEGs) were identified, including 325 up-regulated genes and 475 down-regulated genes. These DEGs were mainly involved in biological processes (metabolic process, cellular process, biological regulation and regulation of biological process and localization), cellular components (membrane, membrane part, cell, cell part and organelle) and molecular functions (binding, catalytic activity, transporter activity, structural molecule activity and molecular transducer activity). The pathway enrichment of these DEGs was performed based on the KEGG database, and the results indicated that these DEGs were mainly involved in pathways in the following categories: metabolic pathways, longevity-regulating pathway-multiple species, protein processing in endoplasmic reticulum, peroxisome, carbon metabolism and purine metabolism. Further analysis showed that a large number of silkworm growth- and development-related genes and ommochrome synthesis- and metabolism-related genes were differentially expressed, most of which were up-regulated in the mutant. Our research findings provide new experimental evidence for research on ommochrome pigmentation and lay the foundation for further research on the mechanism of the rep-1 mutant.
Collapse
Affiliation(s)
- Meina Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi, Nanning, China
| | - Mengjie Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- * E-mail:
| |
Collapse
|
16
|
Oura S, Kazi S, Savolainen A, Nozawa K, Castañeda J, Yu Z, Miyata H, Matzuk RM, Hansen JN, Wachten D, Matzuk MM, Prunskaite-Hyyryläinen R. Cfap97d1 is important for flagellar axoneme maintenance and male mouse fertility. PLoS Genet 2020; 16:e1008954. [PMID: 32785227 PMCID: PMC7444823 DOI: 10.1371/journal.pgen.1008954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/24/2020] [Accepted: 06/24/2020] [Indexed: 11/18/2022] Open
Abstract
The flagellum is essential for sperm motility and fertilization in vivo. The axoneme is the main component of the flagella, extending through its entire length. An axoneme is comprised of two central microtubules surrounded by nine doublets, the nexin-dynein regulatory complex, radial spokes, and dynein arms. Failure to properly assemble components of the axoneme in a sperm flagellum, leads to fertility alterations. To understand this process in detail, we have defined the function of an uncharacterized gene, Cfap97 domain containing 1 (Cfap97d1). This gene is evolutionarily conserved in mammals and multiple other species, including Chlamydomonas. We have used two independently generated Cfap97d1 knockout mouse models to study the gene function in vivo. Cfap97d1 is exclusively expressed in testes starting from post-natal day 20 and continuing throughout adulthood. Deletion of the Cfap97d1 gene in both mouse models leads to sperm motility defects (asthenozoospermia) and male subfertility. In vitro fertilization (IVF) of cumulus-intact oocytes with Cfap97d1 deficient sperm yielded few embryos whereas IVF with zona pellucida-free oocytes resulted in embryo numbers comparable to that of the control. Knockout spermatozoa showed abnormal motility characterized by frequent stalling in the anti-hook position. Uniquely, Cfap97d1 loss caused a phenotype associated with axonemal doublet heterogeneity linked with frequent loss of the fourth doublet in the sperm stored in the epididymis. This study demonstrates that Cfap97d1 is required for sperm flagellum ultra-structure maintenance, thereby playing a critical role in sperm function and male fertility in mice.
Collapse
Affiliation(s)
- Seiya Oura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Samina Kazi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Audrey Savolainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Julio Castañeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Zhifeng Yu
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ryan M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jan N. Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | | |
Collapse
|
17
|
Dong Y, Zeng Q, Ren J, Yao H, Lv L, He L, Ruan W, Xue Q, Bao Z, Wang S, Lin Z. The Chromosome-Level Genome Assembly and Comprehensive Transcriptomes of the Razor Clam ( Sinonovacula constricta). Front Genet 2020; 11:664. [PMID: 32733535 PMCID: PMC7358530 DOI: 10.3389/fgene.2020.00664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yinghui Dong
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hanhan Yao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Liyuan Lv
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Lin He
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Wenbin Ruan
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,The Sars-Fang Centre, Ocean University of China, Qingdao, China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
18
|
Teves ME, Roldan ERS, Krapf D, Strauss III JF, Bhagat V, Sapao P. Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci 2020; 21:E3702. [PMID: 32456358 PMCID: PMC7279445 DOI: 10.3390/ijms21103702] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006-Madrid, Spain
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Jerome F. Strauss III
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Virali Bhagat
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Paulene Sapao
- Department of Chemistry, Virginia Commonwealth University, Richmond VA, 23298, USA;
| |
Collapse
|
19
|
Ishijima S. Modulatory mechanisms of sliding of nine outer doublet microtubules for generating planar and half-helical flagellar waves. Mol Hum Reprod 2020; 25:320-328. [PMID: 30824931 DOI: 10.1093/molehr/gaz012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 11/14/2022] Open
Abstract
It has been shown that sperm flagellar motility is generated and modulated by metachronal sliding and two types of synchronous sliding of the outer doublet microtubules. Metachronal sliding propagates around the axoneme circumferentially from one doublet to another along the flagellum, whereas the two types of synchronous sliding occur synchronously throughout an extended region along the doublet microtubules. Oscillatory synchronous sliding occurs between most pairs of the nine doublet microtubules, whereas non-oscillatory synchronous sliding occurs between a specific pair of the nine doublet microtubules. These types of sliding coexist in the flagellum and create beat cycles of flagellar movement. The circumferential propagation of active sliding around the nine doublet microtubules in the metachronal sliding suggests that it is easier for a flagellum to produce helical waves than planar waves. Most sperm flagellar movements are planar to a certain extent. Therefore, mechanisms that modulate the helical waves into planar waves may be present. Structures such as the central pair microtubules in 9 + 2 sperm flagella and the fusion of fibrous-sheath and 3-,8-doublet microtubules in mammalian sperm flagella partition the nine outer doublet microtubules into two groups. Accordingly, the sliding between these two groups generates planar flagellar waves. A similar effect is caused by the sliding between a specific pair of the nine doublet microtubules of the non-oscillatory synchronous sliding, occurring in a Ca2+ concentration-dependent manner. These hard- and soft-wired systems produce the nearly planar flagellar waves required for the efficient propulsion of spermatozoa.
Collapse
Affiliation(s)
- Sumio Ishijima
- School of Life Science and Technology, Tokyo Institute of Technology, O-okayama, Tokyo 152-8551, Japan.,Department of Biomedical Technology, Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama 225-8502, Japan
| |
Collapse
|
20
|
Force-Generating Mechanism of Axonemal Dynein in Solo and Ensemble. Int J Mol Sci 2020; 21:ijms21082843. [PMID: 32325779 PMCID: PMC7215579 DOI: 10.3390/ijms21082843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022] Open
Abstract
In eukaryotic cilia and flagella, various types of axonemal dyneins orchestrate their distinct functions to generate oscillatory bending of axonemes. The force-generating mechanism of dyneins has recently been well elucidated, mainly in cytoplasmic dyneins, thanks to progress in single-molecule measurements, X-ray crystallography, and advanced electron microscopy. These techniques have shed light on several important questions concerning what conformational changes accompany ATP hydrolysis and whether multiple motor domains are coordinated in the movements of dynein. However, due to the lack of a proper expression system for axonemal dyneins, no atomic coordinates of the entire motor domain of axonemal dynein have been reported. Therefore, a substantial amount of knowledge on the molecular architecture of axonemal dynein has been derived from electron microscopic observations on dynein arms in axonemes or on isolated axonemal dynein molecules. This review describes our current knowledge and perspectives of the force-generating mechanism of axonemal dyneins in solo and in ensemble.
Collapse
|
21
|
Sugiyama Y, Fujinoki M, Shibahara H. Effects of 5-hydroxytryptamine on spermatozoal hyperactivation and in vitro fertilization in mice. J Reprod Dev 2019; 65:541-550. [PMID: 31694987 PMCID: PMC6923157 DOI: 10.1262/jrd.2019-082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study, we examined the effects of 5-hydroxytryptamine (5-HT) on the motility and hyperactivation of mouse spermatozoa. In addition, we examined whether 5-HT increases the success of
in vitro fertilization (IVF) in mice. Interestingly, 5-HT and agonists of the 5-HT2, 5-HT3, 5-HT4, and 5-HT7 receptors
significantly increased the percentage of hyperactivated spermatozoa but did not affect the percentage of motile spermatozoa. Moreover, agonists of the 5-HT2, 5-HT3,
and 5-HT4 receptors significantly affected the velocities, linearity, straightness, wobbler coefficient, amplitude and/or frequency of spermatozoa. In particular, the improvement
of hyperactivation by 5-HT was strongly inhibited by antagonists of the receptors 5-HT4 and 5-HT7 and was completely inhibited by a mixture of the four 5-HT-receptor
antagonists. The increase in hyperactivation by the agonists was significantly inhibited by the corresponding 5-HT-receptor antagonist. Moreover, 5-HT significantly increased the percentage
of two-cell embryos. The increase in the IVF success rate by 5-HT was significantly inhibited by a 5-HT4-receptor antagonist. These results suggest that 5-HT increased
hyperactivation through the 5-HT receptors and increased the success of IVF in mice.
Collapse
Affiliation(s)
- Yukiko Sugiyama
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Masakatsu Fujinoki
- Department of Physiology, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan.,Laboratory Animal Research Center, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Hiroaki Shibahara
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| |
Collapse
|
22
|
Mogielnicka-Brzozowska M, Prochowska S, Niżański W, Bromke MA, Wiśniewski J, Olejnik B, Kuzborska A, Fraser L, Młynarz P, Kordan W. Proteome of cat semen obtained after urethral catheterization. Theriogenology 2019; 141:68-81. [PMID: 31518731 DOI: 10.1016/j.theriogenology.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 01/04/2023]
Abstract
The binding of seminal plasma (SP) proteins by spermatozoa plays an important role in the regulation of sperm epididymal maturation, motility gaining in female reproductive tracts and sperm-egg interaction. The aim of the study was to analyze the SP and sperm extracts proteome of cat (Felis catus) semen. The seminal plasma and spermatozoa were obtained by urethra catheterization from 10 male cats. Proteins were extracted using RIPA buffer and separated by electrophoresis (SDS-PAGE). The gels were analyzed using MultiAnalyst software. The proteins were subsequently analyzed using NanoUPLC-Q-TOF/MS. UniProt database-supported identification resulted in 106 proteins identified in the cat SP and 98 proteins in the extracts of spermatozoa. Based on a gene ontology analysis, dominant molecular functions of feline SP proteins were binding, catalytic, and antioxidant activity (56%, 33%, and 11% of cases, respectively). The molecular functions of sperm extracts proteins were mainly involved in catalytic activity (41%) and binding (23%). The proteins present in both, the SP and spermatozoa's extracts, were: serum albumin (ALB), semenogelin 2 (SEMG 2), clusterin (CLU), lactoferrin (LTF), prostatic acid phosphatase (ACPP), prolactin inducible protein (PIP), negative elongation factor E (NELF-E) and ectonucleotide pyrophosphatase (ENPP3). Protein-protein interactions analysis showed significant connection for 12 proteins in the cat semen. The seminal plasma proteins which, with high probability score, participate in important metabolic pathways are: glutathione peroxidases (GPx5 and 6), prostatic acid phosphatase (ACPP), β-hexosaminidase (HEXB), polymeric immunoglobulin receptor (pIgR) and serpin family F member 1 (SERPINF1). For sperm protein extracts it were: pyruvate dehydrogenase (PDHB), succinate-CoA-ligase (SUCLA2), malate dehydrogenase (MDH2), ATP synthase F1 subunit alpha (ATP5F1A) and tubulin beta (TUBB).
Collapse
Affiliation(s)
- Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland.
| | - Sylwia Prochowska
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 49, 50-366, Wrocław, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 49, 50-366, Wrocław, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Medical University of Wrocław, Chałubińskiego 10, 50-368, Wrocław, Poland
| | - Jerzy Wiśniewski
- Department of Medical Biochemistry, Medical University of Wrocław, Chałubińskiego 10, 50-368, Wrocław, Poland
| | - Beata Olejnik
- Department of Chemistry and Immunochemistry, Medical University of Wrocław, Bujwida 44a, 50-345, Wrocław, Poland
| | - Anna Kuzborska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland
| | - Leyland Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland
| | - Piotr Młynarz
- Department of Chemistry, Wroclaw University of Technology, 50-370, Wrocław, Poland
| | - Władysław Kordan
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland
| |
Collapse
|
23
|
Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur J Med Chem 2019; 171:310-331. [PMID: 30953881 DOI: 10.1016/j.ejmech.2019.03.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/24/2022]
Abstract
Microtubules are a protein which is made of α- and β-heterodimer. It is one of the main components of the cell which play a vital role in cell division especially in G2/M-phase. It exists in equilibrium dynamic of polymerization and depolymerization of α- and β-heterodimer. It is one of the best targets for developing anti-cancer drugs. Various natural occurring molecules are well known for their anti-tubulin effect such as vinca, paclitaxel, combretastatin, colchicine etc. These microtubule-targeted drugs are acted through two processes (i) inhibiting depolymerization of tubulin (tubulin stabilizing agents) and (ii) inhibiting polymerization of tubulin (tubulin destabilizing agents). Now days, various binding domains have been explore through which these molecules are binding to tubulin but the three major binding domain of tubulin are taxol, vinca and colchicine binding domain. The present article mainly focus on the classification of various naturally occurring compounds on the basis of their inhibition processes (depolymerization and polymerization) and the site of interaction (targets taxol, vinca and colchicine binding domain) which has been hitherto reported. By placing all the naturally occurring taxol, vinca and colchicine binding site analogues at one place makes a better understanding of the tubulin interactions with known natural tubulin binders that would helps in the discovery of new and potent natural, semi-synthetic and synthetic analogues for treating cancer.
Collapse
|
24
|
Gunes S, Sengupta P, Henkel R, Alguraigari A, Sinigaglia MM, Kayal M, Joumah A, Agarwal A. Microtubular Dysfunction and Male Infertility. World J Mens Health 2018; 38:9-23. [PMID: 30350487 PMCID: PMC6920067 DOI: 10.5534/wjmh.180066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023] Open
Abstract
Microtubules are the prime component of the cytoskeleton along with microfilaments. Being vital for organelle transport and cellular divisions during spermatogenesis and sperm motility process, microtubules ascertain functional capacity of sperm. Also, microtubule based structures such as axoneme and manchette are crucial for sperm head and tail formation. This review (a) presents a concise, yet detailed structural overview of the microtubules, (b) analyses the role of microtubule structures in various male reproductive functions, and (c) presents the association of microtubular dysfunctions with male infertility. Considering the immense importance of microtubule structures in the formation and maintenance of physiological functions of sperm cells, this review serves as a scientific trigger in stimulating further male infertility research in this direction.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, Selangor, Malaysia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Aabed Alguraigari
- Batterjee Medical College, Jeddah, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Mariana Marques Sinigaglia
- University of Sao Paulo, Sao Paulo, Brazil.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Malik Kayal
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmad Joumah
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
25
|
Inaba K, Shiba K. Microscopic analysis of sperm movement: links to mechanisms and protein components. Microscopy (Oxf) 2018; 67:144-155. [DOI: 10.1093/jmicro/dfy021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/25/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
26
|
Takei GL, Fujinoki M, Yoshida K, Ishijima S. Regulatory mechanisms of sperm flagellar motility by metachronal and synchronous sliding of doublet microtubules. Mol Hum Reprod 2017; 23:817-826. [PMID: 29040653 DOI: 10.1093/molehr/gax055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/07/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION What is the role of metachronal and synchronous sliding in sperm flagellar motility? SUMMARY ANSWER Both metachronal and oscillatory synchronous sliding are essential for sperm flagellar motility, while the change in mode of synchronous sliding between the non-oscillatory synchronous sliding of a specific pair of the doublet microtubules and the oscillatory synchronous sliding between most pairs of doublet microtubules modulates the sperm flagellar motility. WHAT IS KNOWN ALREADY Metachronal and synchronous sliding of doublet microtubules are involved in sperm flagellar motility and regulation of these sliding movements controls flagellar bend formation. STUDY DESIGN, SIZE, DURATION To study the regulatory mechanisms of metachronal and synchronous sliding in flagellar movement of golden hamster spermatozoa, changes in these sliding movements during hyperactivation were examined by measuring the angle of the tangent to the flagellar shaft with reference to the central axis of the sperm head (the shear angle) along the flagellum. Golden hamster spermatozoa were obtained from the caudal epididymis of five sexually mature golden hamsters. Results from three experiments were averaged. The number of spermatozoa analyzed is 15 activated sperm, 22 hyperactivated sperm and 20 acrosome-reacted sperm. PARTICIPANTS/MATERIALS, SETTING, METHODS For detailed field-by-field analysis, an individual flagellar image was tracked automatically using the Autotrace module of image analysis software. The coordinate values of the flagellar shaft were used to calculate the shear angle, which is proportional to the amount of microtubule sliding at any given position along the flagellum. The maximum shear angles of metachronal and synchronous sliding were obtained from the mean shear angles between the maximum shear angles of pro-hook bends and the absolute values of the minimum shear angles of anti-hook bends, which represent the amplitude of a set of successive shear angle curves, with 3-12 shear curves covering one beat cycle of sperm flagellar movement. Asymmetry of flagellar waves was expressed by the mean shear angle between the maximum shear angle of pro-hook bends and the minimum shear angle of anti-hook bends at 100 μm from the head-midpiece junction. MAIN RESULTS AND THE ROLE OF CHANCE The asymmetrical flagellar movements observed in the activated (non-hyperactivated) and hyperactivated spermatozoa were characterized by the non-oscillatory synchronous sliding of a specific pair of the doublets; the large asymmetrical flagellar movement in the hyperactivated spermatozoa was generated by the large non-oscillatory synchronous sliding. Both the metachronal and synchronous sliding increased during the hyperactivation; however, the large symmetrical flagellar movement of the acrosome-reacted spermatozoa was characterized by the oscillatory synchronous sliding between most pairs of doublets. These results demonstrated that the metachronal and synchronous sliding are involved in generation and modulation of sperm flagellar motility; however, two types of synchronous sliding, non-oscillatory and oscillatory sliding, modulate the sperm flagellar motility by enhancing the sliding of a specific pair of the doublets or the sliding between most pairs of the doublets. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION This is an indirect study of the metachronal and synchronous sliding of doublet microtubules. Studies based on the direct observation of behavior of dynein are needed to clarify the sliding microtubule theory of flagellar movement of spermatozoa. WIDER IMPLICATIONS OF THE FINDINGS Both the metachronal and oscillatory synchronous sliding of doublet microtubule generate and modulate sperm flagellar motility, while the change in mode of synchronous sliding between the non-oscillatory synchronous sliding and oscillatory synchronous sliding modulates the sperm flagellar motility. The coordination between these sliding leads to various types of flagellar and ciliary motility, including the asymmetrical beating in flagellar and ciliary movement and planar or helical beating in sea urchin spermatozoa. Moreover, the finding that the metachronal sliding and two types of synchronous sliding generate and modulate the flagellar motility will open a new avenue for quantitative analysis of flagellar and ciliary motility. STUDY FUNDING AND COMPETING INTEREST(S) The authors have no conflict of interest and no funding to declare.
Collapse
Affiliation(s)
- Gen L Takei
- Department of Regulatory Physiology, Dokkyo Medical University, Mibu-machi, Tochigi 321-0293, Japan
| | - Masakatsu Fujinoki
- Department of Regulatory Physiology, Dokkyo Medical University, Mibu-machi, Tochigi 321-0293, Japan
| | - Kaoru Yoshida
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama 225-8502, Japan
| | - Sumio Ishijima
- School of Life Science and Technology, Tokyo Institute of Technology, O-okayama, Tokyo 152-8551, Japan
| |
Collapse
|
27
|
Jorgenson TD, Mohammed AM, Agrawal DK, Schulman R. Self-Assembly of Hierarchical DNA Nanotube Architectures with Well-Defined Geometries. ACS NANO 2017; 11:1927-1936. [PMID: 28085250 DOI: 10.1021/acsnano.6b08008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An essential motif for the assembly of biological materials such as actin at the scale of hundreds of nanometers and beyond is a network of one-dimensional fibers with well-defined geometry. Here, we demonstrate the programmed organization of DNA filaments into micron-scale architectures where component filaments are oriented at preprogrammed angles. We assemble L-, T-, and Y-shaped DNA origami junctions that nucleate two or three micron length DNA nanotubes at high yields. The angles between the nanotubes mirror the angles between the templates on the junctions, demonstrating that nanoscale structures can control precisely how micron-scale architectures form. The ability to precisely program filament orientation could allow the assembly of complex filament architectures in two and three dimensions, including circuit structures, bundles, and extended materials.
Collapse
Affiliation(s)
- Tyler D Jorgenson
- Chemical and Biomolecular Engineering and ‡Computer Science, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Abdul M Mohammed
- Chemical and Biomolecular Engineering and ‡Computer Science, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Deepak K Agrawal
- Chemical and Biomolecular Engineering and ‡Computer Science, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Chemical and Biomolecular Engineering and ‡Computer Science, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
28
|
Fujinoki M, Takei GL. γ-Aminobutyric acid suppresses enhancement of hamster sperm hyperactivation by 5-hydroxytryptamine. J Reprod Dev 2016; 63:67-74. [PMID: 27773888 PMCID: PMC5320432 DOI: 10.1262/jrd.2016-091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sperm hyperactivation is regulated by hormones present in the oviduct. In hamsters, 5-hydroxytryptamine (5HT) enhances hyperactivation associated with the
5HT2 receptor and 5HT4 receptor, while 17β-estradiol (E2) and γ-aminobutyric acid (GABA) suppress the association of the
estrogen receptor and GABAA receptor, respectively. In the present study, we examined the regulatory interactions among 5HT, GABA, and E2
in the regulation of hamster sperm hyperactivation. When sperm were exposed to E2 prior to 5HT exposure, E2 did not affect 5HT-enhanced
hyperactivation. In contrast, GABA partially suppressed 5HT-enhanced hyperactivation when sperm were exposed to GABA prior to 5HT. GABA suppressed 5HT-enhanced
hyperactivation associated with the 5HT2 receptor although it did not suppress 5HT-enhanced hyperactivation associated with the 5HT4
receptor. These results demonstrate that hamster sperm hyperactivation is regulated by an interaction between the 5HT2 receptor-mediated action of
5HT and GABA.
Collapse
Affiliation(s)
- Masakatsu Fujinoki
- Department of Physiology, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | | |
Collapse
|
29
|
Fujinoki M, Takei GL, Kon H. Non-genomic regulation and disruption of spermatozoal in vitro hyperactivation by oviductal hormones. J Physiol Sci 2016; 66:207-12. [PMID: 26541156 PMCID: PMC10717772 DOI: 10.1007/s12576-015-0419-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/14/2015] [Indexed: 01/12/2023]
Abstract
During capacitation, motility of mammalian spermatozoon is changed from a state of "activation" to "hyperactivation." Recently, it has been suggested that some hormones present in the oviduct are involved in the regulation of this hyperactivation in vitro. Progesterone, melatonin, and serotonin enhance hyperactivation through specific membrane receptors, and 17β-estradiol suppresses this enhancement by progesterone and melatonin via a membrane estrogen receptor. Moreover, γ-aminobutyric acid suppresses progesterone-enhanced hyperactivation through the γ-aminobutyric acid receptor. These hormones dose-dependently affect hyperactivation. Although the complete signaling pathway is not clear, progesterone activates phospholipase C and protein kinases and enhances tyrosine phosphorylation. Moreover, tyrosine phosphorylation is suppressed by 17β-estradiol. This regulation of spermatozoal hyperactivation by steroids is also disrupted by diethylstilbestrol. The in vitro experiments reviewed here suggest that mammalian spermatozoa are able to respond to effects of oviductal hormones. We therefore assume that the enhancement of spermatozoal hyperactivation is also regulated by oviductal hormones in vivo.
Collapse
Affiliation(s)
- Masakatsu Fujinoki
- Department of Physiology, School of Medicine, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan.
| | - Gen L Takei
- Department of Physiology, School of Medicine, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Hiroe Kon
- Laboratory Animal Research Center, School of Medicine, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
30
|
Kageyama H, Miyajima M, Ogino I, Nakajima M, Shimoji K, Fukai R, Miyake N, Nishiyama K, Matsumoto N, Arai H. Panventriculomegaly with a wide foramen of Magendie and large cisterna magna. J Neurosurg 2015; 124:1858-66. [PMID: 26636390 DOI: 10.3171/2015.6.jns15162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors' goal in this paper is to provide the first clinical, radiological, and genetic studies of panventriculomegaly (PaVM) defined by a wide foramen of Magendie and large cisterna magna. METHODS Clinical and brain imaging data from 28 PaVM patients (including 10 patients from 5 families) were retrospectively studied. Five children were included. In adult patients, the age at onset was 56.0 ± 16.7 years. Tetraventricular dilation, aqueductal opening with flow void on T2-weighted images, and a wide foramen of Magendie and large cisterna magna (wide cerebrospinal fluid space at the fourth ventricle outlet) were essential MRI findings for PaVM diagnosis. 3D fast asymmetrical spin echo sequences were used for visualization of cistern membranes. Time-spatial labeling inversion pulse examination was performed to analyze cerebrospinal fluid movement. Copy number variations were determined using high-resolution microarray and were validated by quantitative polymerase chain reaction with breakpoint sequencing. RESULTS Adult patients showed gait disturbance, urinary dysfunction, and cognitive dysfunction. Five infant patients exhibited macrocranium. Patients were divided into 2 subcategories, those with or without downward bulging third ventricular floors and membranous structures in the prepontine cistern. Patients with bulging floors were successfully treated with endoscopic third ventriculostomy. Genetic analysis revealed a deletion in DNAH14 that encodes a dynein heavy chain protein associated with motile cilia function, and which co-segregated with patients in a family without a downward bulging third ventricular floor. CONCLUSIONS Panventriculomegaly with a wide foramen of Magendie and a large cisterna magna may belong to a subtype of congenital hydrocephalus with familial accumulation, younger age at onset, and symptoms of normal pressure hydrocephalus. In addition, a family with PaVM has a gene mutation associated with dysfunction of motile cilia.
Collapse
Affiliation(s)
- Hiroshi Kageyama
- Department of Neurosurgery, Graduate School of Medicine, Juntendo University, Tokyo;,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama;,Department of Neurosurgery, Kuki General Hospital, Kuki, Saitama; and
| | - Masakazu Miyajima
- Department of Neurosurgery, Graduate School of Medicine, Juntendo University, Tokyo
| | - Ikuko Ogino
- Department of Neurosurgery, Graduate School of Medicine, Juntendo University, Tokyo
| | - Madoka Nakajima
- Department of Neurosurgery, Graduate School of Medicine, Juntendo University, Tokyo
| | - Kazuaki Shimoji
- Department of Neurosurgery, Graduate School of Medicine, Juntendo University, Tokyo
| | - Ryoko Fukai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | | | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama
| | - Hajime Arai
- Department of Neurosurgery, Graduate School of Medicine, Juntendo University, Tokyo
| |
Collapse
|
31
|
Abstract
Sperm motility is driven by motile cytoskeletal elements in the tail, called axonemes. The structure of axonemes consists of 9 + 2 microtubules, molecular motors (dyneins), and their regulatory structures. Axonemes are well conserved in motile cilia and flagella through eukaryotic evolution. Deficiency in the axonemal structure causes defects in sperm motility, and often leads to male infertility. It has been known since the 1970s that, in some cases, male infertility is linked with other symptoms or diseases such as Kartagener syndrome. Given that these links are mostly caused by deficiencies in the common components of cilia and flagella, they are called "immotile cilia syndrome" or "primary ciliary dyskinesia," or more recently, "ciliopathy," which includes deficiencies in primary and sensory cilia. Here, we review the structure of the sperm flagellum and epithelial cilia in the human body, and discuss how male fertility is linked to ciliopathy.
Collapse
|
32
|
Fujinoki M, Takei GL. Estrogen suppresses melatonin-enhanced hyperactivation of hamster spermatozoa. J Reprod Dev 2015; 61:287-95. [PMID: 25959801 PMCID: PMC4547986 DOI: 10.1262/jrd.2014-116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE2) and γ-aminobutyric acid (GABA). Although it has been indicated that melatonin also enhances hyperactivation, it is unknown whether melatonin-enhanced hyperactivation is also suppressed by 17βE2 and GABA. In the present study, melatonin-enhanced hyperactivation was significantly suppressed by 17βE2 but not by GABA. Moreover, suppression of melatonin-enhanced hyperactivation by 17βE2 occurred through non-genomic regulation via the estrogen receptor (ER). These results suggest that enhancement of hyperactivation is regulated by melatonin and 17βE2 through non-genomic regulation.
Collapse
Affiliation(s)
- Masakatsu Fujinoki
- Department of Physiology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | | |
Collapse
|
33
|
Inaba K. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution. Cilia 2015; 4:6. [PMID: 25932323 PMCID: PMC4415241 DOI: 10.1186/s13630-015-0015-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/23/2015] [Indexed: 12/31/2022] Open
Abstract
The motility of eukaryotic cilia and flagella is modulated in response to several extracellular stimuli. Ca(2+) is the most critical intracellular factor for these changes in motility, directly acting on the axonemes and altering flagellar asymmetry. Calaxin is an opisthokont-specific neuronal calcium sensor protein first described in the sperm of the ascidian Ciona intestinalis. It binds to a heavy chain of two-headed outer arm dynein in a Ca(2+)-dependent manner and regulates 'asymmetric' wave propagation at high concentrations of Ca(2+). A Ca(2+)-binding subunit of outer arm dynein in Chlamydomonas reinhardtii, the light chain 4 (LC4), which is a Ca(2+)-sensor phylogenetically different from calaxin, shows Ca(2+)-dependent binding to a heavy chain of three-headed outer arm dynein. However, LC4 appears to participate in 'symmetric' wave propagation at high concentrations of Ca(2+). LC4-type dynein light chain is present in bikonts, except for some subclasses of the Excavata. Thus, flagellar asymmetry-symmetry conversion in response to Ca(2+) concentration represents a 'mirror image' relationship between Ciona and Chlamydomonas. Phylogenetic analyses indicate the duplication, divergence, and loss of heavy chain and Ca(2+)-sensors of outer arm dynein among excavate species. These features imply a divergence point with respect to Ca(2+)-dependent regulation of outer arm dynein in cilia and flagella during the evolution of eukaryotic supergroups.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025 Japan
| |
Collapse
|
34
|
ISHIJIMA S. Ca2+ and cAMP regulations of microtubule sliding in hyperactivated motility of bull spermatozoa. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:99-108. [PMID: 25765012 PMCID: PMC4410089 DOI: 10.2183/pjab.91.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
To reach and fertilize the egg, mammalian spermatozoa change their flagellar movement in the female reproductive tract, named hyperactivation. The biochemical analyses of the hyperactivated movement using demembranated spermatozoa defined the factors inducing this peculiar movement; namely, large asymmetrical flagellar movement observed in the early stage of the hyperactivation was induced with a high Ca(2+) concentration while large symmetrical flagellar movement in the late stage of the hyperactivation was generated with low Ca(2+) and high cAMP concentrations. Under these conditions, the microtubule sliding of bull sperm flagella was investigated by disintegrating the sperm flagella with MgATP(2-) after extracting their plasma membrane and mitochondria. The large asymmetrical flagellar movement was caused by a long sliding displacement of a fiber of the doublet microtubules. On the other hand, the large symmetrical flagellar movement was generated by a large amount of microtubule sliding by many doublet microtubules.
Collapse
Affiliation(s)
- Sumio ISHIJIMA
- Department of Bioengineering, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
35
|
Lloyd D, Lewis IB, Williams CF, Hayes AJ, Symons H, Hill EC. Motility of the diplomonad fish parasite Spironucleus vortens through thixotropic solid media. Microbiology (Reading) 2015; 161:213-218. [DOI: 10.1099/mic.0.082529-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- David Lloyd
- School of Biosciences, Cardiff University, Main Building, Museum Avenue, Cathays Park, Cardiff CF10 3AT, Wales, UK
| | - Iwan B. Lewis
- School of Biosciences, Cardiff University, Main Building, Museum Avenue, Cathays Park, Cardiff CF10 3AT, Wales, UK
| | - Catrin F. Williams
- School of Biosciences, Cardiff University, Main Building, Museum Avenue, Cathays Park, Cardiff CF10 3AT, Wales, UK
| | - Anthony J. Hayes
- School of Biosciences, Cardiff University, Main Building, Museum Avenue, Cathays Park, Cardiff CF10 3AT, Wales, UK
| | - Hannah Symons
- ECHA Microbiology Ltd, Units 22 and 23, Willowbrook Technology Park, Llandogo Road, St Mellons, Cardiff CF3 0EF, Wales, UK
| | - Edward C. Hill
- ECHA Microbiology Ltd, Units 22 and 23, Willowbrook Technology Park, Llandogo Road, St Mellons, Cardiff CF3 0EF, Wales, UK
| |
Collapse
|
36
|
Fujinoki M. Regulation and disruption of hamster sperm hyperactivation by progesterone, 17β-estradiol and diethylstilbestrol. Reprod Med Biol 2014; 13:143-152. [PMID: 29699158 DOI: 10.1007/s12522-013-0175-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/12/2013] [Indexed: 11/25/2022] Open
Abstract
Purpose Hyperactivation of hamster sperm is dose-dependently enhanced by progesterone (P) and 17β-estradiol (E). In the first part of the present study, enhancement of hyperactivation in response to the concentrations of P and E was examined in detail and in the second part, it was examined whether enhancement of hyperactivation by P and E was disrupted by diethylstilbestrol (DES). Methods Hamster spermatozoa were hyperactivated by incubation in modified Tyrode's albumin lactate pyruvate medium with P, E and/or DES. After spermatozoa were recorded using a video-microscope, observations were quantified by manually counting the numbers of total, motile and hyperactivated spermatozoa. Results Hyperactivation was enhanced in response to the concentrations of P and E. When spermatozoa were exposed to DES with E, moreover, DES significantly and strongly suppressed P-enhanced hyperactivation by accelerating the effect of E, but DES itself only weakly suppressed P-enhanced hyperactivation. Conclusions Enhancement of hyperactivation was regulated by the concentrations of P and E, suggesting that in vivo hamster spermatozoa are hyperactivated through "monitoring" these concentrations in the oviduct. DES in combination with E suppressed P-enhanced hyperactivation, suggesting that DES significantly disrupts hyperactivation by acting as an accelerator of the effect of E.
Collapse
Affiliation(s)
- Masakatsu Fujinoki
- Department of Physiology, School of Medicine Dokkyo Medical University 321-0293 Mibu Tochigi Japan
| |
Collapse
|
37
|
Shiba K, Shibata D, Inaba K. Autonomous changes in the swimming direction of sperm in the gastropod Strombus luhuanus. ACTA ACUST UNITED AC 2013; 217:986-96. [PMID: 24311809 DOI: 10.1242/jeb.095398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The sperm of the gastropod Strombus luhuanus show dimorphism. The eusperm have a nucleus and fertilize the egg, whereas the other type of sperm, parasperm, are anucleate and are thought to assist fertilization. Here we report the autonomous changes in the swimming pattern of S. luhuanus eusperm. In artificial seawater, the eusperm collected from S. luhuanus sperm ducts formed sperm bundles and initially swam backward with asymmetric flagellar waveforms to detach from the bundles. One hour later, the sperm began to swim forward and in a circle. After an additional 1 h incubation, the sperm swam straight, with a change in the flagellar waveforms from asymmetric to symmetric. Spontaneous backward swimming with symmetric waveforms was also observed. The eusperm stored in the female seminal receptacle were motile and showed forward symmetric swimming with spontaneous backward swimming, which appeared necessary for detachment from the wall of receptacle. All of these motility changes were observed in the absence of parasperm, suggesting that these changes autonomously occur in eusperm. Our waveform analysis of these swimming patterns revealed that only the swimming with symmetric waveform showed reverse propagation of the flagellar waveforms. Both types of backward swimming were diminished in Ca(2+)-free seawater and in seawater containing Ni(2+), indicating the regulation of swimming direction by Ca(2+)-dependent signal transduction.
Collapse
Affiliation(s)
- Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | | | | |
Collapse
|