Liu X, Wang Z, Zhao C, Bu W, Na H. Preparation and characterization of silane-modified SiO
2 particles reinforced resin composites with fluorinated acrylate polymer.
J Mech Behav Biomed Mater 2018;
80:11-19. [PMID:
29414465 DOI:
10.1016/j.jmbbm.2018.01.004]
[Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/01/2018] [Accepted: 01/09/2018] [Indexed: 11/24/2022]
Abstract
A series of fluorinated dental resin composites were prepared with two kinds of SiO2 particles. Bis-GMA (bisphenol A-glycerolate dimethacrylate)/4-TF-PQEA (fluorinated acrylate monomer)/TEGDMA (triethylene glycol dimethacrylate) (40/30/30, wt/wt/wt) was introduced as resin matrix. SiO2 nanopartices (30nm) and SiO2 microparticles (0.3µm) were silanized with 3-methacryloxypropyl trimethoxysilane (γ-MPS) and used as fillers. After mixing the resin matrix with 0%, 10%, 20%, 30% SiO2 nanopartices and 0%, 10%, 20%, 30%, 40%, 50% SiO2 microparticles, respectively, the fluorinated resin composites were obtained. Properties including double bond conversion (DC), polymerization shrinkage (PS), water sorption (Wp), water solubility (Wy), mechanical properties and cytotoxicity were investigated in comparison with those of neat resin system. The results showed that, filler particles could improve the overall performance of resin composites, particularly in improving mechanical properties and reducing PS of composites along with the addition of filler loading. Compared to resin composites containing SiO2 microparticles, SiO2 nanoparticles resin composites had higher DC, higher mechanical properties, lower PS and lower Wp under the same filler content. Especially, 50% SiO2 microparticles reinforced resins exhibited the best flexural strength (104.04 ± 7.40MPa), flexural modulus (5.62 ± 0.16GPa), vickers microhardness (37.34 ± 1.13 HV), compressive strength (301.54 ± 5.66MPa) and the lowest polymerization (3.42 ± 0.22%).
Collapse